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1 IntroductionThe history of planning research shows at least two major strands, whoserespective goals are to achieve practical planning and well-founded planning.Practical planning research seeks to provide planning frameworks and toolsthat are su�ciently expressive, exible and e�cient to be e�ectively usable inapplications such as planning robot actions, transportation planning, factoryscheduling, genetic engineering and conversation planning. Some of the earli-est practically motivated planning \formalisms" were the MICROPLANNERimplementation of Hewitt's PLANNER language [13, 24], STRIPS [8], andNOAH [23], and some familiar later examples are NONLIN [25], DEVISER[26], SIPE [27], PRS [9], FORBIN [7], and O-Plan [6].The emphasis in well-founded planning is on constructing planners that canbe proved to have certain desirable properties, such as soundness and com-pleteness for their intended class of problems, or the ability to �nd optimal ornear-optimal solutions. The �rst well-founded planner was probably C. Green'sQA3 [12], o�ering sound and complete planning within the expressively quiterich situation calculus. However, its performance was impractical, and thisprovided some of the impetus behind the development of STRIPS and its de-scendants. The subsequent quest for more practical planners contributed manyvaluable ideas to planning theory and practice, but there remained a lingeringdissatisfaction in the planning community with the lack of formal founda-tions and guarantees for the resultant planners (highlighted by troublesomeproblems such as the Sussman anomaly and the register exchange problem).This led to a renewal of e�orts in the 80's to �nd viable approaches to well-founded planning, exempli�ed by novel algorithms such as BIGRESS [22, 16](based on dynamic logic), Bibel's linear connection method for plan genera-tion [3], TWEAK [4] (Chapman's partial-order planner based on his \modaltruth criterion") and SNLP [18] (another systematic partial-order planner us-ing propositional STRIPS operators). These e�orts have gained considerablemomentum in recent years, leading both to extensions of earlier approaches,such as UCPOP [20] and BURIDAN [17], and systematic comparative perfor-mance evaluations (e.g., [2, 15]).Despite these e�orts, it seems fair to say that well-founded planners still per-form dismally in practical terms. For example, when we tried to apply theprograms evaluated in [15] to the standard UCPOP suite of test problems, wefound that none achieve reasonable performance on the 3-disk Towers of Hanoi(T of H) puzzle (requiring 7 moves for its solution), or on some other simpleproblems. UCPOP did best on T of H but still took over 3 minutes of CPUtime on a SUN 10, generating tens of thousands of partial plans. (This waswith the \delay separation" switch on [21];1 with this switch o�, performance1i.e., delaying the use of \promotion" and \demotion" to avert threats until all vari-ables appearing in the conict conditions are bound; and disabling altogether the use ofinequations to block uni�cation of threatening e�ects with threatened causal links2



was typically several times worse.) This is disappointing, since puzzles likeT of H are easily solved by inexperienced people, with very little trial anderror search; moreover, the very �rst well-founded planner, C. Green's QA3,reportedly solved some (carefully formulated) versions of this problem rathereasily [12]. It should be noted that such toy problems are not particularlyoutlandish from a practical perspective; for instance T of H and blocks worldproblems resemble problems that arise in such areas as connecting railroadcars into trains (with use of sidetracks) and pallet management in automatedwarehouses. (Some of the other problems in the test suite, such as the \ferrydomain", are more directly evocative of real-world applications.)Some recent studies of partial-order planning strategies (e.g., [15]) could beinterpreted as implying that the level of planning performance achieved so faris about the best that is possible for domain-independent planners; any realimprovements from this point on will have to come from exploiting domain-speci�c information. Our outlook on well-founded, domain-independent plan-ning is more optimistic. In the following, we suggest improved planning strate-gies based on the one hand on more carefully formulated heuristics for selectingplans for re�nement, and on the other on \deductively oriented" (or \zero com-mitment") strategies for choosing subgoals. We describe these two classes oftechniques in Sections 2 below, and in Section 3 we report our preliminaryexperimental results based on slightly modi�ed versions of UCPOP. Theseresults suggest that order-of-magnitude improvements in the performance ofwell-founded planners are possible, bringing them closer to practical usability.2 Plan Selection and Goal Selection2.1 UCPOPWe will be basing our discussion and experiments on UCPOP, an algorithmexemplifying the state of the art in well-founded partial-order planning. Thuswe begin with a sketch of this algorithm, referring the reader to [1, 20] fordetails.In essence, UCPOP explores a space of partially speci�ed plans, each pairedwith an agenda of goals still to be satis�ed and threats still to be averted. Theinitial plan contains a dummy *start* action whose e�ects are the given initialconditions, and a dummy *end* action whose preconditions are the given goals.Thus goals are uniformly viewed as action preconditions, and are uniformlyachieved through the e�ects of actions, including the *start* action.The plans themselves consist of a collection of steps (i.e., actions obtained byinstantiating the available operators), along with a set of causal links, a setof binding constraints, and a set of ordering constraints. When an open goal(precondition) is selected from the agenda, it is established (if possible) either3



by adding a step with an e�ect that uni�es with the goal, or by using anexisting step with an e�ect that uni�es with the goal. (In the latter case, itmust be consistent with current ordering constraints to place the existing stepbefore the goal, i.e., before the step whose preconditions generated the goal.)When a new or existing step is used to establish a goal in this way, there areseveral \side e�ects":� A causal link (Sp; Q; Sc) is also added, where Sp indicates the step \pro-ducing" the goal condition Q and Sc indicates the step \consuming" Q.This causal link serves to protect the intended e�ect of the added (orreused) step from interference by other steps.� Binding constraints are added, corresponding to the uni�er for the actione�ect in question and the goal (precondition) it achieves.� An ordering constraint is added, placing the step in question before thestep whose precondition it achieves.� If the action in question is new, its preconditions are added to the agendaas new goals (except that eq/neq conditions are integrated into the bind-ing constraints { see below).� New threats (called \unsafe conditions") are determined. For a newstep and its causal link, other steps threaten the causal link if they havee�ects uni�able with the condition protected by the causal link (and thesee�ects can occur temporally during the causal link); and the e�ects ofthe new step may similarly threaten other causal links. In either case,new threats are placed on the agenda.Binding constraints assert the identity (eq) or nonidentity (neq) of two vari-ables or a variable and a constant. Eq-constraints arise from unifying opengoals with action e�ects, and neq-constraints arise from neq-preconditions ofnewly instantiated actions and from matching negative goals containing vari-ables to the initial state. (We set aside \separation" as a means of avertingthreats, which also leads to neq-constraints.) Neq-constraints may be disjunc-tive, but are handled simply by generating separate plans for each disjunct.The overall control loop of UCPOP consists of selecting a plan from the currentlist of plans (initially the single plan based on *start* and *end*), selecting agoal or threat from its agenda, and replacing the plan by the correspondingre�ned plans. If the agenda item is a goal, the re�ned plans are those corre-sponding to all ways of establishing the goal using a new or existing step. Ifthe agenda item is a threat to a causal link (Sp; Q; Sc), then with the \delayseparation" switch on there are two re�ned plans, respectively constraining thethreatening step to be before step Sp (demotion) or after step Sc (promotion),thus averting the threat. 4



Inconsistencies in binding constraints and ordering constraints are detectedwhen they �rst occur (as a result of adding a new constraint) and the corre-sponding plans are eliminated. Planning fails if no plans remain. The successcondition is the creation of a plan with consistent binding and ordering con-straints and an empty agenda.What we have described so far is actually POP. The \U" and \C" in UCPOPcorrespond to a liberalized form of STRIPS-like operator speci�cations, al-lowing universally quanti�ed preconditions (and goals) and conditional e�ects.For instance, it is permissible to have a precondition for a PICKUP(x) actionthat says that for all y, (not (on y x)) holds. Also, it is permissible to haveconditional e�ects for a PUTON(x,y,z) action (\put x on y from z"), statingthat when y is not the table, it will not be clear at the end of the action, andwhen z is not the table, it will be clear at the end of the action. We need notbe concerned here with the details of how such conditions are handled. Theycause only minor perturbations in the operation of UCPOP; for instance, con-ditional e�ects can lead to multiple matches against operators for a given goal,each match generating di�erent preconditions. (Of course, there can be mul-tiple matches even without conditional e�ects, if some predicates occur morethan once in the e�ects.)The key issues for us are the strategic ones: how plans are selected from thecurrent set of plans (discussed in section 2.2), and how goals are selected for agiven plan (discussed in section 2.3).2.2 The trouble with counting unsafe conditionsThe choice of the next plan to re�ne in the UCPOP system is based on anA* best-�rst search. Recall that A* uses a heuristic estimate f(p) of overallsolution cost consisting of a part g(p) = cost of the current partial solution(plan) p and a part h(p) = estimate of the additional cost of the best completesolution that extends p. In the current context it is helpful to think of f(p) asa measure of plan complexity, i.e., \good" plans are simple (low-complexity)plans.There are two points of which the reader should be reminded. First, in orderfor A* to guarantee discovery of an optimal plan (i.e., the \admissibility" con-dition), h(p) should not overestimate the remaining solution cost [19]. Second,if the aim is not necessarily to �nd an optimal solution but to �nd a satis-factory solution quickly, then f(p) can be augmented to include a term thatestimates the remaining cost of �nding a solution. One common way of doingthat is to use a term proportional to h(p) for this as well, i.e., we \empha-size" the h-component of f relative to the g-component. This is reasonable tothe extent that the plans that are most nearly complete (indicated by a lowh-value) are likely to take the least e�ort to complete. Thus we will preferto pursue a plan p0 that seems closer to being complete to a plan p further5



from completion, even though the overall complexity estimate for p0 may begreater than for p [19] (pages 87{88). Alternatively, we could add a heuristicestimate of the remaining cost of �nding a solution to f(p) that is more or lessindependent of the estimate h(p).With these considerations in mind, we now evaluate the advisability of includ-ing the various terms in UCPOP's function for guiding its A* search, namelyS, OC, CL, and UC,where S is the number of steps in the partial plan, OC is the number of openconditions (unsatis�ed goals and preconditions), CL is the number of causallinks, and UC is the number of unsafe conditions (the number of pairs ofsteps and causal links where the step threatens the causal link). The defaultcombination used by UCPOP is S+OC+UC.(a) Concerning S, the number of steps currently in the plan, this can naturallybe viewed as comprising g(p), the plan complexity so far. Intuitively,a plan is complex to the extent that it contains many steps. Whilein some domains we might want to make distinctions among the costsof di�erent kinds of steps, a simple step count seems like a reasonablegeneric complexity measure.(b) Concerning OC, the number of open conditions, this can be viewed asplaying the role of h(p), since each remaining open condition must beestablished by some step. The catch is that it may be possible to useexisting steps in the plan (including *start*, i.e., the initial conditions)to establish remaining open conditions. Thus OC can overestimate thenumber of steps still to be added, forfeiting admissibility.On the other hand, even open conditions that do not require new steps dorequire some work on the part of the planning algorithm. So these openconditions can be viewed as contributing to the remaining cost of �nd-ing a solution, biasing UCPOP slightly toward trading o� solution costagainst solution-�nding cost. As such, OC appears to be a reasonablegeneric component of the A* heuristic function.(c) Concerning CL, the number of causal links, one might motivate the inclu-sion of this term by arguing that numerous causal links are indicative of acomplex plan. As such, CL appears to be an alternative to step-counting.In fact, as long as a partial plan does not yet link any preconditions to theinitial state, and as long as each step establishes just one preconditionor goal, CL is essentially the same as S. Once preconditions are linkedto the initial state, or if steps are used to establish multiple conditions,CL will di�er from S by preferring plans in which steps have few precon-ditions to plans in which steps have more preconditions, even when thetotal number of steps are the same.6



This seems like a reasonable alternative to S. However, if we simply addCL to S, we will again tend to emphasize plan cost relative to plan-completion cost, and thus decrease the chances of �nding a solutionquickly. So it appears that if CL is used as a g-measure, then the Sterm should be dropped from the overall heuristic.(d) Concerning UC, the number of unsafe conditions, we note �rst of all thatthis is clearly not an h-measure. The number of unsafe conditions bearsno de�nite relation to the number of steps that must still be added,and in fact arbitrarily many \unsafe" conditions may cease to be unsafeupon addition of ordering constraints or binding constraints. When suchexpired threats are selected from the agenda, they are recognized as suchand discarded without further action.Can we then view UC as a g-measure? Or as a measure of the remain-ing cost of �nding a plan? The former possibility seems plausible at�rst glance for plans in which we have added no constraints to avert un-safe conditions. For such plans, UC should generally increase with thenumber of steps in those plans, since adding steps typically adds unsafeconditions.2 However, once we have re�ned some plans to remove unsafeconditions, the UC count need no longer vary systematically with thenumber of steps. Besides, even if it did, augmenting g in this way wouldwork against �nding a solution quickly, since it would emphasize g ratherthan h.That leaves us with the question whether UC is indicative of the remain-ing cost of �nding a solution. One could argue that unsafe conditionsare \aws" that will have to be remedied by re�nement steps. The morere�nements a plan requires, the longer it will take to complete.However, this argument is dubious at best. As already noted, unsafeconditions include many possible conicts which may eventually vanishas a result of subsequent partial ordering choices and variable bindingchoices not speci�cally aimed at removing these conicts. Thus countingunsafe conditions can arbitrarily overestimate the number of genuinere�nements still needed to complete the plan. In fact if we consider aplan that already contains all n steps that will be needed, we can seethat in the worst case there may be O(n2) unsafe conditions, yet theremust exist O(n) re�nements that fully linearize these steps, completingthe plan. This observation also suggests that UC could easily swamp theS+OC terms, suppressing their role in guiding the A* search.The conclusions we can draw are thus that S+OC and CL+OC are the mostpromising general heuristic measures for plan selection, while the UC term2UC will also tend to increase when existing steps are used to establish open conditions,since this adds causal links. Since CL could also serve as a plan complexity measure { see(c) { this tendency is still consistent with the supposition under consideration.7



should probably not be included. Note that with both S+OC and CL+OCthere will be a preference for those o�spring of a plan that reuse actions alreadyin the plan rather than adding new actions. With CL+OC, such o�springhave the same cost as the parent, while with S+OC they actually have a lowercost, emphasizing the preference for action reuse. This emphasis appears togive the S+OC measure considerable advantages in some domains. Becauseof its nearly uniform experimental superiority to the CL+OC measure, wewill not further consider the latter here. The S+OC heuristic was in factpreviously considerd by Peot and Smith [21], but because their focus was onthreat-removal strategies neither they nor other researchers appear to havefully recognized the advantages of this measure.2.3 The goal selection strategyAn important opportunity for improving planning performance independentlyof the domain lies in identifying \forced re�nements", i.e., re�nements that canbe made deterministically. Speci�cally, it makes sense to give top priority toopen conditions that cannot be achieved; and then preferring open conditionsthat can only be achieved in one unique way { either through addition ofan action not yet in the plan, or through a unique match against the initialconditions.The argument for giving top priority to unachievable goals is just that planscontaining such goals can be eliminated. Thus we prevent allocation of e�ortto the re�nement of doomed plans, and to the generation and re�nement oftheir doomed successor plans.The argument for preferring open conditions that can only be achieved uniquelyis equally apparent. Since every open condition must eventually be establishedby some action, it follows that if this action is unique, it must be part of everypossible completion of the partial plan under consideration. So, adding theaction is a \zero-commitment" re�nement, involving no choices or guesswork.At the same time, adding any re�nement in general narrows down the searchspace by adding binding constraints and adding a causal link and further ef-fects that can temporally constrain other threatening or threatened actions.For unique re�nements this narrowing-down is monotonic, never needing re-vocation. In short, the strategy cuts down the search space without loss ofaccess to viable solutions.Peot and Smith [21] studied the strategy of preferring forced threats to un-forced threats, and also suggested possible use of a \least commitment" strat-egy for handling open conditions. \Least commitment" always selects an opencondition which generates the fewest re�ned plans. Thus it entails the priori-ties for unachievable and uniquely achievable goals above (while also entailinga certain prioritization of nonuniquely achievable goals). Joslin and Pollack[14] studied the uniform application of such a strategy to both threats and open8



conditions in UCPOP, terming this strategy \least cost aw repair" (LCFR).3Combining this with UCPOP's default plan selection strategy, they obtainedsigni�cant search reductions (though less signi�cant running time reductions,for implementation reasons) for a majority of the problems in the UCPOP testsuite.In UCPOP, goals are selected from the agenda according to a LIFO (last in�rst out, i.e., stack) discipline. Based on experience with search processes in AIin general, such a strategy has much to recommend it, as a simple default. Itwill tend to maintain focus on the achievement of a particular higher-level goalby regression { very much as in prolog goal chaining { rather than attemptingto achieve multiple goals in breadth-�rst fashion. We have therefore chosento stay with UCPOP's LIFO strategy whenever there are no unachievable orforced open conditions. This has led to very substantial improvements overLCFR in our experiments.3 Experiments Using UCPOPIn order to test our ideas we have modi�ed version 2.0 of UCPOP [1], replacingits default plan-selection strategy (S+OC+UC) and goal-selection strategy(LIFO) to incorporate strategies discussed in the previous sections. We use\ZLIFO" (\zero-commitment last in �rst out") to denote the goal-selectionstrategy that assigns highest priority to open conditions that can be achievedwith zero-commitment plan re�nements, and second-highest priority to openconditions most recently added to the agenda.We have tested the modi�ed planner on several problems in the UCPOP suite,emphasizing those that had proved most challenging for previous strategies.We have also included one of the two arti�cial domains (ART-#est-#clob) thatserved as a testbed for Kambhampati et al.'s extensive study of the behaviorof various planning strategies as a function of problem parameters [15].4 Theexperiments were conducted on a SUN 10.Figures 1 and 2 give the formalizations of the two versions of the T of H domainin terms of UCPOP's language, while the formalizations of the other problemsfrom the UCPOP suite are not repeated here.5 We thought it important totest more than one version of T of H, since this was the hardest problem forUCPOP (as well as other algorithms we tried before focusing on UCPOP),and its di�culty has long been known to be sensitive to the formalization(e.g., [12]). Figure 3 supplies a UCPOP formalization of ART-#est-#clob.3We would �nd \least commitment aw repair" more accurate.4This domain was chosen since absolute performance data are provided for it in [15].5The formalizations of these domains except the 3-operator version of the T oh H andthe arti�cial domain from [15] are available along with UCPOP via anonymous FTP fromcs.washington.edu 9



(define (operator move-disk):parameters ((disk ?disk) ?below-disk ?new-below-disk):precondition (:and (smaller ?disk ?new-below-disk) ;handles pegs(:neq ?new-below-disk ?below-disk)(:neq ?new-below-disk ?disk)(:neq ?below-disk ?disk)(on ?disk ?below-disk)(clear ?disk)(clear ?new-below-disk)):effect (:and (clear ?below-disk)(on ?disk ?new-below-disk)(:not (on ?disk ?below-disk))(:not (clear ?new-below-disk))))Initial state: ((smaller D1 P1) (smaller D2 P1) (smaller D3 P1) (smaller D1 P2)(smaller D2 P2) (smaller D3 P2) (smaller D1 P3) (smaller D2 P3)(smaller D3 P3) (smaller D1 D2) (smaller D1 D3) (smaller D2 D3)(clear P2) (clear P3) (clear D1) (disk D1) (disk D2) (disk D3)(on D1 D2) (on D2 D3) (on D3 P1))Goal state: (and (on D1 D2) (on D2 D3) (on D3 P3))Figure 1: Formalization of T-of-H1plan-selection goal-selection CPU-time plans created/exploredLIFO S+OC+UC 204.51 160911/107649LIFO S+OC 0.97 751/511ZLIFO S+OC+UC 6.90 1816/1291ZLIFO S+OC 0.54 253/184Table I: Performance of plan/goal selection strategies on T-of-H1Tables I{IX show the CPU time (seconds) and the number of plans cre-ated/explored by UCPOP on nine problems in the following domains: Towersof Hanoi with three disks and either one operator (T-of-H1) or three operators(T-of-H3), the blocks world (tower-invert4 and sussman-anomaly), Russell'stire changing domain (�x3), the ferry domain (ferry-test), \Dan's fridge" do-main (�xa), and the arti�cial domain ART-#est-#clob (speci�cally, ART-3-6and ART-6-3). Note that the number of plans is probably more meaningfulthan the CPU time for evaluating the performance of the strategies examined.In fact our implementation of these strategies was committed to not alteringUCPOP's data structures; they could have been implemented more e�cientlywith modi�ed data structures.Tables I and II show that for the T of H the plan selection strategy S+OC givesdramatic improvements over the default S+OC+UC strategy. (In these testsplan-selection goal-selection CPU-time plans created/exploredLIFO S+OC+UC > 600 > 500000LIFO S+OC 8.54 5506/3415ZLIFO S+OC+UC > 600 > 500000ZLIFO S+OC 1.24 641/420Table II: Performance of plan/goal selection strategies on T-of-H310



plan-selection goal-selection CPU-time plans created/exploredLIFO S+OC+UC 2.45 2131/1903LIFO S+OC 2.48 2131/1903ZLIFO S+OC+UC 0.33 96/74ZLIFO S+OC 0.33 96/74Table III: Performance of plan/goal selection strategies on �xaplan-selection goal-selection CPU-time plans created/exploredLIFO S+OC+UC 6.50 3396/2071LIFO S+OC 0.43 351/215ZLIFO S+OC+UC 1.12 357/221ZLIFO S+OC 1.53 574/373Table IV: Performance of plan/goal selection strategies on �x3plan-selection goal-selection CPU-time plans created/exploredLIFO S+OC+UC 1.35 808/540LIFO S+OC 0.19 148/105ZLIFO S+OC+UC 2.81 571/378ZLIFO S+OC 0.36 142/96Table V: Performance of plan/goal selection strategies on invert-tower4plan-selection goal-selection CPU-time plans created/exploredLIFO S+OC+UC 0.63 718/457LIFO S+OC 0.32 441/301ZLIFO S+OC+UC 0.24 136/91ZLIFO S+OC 0.22 140/93Table VI: Performance of plan/goal selection strategies on test-ferrygoal-selection plan-selection CPU-time plans created/exploredLIFO S+OC+UC .67 558/392LIFO S+OC 1.36 1299/840ZLIFO S+OC+UC 0.16 72/49ZLIFO S+OC 0.18 79/54Table VII: Performance of plan/goal selection strategies on ART-#est-#clobwith #est = 3 and #clob = 6 (averaged over 100 problems)goal-selection plan-selection CPU-time plans created/exploredLIFO S+OC+UC 1.32 985/653LIFO S+OC 2.08 1743/1043ZLIFO S+OC+UC 0.14 57/37ZLIFO S+OC 0.14 57/37Table VIII: Performance of plan/goal selection strategies on ART-#est-#clobwith #est = 6 and #clob = 3 (averaged over 100 problems)11



(define (operator MOVE-D1) (define (operator MOVE-D2):parameters ((thing ?from) (thing ?to)) :parameters ((thing ?from) (thing ?to)):precondition (:and (on D1 ?from) :precondition (:and (on D2 ?from)(clear ?to) (clear ?to)(:not (on D1 ?to)) (:not (on D2 ?to))(:neq ?to D1)) (:not (on D1 D2)):effect (:not (on D1 ?to))(:and (on D1 ?to) (:neq ?to D1)(:not (clear ?to)) (:neq ?to D2))(clear ?from) :effect (:and (on D2 ?to)(:not (on D1 ?from))) (:not (clear ?to))(clear ?from)(:not (on D2 ?from))))(define (operator MOVE-D3):parameters ((thing ?from) (thing ?to)) Initial state: ((on D1 D2) (on D2 D3):precondition (:and (on D3 ?from) (on D3 P1) (clear D1)(clear ?to) (thing D1) (thing D2)(:not (on D3 ?to)) (thing D3) (thing P1)(:not (on D1 D3)) (thing P2) (thing P3)(:not (on D2 D3)) (clear D1) (clear P2)(:not (on D1 ?to)) (clear P3))(:not (on D2 ?to))(:neq ?to D1) Goal state: (and (on D1 D2) (on D2 D3)(:neq ?to D2) (on D3 P3))(:neq ?to D3)):effect (:and (on D3 ?to)(:not (clear ?to))(clear ?from)(:not (on D3 ?from))))Figure 2: Formalization of T-of-H3plan-selection goal-selection CPU-time plans created/exploredLIFO S+OC+UC 0.06 44/26LIFO S+OC 0.04 36/21ZLIFO S+OC+UC 0.12 67/43ZLIFO S+OC 0.07 41/25Table IX: Performance of plan/goal selection strategies on sussman-anomalythe default LIFO goal selection strategy was used.) In fact, UCPOP solvedT-of-H1 in 0.97 seconds using S+OC versus 204.5 seconds using S+OC+UC. T-of-H3 proved harder to solve than T-of-H1, requiring 8.5 seconds using S+OCand an unknown time in excess of the 600 CPU-second limit using S+OC+UC.Our ZLIFO goal-selection strategy can signi�cantly accelerate planning com-pared with the simple LIFO strategy. In particular, when ZLIFOwas combinedwith the S+OC plan-selection strategy in solving T of H, it further reducedthe number of plans generated by a factor of 3 in T-of-H1 (obtaining an overallreduction by a factor of 636, and decreased the required CPU time from 204.5to 0.54 seconds!), and by a factor of 8 in T-of-H3.Tables III{VIII provide data for problems that are easier than T of H, butstill challenging to UCPOP operating with its default strategy, namely �xa,tower-invert4, �x3, test-ferry and the arti�cial domain ART-#est-#clob (with#est = 3 and #clob = 6 and with #est = 6 and #clob = 3). The results show12



;Replace i by 0, ..., 9 in the following two operators:;(define (operator Ai1) (define (operator Ai2):parameters () :parameters ():precondition ((Ii)) :precondition ((Pi)):effect (:and (Pi) [(Ii+1)] :effect (:and (Gi) [(Pi+1)]{(:not (Ii-1))})) {(:not (Pi-1))}))Initial state: ((I0) (I1) (I2) (I3) (I4) (I5) (I6) (I7) (I8) (I9))Goal state: (and (G0) (G1) (G2) (G3) (G4) (G5) (G6) (G7) (G8) (G9))Figure 3: Formalization of ART-#est-#clob. The square brackets (not part ofthe syntax) indicate parts to be included only for i < n+ (#est); the braces(not part of the syntax) indicate parts to be included only for 0 < i < n�(#clob).that the combination of S+OC and ZLIFO substantially accelerates UCPOPin comparison with its performance using OC+S+UC and LIFO. The numberof plans generated dropped by a factor of 22 for �xa, by a factor of 5.9 for �x3,by a factor of 5.7 for tower-invert4, by a factor of 5.1 for test-ferry, by a factorof 7 for ART-3-6, and by a factor of 17 for ART-6-3.Concerning ART-#est-#clob, note that the performance we obtained with un-enhanced UCPOP (624 plans generated for ART-3-6 and 985 for ART-6-3)was much the same as (just marginally better than) reported in [15] for thebest planners considered there (700 - 1500 plans generated for ART-3-6, and1000-2000 for ART-6-3). This is to be expected, since UCPOP is a generaliza-tion of the earlier partial-order planners. Relative to standard UCPOP and itspredecessors, our \accelerated" planner is thus an order of magnitude faster.Interestingly, the entire improvement here can be ascribed to ZLIFO (ratherthan S+OC plan selection, which is actually a little worse than S+OC+UC).This is probably due to the unusual arrangement of operators in ART-#est-#clob into a \clobbering chain" (An�;1 clobbers An��1;1's preconditions, ...,A1;1 clobbers A0;1's preconditions; similarly for Ai;2), which makes immediateattention to new unsafe conditions an unusually good strategy.In experimenting with various combinatorially trivial problems that unmodi-�ed UCPOP handles with ease, we found that the S+OC and ZLIFO strategyis neither bene�cial nor harmful in general; there may be a slight improvementor a slight degradation in performance. Results for the Sussman anomaly intable IX provide an illustrative example.For direct comparison with Joslin and Pollack's LCFR strategy, we imple-mented their strategy and applied it to a few problems. It did very well(sometimes better than ZLIFO) for problems on the lower end of the di�cultyspectrum, but poorly for harder problems. For T-of-H3 (the hardest problem),LCFR in combination with the default S+OC+UC plan selection strategy ranin 96.3 cpu seconds, creating/ exploring 9942/6402 plans (cf., 641/420 forZLIFO). With S+OC plan selection, results were marginally better (87.7 cpu13
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Figure 4: Increased speedup of ZLIFO and S+OC relative to the number ofplans generated by LIFO and S+OC+UC (log-log scale).seconds, 9387/6998 plans).We summarize our results in Figure 4, showing the speedup obtained with thecombined ZLIFO goal selection strategy and S+OC plan selection strategy asa function of problem di�culty (as indicated by the number of plans generatedby the default LIFO plus S+OC+UC strategy). The trend toward greaterspeedups for more complex problems (though somewhat dependent on problemtype) is quite apparent from the log-log plot.4 Conclusions and Further WorkWe have argued in favor of some simple, domain-independent improvementsto partial order planning strategies, based on the one hand on a carefullyconsidered choice of terms in the A* heuristic for plan selection, and on theother on a preference for choosing open conditions that cannot be achievedat all or can only be achieved uniquely (with a default LIFO prioritization ofother open conditions). Since the plan re�nements corresponding to uniquelyachievable goals are logically necessary, we have termed this strategy a \zero-commitment" strategy.Our experiments based on modi�cations of UCPOP indicate that our strategiescan give large improvements in planning performance, especially for problemsthat are hard for UCPOP (and its \relatives") to begin with. The best perfor-mance was achieved when our strategies for plan selection and goal selectionwere used in combination. Further, our results indicate that zero-commitmentis best supplemented with a LIFO strategy for open conditions achievable inmultiple ways, rather than a generalization of zero-commitment favoring goalswith the fewest children. A su�cient variety of problems were tried to indicatethat our techniques are of broad potential utility.14



One promising direction for further work is to make the zero-commitment strat-egy apply more often by developing ways of identifying \false options" as earlyas possible. That is, if a possible action instance (obtained by matching anopen condition against available operators as well as against existing actions)is easily recognizable as inconsistent with the current plan, then its eliminationmay leave us with a single remaining match and hence an opportunity to applythe zero-commitment strategy.One way of implementing this strategy would be to check at once, beforeaccepting a matched action as a possible way to attain an open condition,whether the temporal constraints on that action force it to violate a causallink, or alternatively, force its causal link to be violated. In that case theaction could immediately be eliminated, perhaps leaving only one (or even no)alternative. This could perhaps be made even more e�ective by broadeningthe de�nition of threats so that preconditions as well as e�ects of actions canthreaten causal links, and hence bring to light inconsistencies sooner. Notethat if a precondition of an action is inconsistent with a causal link, it willhave to be established with another action whose e�ects violate the causallink; so the precondition really poses a threat from the outset.Another direction for further work is to apply e�cient temporal reasoningmethods to the problem of eliminating inconsistent promotion/demotion al-ternatives for threat elimination, given the set of all (de�nite) threats andordering relations in the plan under development. Though this problem is inprinciple NP-hard, algorithms that are very e�cient on average are describedin [10, 11]. This could be far more e�cient than trying each possible promotionand demotion, checking in isolation for consistency with ordering constraints.A similar idea was previously explored in [28] using arc consistency techniques,but we think further gains are possible with the algorithms mentioned above,which are more general than arc-consistency testing and employ intelligentbacktracking for e�cient search.Finally, another direction that seems very promising to us (based on some handsimulations) is to precompute certain constraints that must hold throughoutthe search space of a given problem, based on the structure of the operators,initial conditions and goal conditions. This often permits some matching ac-tions for open conditions to be immediately eliminated, as they would violatethe precomputed constraints.Our conclusion, both from the results we have presented and from the pos-sibilities for further speedups we have mentioned, is that ample opportuni-ties still exist for major improvements in the performance of well-founded,domain-independent planners. These may be su�cient to make such plannerscompetitive with current more pragmatically designed planners.15
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