
Accelerating Popular Tomographic Reconstruction
Algorithms On Commodity PC Graphics Hardware

Fang Xu and Klaus Mueller
Abstract – The task of reconstructing an object from
its projections via tomographic methods is a time-con-
suming process due to the vast complexity of the data.
For this reason, manufacturers of equipment for medical
computed tomography (CT) rely mostly on special
ASICs to obtain the fast reconstruction times required in
clinical settings. Although modern CPUs have gained
sufficient power in recent years to be competitive for 2D
reconstruction, this is not the case for 3D reconstruc-
tions, especially not when iterative algorithms must be
applied. The recent evolution of commodity PC com-
puter graphics boards (GPUs) has the potential to
change this picture in a very dramatic way. In this paper
we will show how the new floating point GPUs can be
exploited to perform both analytical and iterative recon-
struction from X-ray and functional imaging data. For
this purpose, we decompose three popular 3D recon-
struction algorithms into a common set of base modules,
which all can be executed on the GPU and their output
linked internally. Visualization of the reconstructed
object is easily achieved since the object already resides
in the graphics hardware, allowing one to run a visual-
ization module at any time to view the reconstruction
results. Our implementation allows speedups of over an
order of magnitude with respect to CPU implementa-
tions, at comparable image quality.

I. Introduction

Various methods for 3D computed tomography (CT)
reconstruction have been devised in the past three decades.
While analytical approaches can be traced back to the
Radon Transform, iterative algorithms seek to optimize
some objective function, such as maximum likelihood or
minimal error. All of these algorithms have in common a
series of backprojection operations which dominate the
computational cost. In addition, iterative algorithms also
incorporate a series of forward projections, which incur sim-
ilar computational expense. Thus, to be useful in clinical
practice, the backprojections (and projections) have to be
made as efficient as possible. However, this goal stands in
stark conflict with the complexity of these operations. Each
projection/backprojection has a complexity on the order of
the size of the volume dataset, which is O(N3). This com-
plexity is always present, unless recursive [3] or Fourier
space [2] approaches are employed. These, however, have
their own limiting constraints, since the need to reduce
domain interpolation artifacts [3][16] via oversampling
increases the multiplicative constant in the complexity term.
In this paper, we shall assume straightforward projection/
backprojection in the spatial domain, at complexity O(N3).
Fang Xu (fxu@cs.sunysb.edu) and Klaus Mueller (mueller@cs.sunysb.edu)
are with the Center for Visual Computing, Computer Science Department,
Stony Brook University, Stony Brook, NY 11794.
In this case, the only way to reduce the actual computational
cost is to reduce the constant factor k that relates the com-
plexity O(N3) to the computational cost k·N3. Unfortunately,
even the most clever programming with cache-aware algo-
rithms and fast differencing schemes can only reach a lim-
ited peak performance, when implemented on general-
purpose CPUs. The general practice of pre-computing the
weight matrices in iterative reconstruction can yield tremen-
dous speedups in 2D reconstruction, but the memory cost
involved makes the use of such precomputed matrices infea-
sible for 3D reconstruction. For this reason, a number of
commercial custom-hardware based solutions have become
available. One such approach (by TeraRecon, Inc.) uses an
ASIC (Application Specific Integrated Circuit), while
another (by Mercury Systems, Inc.) uses a FPGA (Field Pro-
grammable Logic Array). Both reach very impressive
speeds for Feldkamp’s cone-beam algorithm [8], but they do
not implement any iterative algorithms, such as EM (Expec-
tation Maximization) [22] or ART (Algebraic Reconstruc-
tion Technique) [11], which are preferable for functional
imaging, such as SPECT and PET. The special-purpose pro-
prietary boards are also quite expensive, in the range of 5-
digit $-figures, and furthermore, their static custom hard-
ware design makes them inflexible for modification and
generalization. Hence, while it is economically viable to
augment already expensive tomography scanners in need for
stable and proven reconstruction algorithms with such hard-
ware boards, less expensive and more flexible solutions are
desirable for researchers and experimental clinicians.

When defining an appropriate platform, it helps to real-
ize that the projection/backprojection operations, as well as
the other operations involved in the grid updates and correc-
tion computations, are straightforward voxel- and pixel-
based operations, which have few dependencies and are
usually computed as array operations within a long loop. A
very suitable platform for these kinds of calculations are
vector processors or massively parallel architectures [5].
Vector processors view their input data as streams, which
are combined by operators to produce an output stream.
Also, while CPUs must decode every instruction in a loop,
vector processors execute the entire array operation within
one instruction, amortizing the cost for the single instruction
decode over the entire loop. Paired with extremely high
memory bandwidth, programmable vector processors can
accomplish array-based computations at impressive speeds.
Unfortunately, vector processors, such as the Cray super-
computer family, are expensive machines and very few peo-
ple have access to them. An exciting new development in
this regard is the emergence of a main-stream computing
platform that bears many features of vector processors -
Graphics Processors (GPUs). Graphics applications fit the
SIMD (Same Instruction Multiple Data) programming
model of vector processors well. They typically consist of
largely independent compute and data-intensive operations -

the screen-rasterization of large numbers of texture-mapped
polygons – which expose both small-grain (per-polygon cal-
culations) and large-grain (per-polygon list calculations)
parallelism. Graphics-heavy applications, such as computer
games or engineering design, require ever-increasing com-
plex scenes to be rendered at rates of 30 frames per second,
and these large, consumer-driven demands have led to an
unparalleled growth in the development of platforms that
can satisfy these needs. The development of graphics hard-
ware grows so fast that the chip performance doubles every
6 months, tripling Moore’s law. These GPU boards, such as
the NVidia FX 5900 or the ATI Radeon 9800, gain their
speed by devoting significantly more chip real estate to the
computational engine than a general-purpose CPU, such as
the Intel Pentium Processor. They implement what is
referred to as a stream processor, which has become a
widely researched computing paradigm for high perfor-
mance computing [13]. By casting the projection/back-
projection operations as well as all other CT calculations in
terms of stream operations (or fragment rasterization opera-
tions, in graphics parlance), we can exploit these affordable
mainstream architectures to achieve rapid CT.

Our paper will outline how the most popular CT algo-
rithms, such as filtered backprojection, algebraic methods,
and expectation maximization methods, can be mapped onto
GPU architectures for unprecedented speeds, yet without
significant loss in accuracy. In Section 2, we will first dis-
cuss previous work in this area, and in Section 3 we explain
the general workings of a graphics pipeline. Sections 4 and
5 will give the theoretical and practical implementation
details, respectively, of our approach. In Section 6, we
present results, while Section 7 offers final conclusions as
well as an outlook onto the work ahead.

II. Previous Work and Impact

In the 1990s, only midrange workstations, such as the
SGI Octane or Onyx, which ere available at a cost of over
$20,000, had the level of graphics hardware necessary for
CT reconstruction. The first works that sought to exploit this
hardware for the acceleration of CT was by Cabral, Cam
and Foran [6], who implemented an analytical Feldkamp-
type algorithm, and Mueller and Yagel [18], who described
the implementation of an iterative method – the Simulta-
neous Algebraic Reconstruction Technique (SART) [1].
With the emergence of low-cost PC-based graphics hard-
ware of similar capabilities than that of the SGI, more recent
work by Chidlow and Möller [7] focused on this platform.
Using a NVidia GeForce 4, these authors implemented
another iterative algorithm – the maximum likelihood
expectation maximization method (ML-EM) [22], and its
faster cousin, Ordered-Subsets EM (OS-EM) [12]. How-
ever, all of the above approaches suffered from the circum-
stance that the graphics hardware they employed only had
integer-arithmetic at 8-bit precision (PC) or 12-bit precision
(SGI). This severely limited their accuracy and perfor-
mance. With integer arithmetic at this precision one cannot
perform the accumulation operations of the projection and
backprojections in hardware. Also, the short precision limits
the accuracy of the (sometimes small) grid corrections in
iterative algorithms. For this reason, the accumulation oper-
ations had to be performed outside the GPU, on the CPU,

which involved expensive data transfers between these two
entities. A (virtual) 16-bit extension of the precision could
be achieved by splitting high-precision calculations among
two of the four color channels (Red, Green, Blue, Alpha). A
similar mechanism could also be employed to facilitate a
subset of the accumulations (16 for a 4-bit virtual extension)
in hardware. Although quite effective, this mechanism was
only partially accurate since it dropped the lower 8 bits of
the high-end channel. Fig. 7b shows a reconstruction of the
Shepp-Logan brain phantom that was obtained using the
hardware-accelerated SART algorithm. Although the result
is clearly not satisfactory for the 0.5% contrast shown,
reconstructions for higher contrasts (1%, 2%) were quite
acceptable, and impressive speedups in the range of 35-68
could be obtained, when compared to a CPU-based method
(see [18] for more detail).

A further limitation of these older generations of graph-
ics hardware was their lack of programmability. For exam-
ple, divisions are necessary for the normalization step in the
iterative algorithms, but were not supported on these older
platforms. The major leap forward made by new generations
of GPUs is the fact that they offer programmability at float-
ing point precision at two stages in the graphics pipeline (we
will elaborate on this further in the next section). A direct
consequence of this added functionality is that now the
entire reconstruction can be performed within the GPU, at
CPU precision. Thus, there is no longer a need to export and
import data from and to the CPU, which overcomes the
severe bottlenecks inherent in these data transfers. Also, a
direct consequence of the GPU-resident computation is that
the generated data can be easily visualized. Since in “nor-
mal” settings the GPU’s main job is the rendition of graph-
ics images, one can simply inject a volume rendering or a
volume slicing cycle into the reconstruction and then map
the resulting image to the screen-visible portion of the
GPU’s framebuffer.

III. The GPU Graphics Pipeline

Graphics objects are typically composed of polygon
meshes, where additional surface detail can be modeled by
affixing (or mapping) images (or textures) of the desired
detail onto the polygons during the rendering phase. Texture
mapping is an efficient way to provide intricate surface
detail without increasing an object’s polygon count, and
graphics hardware is highly optimized to perform texture
mapping very fast, even under perspective distortion [10].

There are three main stages in a graphics pipeline (see
Fig. 1): the geometry processing stage, the polygon raster-
ization stage, and the fragment processing stage. In the first

Figure 1: Graphics hardware rendering pipeline.

Rasterization
Geometry Frame-
Processing

TextureTexturesPolygons

Vertex
Program

Memory

Fragment
Program

Fragment
Processing

Projection /
buffer
2

stage the geometric information, i.e., the vertex coordinates,
are transformed to determine the screen space coordinates of
the projected vertices. Then, in the second stage, these pro-
jected vertices are connected to form the (projected) poly-
gon, whose content is filled (or rasterized), combining
colors interpolated from the polygon’s vertex attributes and
from the mapped texture. The pixels so generated are called
screen fragments, which can be further processed for light-
ing and shading effects in the third stage. In the most recent
hardware the geometry and fragment processing stages are
programmable, offering a means to load small programs,
called vertex shaders and fragment shaders, respectively,
into the ALUs of these units at run-time. We will make use
of the fact that the fragment programs can be utilized to
compute any mathematical equation involving one or more
input vectors. For example, one may want to compute the
sum C=A+B of two 2D N×N input arrays A and B. One can
accomplish this by storing A and B into two textures, map-
ping both textures onto the same (square) polygon of size
N×N, and rasterizing this polygon to the framebuffer (the
screen) under no magnification and in orthographic view-
ing. The framebuffer will then contain the array C. On the
NVidia FX 5900, fragment programs can accept up to 16
different input vectors or streams, can be up to 1024 instruc-
tions long, and can implement most standard functions
found in programming languages, such as square roots, trig-
onometric functions, etc. Standard APIs (Application Pro-
grammer Interface) resembling high-level programming
languages exist (e.g., CG from NVidia [17] and Brook from
Stanford University [4]). Apart from the large memory
bandwidth that is available to access and store the data, high
performance also results from the fact that both vertex and
fragment processors are pipelined and that there are multiple
fragment processors (8 on the NVidia FX) and multiple ver-
tex processors (3 on the NVidia FX) that all operate on dif-
ferent fragments and vertices, respectively, in parallel. The
four available color channels (Red/Green/Blue/Alpha or
RGBA) present further opportunities for parallel program
execution, under the constraint that the exact same computa-
tions, e.g., projections, are performed in each.

IV. Theoretical Considerations

In our work, we shall use the volume representation of
Lewitt [14] and others, who model a volume as a collection
of point samples, positioned at the grid points. In this model,
values at off-grid positions are estimated from the grid sam-
ples via interpolation with some kernel function. While
[14] has proposed the use of pre-integrated Bessel functions
(so-called blobs) for this purpose, we will employ linear
functions, which have also found wide-spread use in back-
projectors and, as we shall see later, lend themselves well
for implementation in graphics hardware.

Before describing how GPUs can be exploited to per-
form all calculations occurring in a variety of popular CT
algorithms, it is helpful to establish a common notation for
these. For this purpose, let us assume a volumetric object
composed of a material with attenuation function µ(x,y,z)
and separately irradiated by two imaging modalities: trans-
mission and emission X-ray. In transmission X-ray (see
Fig. 2a), the source is located outside the object and a ray
emanating with initial (source) intensity Q0, traversing the

object, and collecting in bin (u,v) of a 2D detector oriented
at angle ϕ will be recorded with intensity:

 (1)

Here, t is a parametric variable defined along the ray, and L
is the distance between the source and the detector bin.

On the other hand, in emission X-ray (see Fig. 2b) the
sources are the metabolic activities E(x,y,z) located inside
the object, each attenuated by the material between it and
the detector. Integrating over all metabolic sources along the
ray (shown as a dashed line) orthogonal to detector bin (u,v)
gives the energy:

 (2)

where s is a parametric variable defined along the ray, and L
and t are defined as in (1).

To illustrate the amenability of CT for vector process-
ing, let us choose an appropriate notation. For this, we
denote and for ,
where Mϕ is the total number of pixels (rays) in the projec-
tion acquired at detector angle ϕ.

By further setting , the transmission
X-ray equation (1) can be written as follows:

(3)

Since we would like to reconstruct the values at the volume
grid positions, it makes sense to rewrite (3) in an alternative,
voxel-centric form:

(4)

Here, a wij is the weight with which the object voxel j (of
value µj) contributes to detector pixel i (with final value qi).
These weights are determined by the interpolation filter [14]
and the integration rule.

On the other hand, the emission X-ray equation (2)
indicates that the emissive quantity E(s) is attenuated by the

Figure 2: (a) Transmission imaging: an external X-ray source
emits X-rays, and (b) emission imaging: internal radionuclides
emit photons at sites of biochemical (metabolic) activity. Both
are attenuated by the object’s densities.

radionuclides (E)

attenuating object (µ)attenuating object (µ)

X-ray source (Q0)

(a) (b)

photons

detector

detector

Cϕ
Q u v,() Q0 e

µ t() td

0

L

∫–

⋅=

Cϕ
E u v,() E s() e

µ t() td

0

s

∫–

⋅ sd
0

L

∫=

Ci
Q Cϕ

Q u v,()= Ci
E Cϕ

E u v,()= 0 i Mϕ<≤

qi Ci
Q Q0⁄()log–=

qi µ t() td
0

L

∫=

qi µjwij

j 0=

N3 1–

∑=
3

material’s µ between site s and the detector. Returning to the
voxel-centric representation of (4), now using the Ej as the
values stored at the grid points, the projected emissive con-
tribution originating at any s is:

(5)

Note that here the wij(s) are not only given by the voxel
weights, as in the transmission case, rather they now also
incorporate the attenuation integral up to s. The equation for
the total projected emissive energy is then given as:

 (6)

Re-ordering the integral yields:

(7)

Here, the wij(a) combine the voxel weights of (4) and the
attenuation factors. The subscript (a) is used to denote that
the wij contain a factor for attenuation correction. We
observe that this equation is very similar to (4). Therefore
we conclude that we can project the emission volume E with
methods similar to those that reconstruct the attenuation vol-
ume µ, given knowledge about the more complicated wij(a)
(in case we do not care about the ray attenuation, we simply
use the basic wij of (4) for the projection of the emission vol-
ume). Thus, by generalizing (Ej, µj) to vj and (ei, qi) to pi we
can formulate a generalized projector and, by exchanging
the roles of vj and pi, we obtain a generalized backprojector:

(8)

In the following, we will denote the projection operator
in the first part of (8) by Pϕ(V) and the backprojection oper-
ator in the second part of (8) as Bϕ(I). Here, V is the volume
data vector (subject to reconstruction), I is an image data
vector, and the projectors/backprojectors are matrices oper-
ating on them. However, in our framework the matrix ele-
ments, i.e., the wij, will not be stored explicitly, but
computed on the fly, using the interpolators in the rasteriza-
tion hardware. We will now express the various reconstruc-
tion methods by ways of these operators.

In the Feldkamp algorithm [8] the wij are multiplied by
a depth correction factor during backprojection (see Fig. 3):

(9)

Here, Y and Z return a voxel’s y and z coordinate and ϕr is
the principal orientation angle of the r-th projection, with

 and S being the total number of scanner-acquired
projection images. Finally, wij(d) is the depth-weighted wij in
(9). Using our shorthand notation, the backprojection
process is written as:

 (10)

where Iϕ is the image obtained from the scanner at angle ϕ.
The iterative method SART [1] updates the grid on a

projection-basis. This turns out to be more convenient than
the related (ray-based) ART [11] when used in conjunction
with texture mapping hardware. Using our notation, SART’s
grid update equation is:

(11)

where λ is a relaxation factor. P(W) and B(W) denote the
projection/backprojection of the weights for normalization,
which can be performed using a unity I and V, respectively.

Finally, the OS-EM [12] algorithm is written as:

(12)

where OS is one of the ordered subsets of S.
We observe that, computation-wise, the only real differ-

ence among these reconstruction methods is how the results
of the projection/backprojection operators are combined.
However, these combination operations are straightforward
vector calculations. We will now discuss how equations (10)
- (12) can be efficiently realized in GPU hardware.

V. Implementation

In graphics hardware, just as images, volumes can also
be represented as textures. There are two choices: a stack of
2D textures or a single 3D texture. While both allow projec-
tion, there is currently no facility that would allow a back-
projection into a 3D texture. We therefore store a volume as
two stacks of 2D textures (see Fig. 4), one each for projec-
tions along the x and the y main viewing axes. We do not
need a z-major texture stack, since we only acquire data in a
circular orbit about the z-axis.

A. Projection
Perspective (cone-beam) projection is a straightforward

operation with 2D textures (we shall consider parallel-beam
a subset of perspective). We can approximate equations (3)
and (4) using 2D textures as follows (see Fig. 5a):

ei s() Ci
E s()=

ei s() Ejwij s()

j 0=

N3 1–

∑=

ei Ejwij s()

j 0=

N3 1–

∑
 
 
 
 

sd
s 0=

L

∫=

ei Ej wij s()

s 0=

L

∫
j 0=

N3 1–

∑ sd Ejwij a()

j 0=

N3 1–

∑= =

pi vjwij

j 0=

N3 1–

∑= vj piwij
i 0=

Mϕ 1–

∑=

wij d() wij
a2

a Y vj() Z vj()+ ϕ ϕr–()cos+()
2--=

0 r S<≤

V Bϕ d() Iϕ()
ϕ S∈
∑=

V V
Bϕ λ

Iϕ Pϕ V()–
Pϕ W()

-------------------------- 
 

Bϕ W()
---+=

V V

Bϕ a() W()
ϕ OS∈
∑

-------------------------------------- Bϕ a()
ϕ OS∈
∑

Iϕ
Pϕ a() V()
---------------------- 

 =

�

�

�

Figure 4: Volume representa-
tion as a stack of 2D textures.

c

a x

y

zϕr

projection

voxel vj

xd
yd

ϕ

Figure 3: Projection geometry
for Feldkamp’s algorithm.
4

(13)

The left part is a discretized form of (3), which is further
approximated into the form of the right part by adapting (4),
grouping the N2 voxels within each of the N volume slice
textures. The true voxel index j can be derived from the
index lk used in (13), where k indexes the slice and l the
voxels in the slice. There are two approximations here. First,
the integration is now a discrete trapezoidal one, with the
stepsize ∆t varying across the slice (denoted as ∆ti in (13)).
Since ∆t is never greater than this is a reasonable
approximation. Second, the wilk are computed via bilinear
interpolation -- a square neighborhood of 4 slice voxels will
contribute to each . (see Fig. 5c). We can compensate for
the varying ∆t by precomputing a sampling interval texture
for each orientation angle in the set and multiplying this tex-
ture with the texture of the projection result, on the GPU.

We now look into the projection of the emission vol-
ume. If attenuation is not modeled, then the mechanism of
(13) will readily apply, simply substituting (µ,q) by (E,e).
However, attenuation modeling can improve reconstruction
results considerably (see e.g. [9]), and our hardware-based
approach can realize this efficiently. We first discretize
equation (2), in a fashion similar to the first part of (13)
(here, we use our notational identity):

(14)

Here, we map the µ volume to a range [0.0,..,1.0]. The error
of the Taylor series approximation of the exponential is
within reasonable bounds since the interval ∆t is never
greater than . The final expression in (14) allows us to
convert (7) into the texture slice-based representation, simi-
lar to the second part of (13):

(15)

where wilk(a) is the product of the interpolation weight wilk
for the emissions in slice k, and the product of the slice-wise
interpolated attenuations up to slice (k-1):

 (16)

Here, the wimn are also determined by the interpolation fil-
ter, and n indexes the slices and m the voxels in the slices.

We compute the attenuation part of the in (15)
recursively, via implementation of a variant of the familiar
volume rendering front-to-back compositing equation [15]:

(17)

Here, the two columns hold equivalent expressions, with T
denoting transparency. The es and µs are the newly interpo-
lated values, while e and µ are the recursive variables. Note,
that in contrast to volume rendering, e can grow past 1.0. In
the end, e holds the emission volume projection, properly
attenuated by µ. Equation (17) states that we must maintain
a texture buffer for transparency T and one for emission e,
and that we must multiply T with the newly interpolated
emission. Two texture volumes are required, one for the
emission volume that is being reconstructed and one for the
attenuation volume, possibly obtained via a prior transmis-
sion CT.

B. Backprojection
The grid updates in equations (10)-(12) all have a simi-

lar backprojection term, which can be written as:

(18)

where dvj is the update to a voxel j, derived from grid update
factors di. The wij are determined similarly as outlined for
the projection case. For emission tomography, matched pro-
jector/backprojector pairs [23] that use full attenuation mod-
eling (and other effects) only for the projection phase, but
not for the backprojection phase, have been proposed and
can be implemented by using wij in place of wij(a). However,
it is desirable to use the same wij in both projection and

qi
ˆ µ k∆t()∆t

k 0=

L ∆t⁄

∑= qi
ˆ µlkwilk∆ti

l 0=

N2 1–

∑
k 0=

N 1–

∑=→

3

qik
ˆ

Cϕ
E u v,() Ci

E ei= =

Ci
E E s() e

µ t() td

t n=

n 1+

∫–

ds
n 0=

s 1–

∏
s 0=

L

∫=

E s() 1 µ t() td
t n=

n 1+

∫–
 
 
 
 

ds
n 0=

s 1–

∏
s 0=

L

∫≈

E k∆s() 1 µ n∆t()–()∆t()∆s
n 0=

k 1–

∏
k 0=

L ∆s⁄

∑≈

3

eî Elkwilk a()∆si

l 0=

N2 1–

∑
k 0=

N 1–

∑=

wilk a() wilk 1 µ n∆t()–()∆t
n 0=

k 1–

∏=

wilk 1 µnmwimn()

m 0=

N2 1–

∑–
 
 
 
 

∆ti

n 0=

k 1–

∏=

Figure 5: (a) 3D forward projection with 2D texture slices (for
simplicity of illustration, only the 2D case is shown), (b) back-
projection of a correction image texture onto a volume slice. (c)
the texture 4-neighborhood (grid points) bilinearly interpolated
by a sample.

ϕ

texture-mapped polygons

screen (projection image)

cone angle γ
 (volume slices)

(a)

ϕ

projective texture (slide)

(projected polygon)

r’

s’

z = r

x = s

γ

 (correction image)

volume slice = slide screen

framebuffer

volume center vc

projector center

(b)

ray sampling interval ∆t

grid points

(c)

sample qik
ˆ

ŵilk a()

e es 1 µ–() e+= e es T⋅ e+=

1 µ–() 1 µ–() 1 µs–()= T T Ts⋅=

dvj diwij
i Iϕ∈
∑=
5

backprojection.
The 2D slice texture approach allows us to achieve the

desired equivalent mapping by using projective textures [21]
for the backprojection, which is illustrated in Fig. 5b. Essen-
tially, projective textures work similar to a slide projector.
The backprojected image forms the “slide”, which is per-
spectively projected onto the “screen” formed by a polygon
that is placed at the location of the volume slice to be
updated. The “slide projection” is then “viewed” in parallel
projection mode on the screen. The perspective transform is
given by the viewing geometry at which the projection was
originally obtained from the scanner. Using this mapping,
the weight with which a voxel j contributes to a projection
image pixel i is identical to the weight that a correction di
coinciding with i has on j. Projective textures can be imple-
mented by filling the hardware texture mapping matrix with
the appropriate values in a vertex program (see [18] for fur-
ther detail) and performing the actual projective mapping in
a fragment program.

We implemented the depth-weighting in Feldkamp’s
algorithm (equation (9)) using 2D lookup textures (called
dependent textures), one for each principal projection orien-
tation angle ϕr. This dependent texture is indexed by the
voxel y and z-coordinates (the x-coordinate is not relevant)
at runtime, and the looked-up value is multiplied by the wij.

The attenuation weighting can be implemented in two
ways: (1) as an interleaved projection/backprojection proce-
dure, or (2) as a projection followed by a backprojection.
The former can be formulated as follows, with D being ini-
tialized as the grid update image (computed from scanner
image and projection), DV being the volume that accumu-
lates the updates, and µ being the attenuation volume:

For the alternative, second method, we precompute a new
set of textures Dk by first rendering all projections of the µk
slices (with the blending), saving them in texture memory,
and then performing all backprojections using these Dk.
This saves the somewhat expensive projection/backprojec-
tion context switches, but it consumes more storage in a tex-
ture memory. The algorithm is written as:

It is left to mention that both SART and EM also
require a volume that stores the wij for each updated voxel,
to be used later for normalization. In practice, we have
found that SART does not require normalization, due to the
bilinear filter weights, while for EM we can just normalize
by the number of projections in the subset (similar to [7]).
However, if attenuation correction is applied, a weight vol-
ume W must be accumulated, which we accomplish by
backprojecting a two-channel texture (D,µ) into a two-chan-
nel texture stack (DV,W).

C. Correction texture computation and voxel updates
In the iterative schemes, both the computation of the

correction texture D and the new state of the voxel textures

V (i.e., E or µ) are pixel-wise operations, implemented as
simple texture blends. Denoting an original, acquired pro-
jection as OP, the calculated projection as P, and a projec-
tion of the weights as W, the (vector or stream) calculation
of D can be written as:

• D = DIV(SUB(OP, P), W) for SART
• D = DIV(OP, P) for EM

The voxel update after backprojection of all projections in
the set has occurred can be written as:
• V = V + DV for SART
• V = (V· DV) / W for EM
where W is the accumulated weight volume, if attenuation
correction is used.

In the iterative algorithms, our use of two stacks of 2D
textures will lead to inconsistencies if one stack of textures
is updated by ways of backprojection but the other is not.
Therefore we must update a texture stack whenever its pro-
jection proceeds an update of the other texture stack. This is
frequently the case since two subsequent projections should
be close to orthogonal to maximize the rate of convergence.
We implement each texture stack as a single large 2D tex-
ture, with one tile per slice. We can then accomplish a stack
update by adding an up-to-date column in the source stack
texture to the corresponding out-of-date column in the desti-
nation stack texture (see Fig. 6).

D. Parallel execution via the RGBA color channels
All three CT algorithms can exploit the inherent paral-

lelism offered by the four color channels. In Feldkamp’s
FBP, we may pack the data of four orthogonal projections
into the RGBA channels, since they share the same projec-
tion matrices. This gives rise to a 4-way (RGBA) texture
stack, one each for the four 90° intervals processed in the
four channels. Then, after all backprojections are com-
pleted, the volume is assembled by adding the data in the
four channels, using a technique similar to the stack update
described before. This speedup strategy requires that the
projections were acquired at orthogonal angle increments.

In SART, we cannot project/backproject orthogonal
projections in parallel due to the projection-wise volume
update. Here, we fold the upper and lower halves of the vol-
ume and the projections into the RG channels, while the BA
channels are used to accumulate the weights in the projec-
tion phase. The two halves share the same projection matri-
ces, just reflected about the mid-line. Projections,
backprojections, and texture stack updates all use this
decomposition and the complete volume is only assembled
at the end, by merging the RG channels. The Feldkamp

for each volume slice k=0,..,N-1, going in front-to-back order
backproject D onto DVk
project µk onto D executing blending D=D·(1-µk)

initialize D0 to D
for each volume slice k=1,..,N-1, going in front-to-back order

project µk onto Dk-1 executing blending Dk=Dk-1·(1-µk)
for each volume slice k=0,..N-1, going in front-to-back order

backproject Dk onto DVk

Figure 6: Texture stack updates when the major projection
direction switches from one stack to the other.

�

�

�

�

�

�

��	
��
��

�	���
��

��	
��
��
�	���
����
6

algorithm can also use this folded partition, which reduces
the number of required texture stacks to two.

The unattenuated EM algorithm can employ a 4-times
parallelism, either using the folded decomposition in con-
junction with two orthogonal projections or the unfolded 4-
way scheme. However, the latter incurs significant over-
head, both for volume assembly and volume distribution
from and to the four color channels each time a subset has
been processed, which only amortizes when the subsets are
large. We therefore chose to use the folded 2-way approach.
Note that this EM parallelism poses certain constraints on
the composition of the subset. The parallelism in the attenu-
ated EM algorithm is only two-fold since two channels are
needed for each projection/backprojection to hold (µ, e) and
(DV, W), respectively.

Currently, GPU boards have 256 MB of texture mem-
ory. Let us assume a volume of size N3 and N projections of
size N2. For any algorithm, one texture stack of a (floating
point precision) volume will take up 4·N3 bytes and the N 8-
bit scanner images of size N2 will take up N3 bytes (or 2·N3

for 16-bit projections). The Feldkamp algorithm requires an
additional N3 bytes for the depth images, and its total mem-
ory requirement with a 4-way stack is then (4·4+1+1=18)·N3

bytes. Hence, the sidelength N of a volume is NFeldkamp4=
=242. For the 2-way, folded decomposition,

the memory requirement is (2·4+1+1=10)·N3, and
NFeldkamp2=294. SART does not need depth images, thus its
memory requirements are slightly less than Feldkamp2, i.e.,
9·N3 bytes and NSART=305.

Unattenuated EM in the folded configuration addition-
ally requires two texture stacks for the temporary accumu-
lated results, bringing the total to (2·4+2·4+1=17)·N3 bytes,
with NEM_UA=246. Regular attenuated EM using the two-
stage mechanism requires six volumes: (i) the two destina-
tion volumes -- temporary accumulations and weights, (ii)
the two source volumes -- attenuated corrections and
weights, and (iii) the two final volumes -- reconstruction
and attenuation. In a two-way configuration this would
require (12·4+1=49)·N3 bytes, enabling NEM_A=173, while
in a folded configuration it would require about half of that,
i.e., 25·N3 bytes, enabling NEM_A=217. It should be noted,
however, that the recently announced GPU hardware will
have 512 MB of texture memory, and thus volumes 1.25
times larger will be feasible, without the need to divide them
into sections or blocks for separate reconstruction.

VI. Results

Table 1 lists the timings obtained in our experiments.

All CPU and GPU results were produced on a 2.66 GHz
MHz Pentium PC with 512 MB of memory, hosting a
Nvidia FX 5900 GPU. We employ a 3D version of the
Shepp-Logan brain phantom (of size 1283) [19] at the origi-
nal 0.5% contrast level to demonstrate reconstruction qual-
ity. Fig. 7 shows slices across the reconstructed phantoms,
while line plots provide further insight into reconstruction
fidelity and noise. These plots are obtained from the inten-
sity profile along the line indicated in Fig. 7a (and Fig. 7d
for EM). Finally, Fig. 8 presents a formal error analysis,
where we compute the correlation coefficient (CC) of the
phantom with the reconstruction, both within the entire skull
and within an ellipsoid just enclosing the three small
“tumors” at the bottom. We also compute the coefficient of
variation (CV) over four ellipsoidal regions with uniform
content. Here, the CV for region i is , where µi
is the average and σi is the standard deviation of the region’s
voxel values [19][20].

It is interesting to observe that a current, fairly opti-
mized CPU implementation, using first-order (linear) inter-
polation filters, runs already at about half the speed of the
(older) SGI texture mapping hardware implementation. We
also note that the new inexpensive floating point GPUs can
reconstruct a volume with SART at about 12 times the speed
than this same-generation CPU, and about 5 times faster
than the older SGI hardware. Meanwhile, the GPU recon-
struction quality (Fig. 7d) is now nearly equivalent to that
obtained with the software implementation (Fig. 7c), which
was infeasible with the integer-based SGI hardware
(Fig. 7b). We suspect that the remaining artifacts for GPU
SART may be due to the coarser sampling due to the fixed
slice distance and the trapezoidal interpolation rule.

In Table 1, the Feldkamp implementation uses the 4-
way mechanism without folding, while SART and EM use
the folded scheme. We have observed, for Feldkamp and
attenuated EM, that channel parallelism via folding provides
about 90% of the speedup obtained via the unfolded
scheme, due to its smaller data granularity. We also notice
that, in general, projections are much faster than backprojec-
tions on a GPU, while they cost about the same on the CPU.
This is due to the considerably more expensive projective
textures approach in the backprojections. The remaining
cost per iteration is mostly consumed by the texture stack
update operations, while the correction computations
require very minimal time, due to their low data complexity.

Although not shown here, similar speedups are also
obtained with the GPU implementations of the other algo-
rithms studied, due to their similar projectors/backprojec-

256MB 18⁄3

CVi δi µi⁄=

Platform Algorithm Projections Precision Projection Backprojection Iteration Total

SGI - hardware SART 80 12-bit (extended) 1.1 min 3.1 min

PC - CPU SART 80 floating point 75 s 75 s 2.5 min 7.5 min

PC - GPU SART 80 floating point 0.4 s 9 s 12 s 36 s

PC - GPU OS-EM 80 floating point 0.9 s 17 s 21 s 63 s

PC - GPU Feldkamp 80 floating point n/a 5 s n/a 5 s

PC - GPU Feldkamp 160 floating point n/a 9 s n/a 9 s

Table 1: Timings for the reconstructed volumes shown in Figure 7. The iterative algorithms used 3 iterations of projection/backprojec-
tions. (The missing values were not collected when the experiments were conducted).
7

tors. The GPU implementation of Feldkamp’s Filtered
Backprojection (FBP) produces nearly perfect results. As
indicated in Fig. 7e and f, doubling the number of projec-
tions from 80 to 160 can eliminate the residual streak arti-
facts that are common for FBP when less than N projections
are used.

In order to test the EM implementation, we designed a
volume more suited for emission studies. We also added

Possion noise to the analytically computed projections. The
phantom consists of ellipsoids with four times the original
Shepp-Logan contrast (Fig. 7g). Fig. 7h shows an EM
reconstruction without noise, and Fig. 7i and j show a CPU
and GPU reconstruction, respectively, from noisy data. The
GPU-based EM implementation yields fairly good results
from both clean and noisy data. We notice some faint ring-
ing and some elevated level of noise in the both GPU-recon-

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1 51 101

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1 51 101

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1 51 101

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1 51 101

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1 51 101

 (a) Original (b) SGI SART

(e) Feldkamp FBP (f) Feldkamp FBP

(d) SART 80p(c) Software

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1 51 101

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1 51 101

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1 51 101

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1 51 101

(g) Original (h) EM (clean)

(i) Software (Possion) (j) EM (Possion)

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1 51 101

Figure 7: A slice across the 3D Shepp-Logan brain phantom (a)-(f) and ellipsoid phantom (g)-(j), reconstructed as a 1283 volume from
a set of 80 analytically computed projections of size 1282 each (160 projections for (f)). The iterative algorithms used 3 iterations of
projection/backprojections. (i) and (j) are from the ellipsoid phantom, with random Possion noise added to the projections. The plots
show the intensity profiles across the center of three small ellipsoids near the bottom of the phantom in (a)-(f) and near the top of the
phantom (g)-(j), as indicated by the white line in (a) and (g).

16
0

pr
oj

ec
tio

ns
8

structed datasets. We attribute this again to the coarser
sampling rate and the trapezoidal integration rule. The EM
projector and backprojector are more costly than those for
SART since they incur the extra cost for attenuation correc-
tion. However, we have found that the (4-way parallel,
folded) unattenuated EM runs more than twice as fast as
SART, since the number of texture stack updates is lower.

The line plots of Fig. 7 and the error metrics of Fig. 8
indicate that the GPU reconstructions have generally greater
noise and structural artifacts, but only at moderate levels,
but distinguish the phantom features quite well. The remain-
ing artifacts are greater for the iterative algorithms than for
Feldkamp, which we believe is due to the fact that projec-
tion errors accumulate through the iterative process.

It is impressive to see that GPUs allow a Feldkamp FBP
reconstruction for a 1283 volume to be conducted at good
quality in a mere 5s. Extrapolating, reconstructing a 2563

volume from 160 projections will then require just over a
minute. This near-interactive speed of a volume reconstruc-
tion will allow accelerated full CT or region-of-interest CT
in image-guided surgery.

VII. Conclusions and Future Work

The new techniques introduced in this paper demon-
strate that the recently escalating revolution in PC graphics
board technology has enormous potential for computed
tomography. For the first time, the quality that can be
achieved rivals that obtained with software algorithms. Yet,
speedups of over an order of magnitude for both analytical
and iterative reconstruction methods are possible, on easily
programmable and mass-produced hardware available for
less than $500 at any local computer outlet. The results are
especially encouraging since GPUs have increased in per-
formance at a triple of Moore’s law in the past few years.

We found that the Feldkamp algorithm performed well
with the bilinear filter that was used for interpolation (many
researchers have used this filter as well). On the other hand,
the iterative methods can possibly benefit from better filters
(compare [14]) and/or a more narrow sampling interval, at
least when the number of projections is low. Both can be
programmed on the GPU, but at additional cost.

Future work will focus on the modeling the collimator/
detector response and photon scattering for emission tomog-
raphy, which is crucial for obtaining high-quality images
from SPECT and PET, the exploitation of the faster integer
arithmetic in the GPUs, as well as devising techniques for
handling large datasets.

Acknowledgments

We thank Breakaway Imaging, LLC for sponsoring this
research. Partial support was also provided by NSF Career
grant ACI-0093157.

References
[1] A.H. Andersen and A.C. Kak, “Simultaneous Algebraic Reconstruc-

tion Technique (SART): a superior implementation of the ART algo-
rithm,” Ultrason. Img., vol. 6, pp. 81-94, 1984.

[2] C. Axelsson and P.-E. Danielsson, “Three-dimensional reconstruction
from cone-beam data in O(n3 log n) time,” Phys. Med. Biol., vol. 39,
pp. 477-491, 1994.

[3] S. Basu and Y. Bresler, "An O(n3 log n) backprojection algorithm for
the 3D Radon transform," IEEE Trans. Med Imag., vol. 21, no. 2, pp.
76-88, 2002.

[4] I. Buck, T. Foley, D. Horn, J. Sugerman, and P. Hanrahan, “Brook for
GPUs: stream computing on graphics hardware,” ACM Trans. on
Comp. Graph. (Siggraph ’04), vol. 23, no. 3, 2004.

[5] S. Butler and M. I. Miller, "Maximum a Posteriori estimation for
SPECT using regularization techniques on massively parallel com-
puters," IEEE Trans. Med. Imag., vol. 12, no. 1, pp. 84-89, 1993.

[6] B. Cabral, N. Cam, and J. Foran, “Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware,” 1994
Symp. on Vol. Visualization, pp. 91-98, 1994.

[7] K. Chidlow and T. Moller, “Rapid emission volume reconstruction,”
Volume Graphics Workshop, pp. 15-26, 2003.

[8] L.A. Feldkamp, L.C. Davis, and J.W. Kress, “Practical cone beam
algorithm,” J. Opt. Soc. Am., pp. 612-619, 1984.

[9] M. King, B. Tsui, and T. Pan, ”Attenuation compensation for cardiac
single-photon emission computed tomographic imaging: Part 1,
Impact of attenuation and methods of estimating attenuation maps,” J.
Nucl. Cardiol., vol.2, pp. 513-524, 1995.

[10] J. Foley, A. van Dam, S. Feiner and J. Hughes, Computer Graphics:
Principles and Practice. New York: Addison-Wesley, 1990.

[11] R. Gordon, R. Bender, and G.T. Herman, “Algebraic reconstruction
techniques (ART) for three-dimensional electron microscopy and X-
ray photography,” J. Theoretical Biology, vol. 29, pp. 471-481, 1970.

[12] H. Hudson and R. Larkin, “Accelerated Image Reconstruction Using
Ordered Subsets of Projection Data,” IEEE Trans. Med. Imag., vol.
13, pp. 601-609, 1994.

[13] U. Kapasi, W. Dally, B. Khailany, J. Ahn, P. Mattson, and J. Owens,
“Programmable stream processors,” IEEE Computer, vol. 36, no. 8,
pp. 54-62, 2003.

[14] R.M. Lewitt, “Alternatives to voxels for image representation in itera-
tive reconstruction algorithms,” Phys. Med. Biol., vol. 37, no. 3, pp.
705-715, 1992.

[15] B. Lichtenbelt, R. Crane and S. Naqvi, Introduction to Volume Ren-
dering, Prentice-Hall, 1998.

[16] T. Malzbender, “Fourier volume rendering,” ACM Trans. on Graph-
ics, vol. 12, no. 3, pp. 233-250, 1993.

[17] W. Mark, S. Glanville, and K. Akeley, “CG: A system for program-
ming graphics hardware in a C-like language, pp. 896-907, “SIG-
GRAPH’03, 2003.

[18] K. Mueller and R. Yagel, "Rapid 3D cone-beam reconstruction with
SART using texture mapping hardware," IEEE Trans. Med. Imag.,
vol. 19, no. 12, pp. 1227-1237, 2000.

[19] K. Mueller, R. Yagel, and J.J. Wheller, "Anti-aliased 3D cone-beam
reconstruction of low-contrast objects with algebraic methods," IEEE
Trans. on Med. Imag., vol. 18, no. 6, pp. 519-537, 1999.

[20] D. Ros, C. Falcon, I. Juvells, and J. Pavia, “The influence of a relax-
ation parameter on SPECT iterative reconstruction algorithms,” Phys.
Med. Biol., no. 41, pp. 925–937, 1996.

[21] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. E. Haeberli,
“Fast shadows and lighting effects using texture mapping,” SIG-
GRAPH’92), vol. 26, pp. 249-252, 1992.

[22] L. Shepp and Y. Vardi, “Maximum likelihood reconstruction for
emission tomography”, IEEE Trans. Med. Imag., vol. 1, pp. 113-122,
1982.

[23] G. Zeng and G. Gullberg, “Unmatched projector/backprojector pairs
in an iterative reconstruction algorithm,” IEEE Trans. Med. Imag.,
vol. 19, no. 5, pp. 548-555, 2000.

0.852 0.846
0.874 0.8750.857

0.586

0.873
0.901

0.16

0.466

0.181 0.18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPU-SART GPU-SART Feldkamp 80 Feldkamp 160

Overall CC Tumor CC CV (x10-2)

Figure 8: CC and background CV for various reconstructions.
9

	I. Introduction
	II. Previous Work and Impact
	III. The GPU Graphics Pipeline
	Figure 1: Graphics hardware rendering pipeline.

	IV. Theoretical Considerations
	Figure 2: (a) Transmission imaging: an external X-ray source emits X-rays, and (b) emission imaging: internal radionuclides emit photons at sites of biochemical (metabolic) activity. Both are attenuated by the object’s densities.

	(1)
	(2)
	(3)
	(4)
	(5)
	(6)
	(7)
	(8)
	(9)
	(10)
	(11)
	(12)
	V. Implementation
	Figure 4: Volume representation as a stack of 2D textures.

	A. Projection
	(13)
	(14)
	(15)
	(16)
	Figure 5: (a) 3D forward projection with 2D texture slices (for simplicity of illustration, only the 2D case is shown), (b) back...

	(17)

	B. Backprojection
	(18)

	C. Correction texture computation and voxel updates
	Figure 6: Texture stack updates when the major projection direction switches from one stack to the other.

	D. Parallel execution via the RGBA color channels
	VI. Results
	Table 1: Timings for the reconstructed volumes shown in Figure 7. The iterative algorithms used 3 iterations of projection/backprojections. (The missing values were not collected when the experiments were conducted).
	Figure 7: A slice across the 3D Shepp-Logan brain phantom (a)-(f) and ellipsoid phantom (g)-(j), reconstructed as a 1283 volume ...

	VII. Conclusions and Future Work

	Acknowledgments
	References
	[1] A.H. Andersen and A.C. Kak, “Simultaneous Algebraic Reconstruction Technique (SART): a superior implementation of the ART algorithm,” Ultrason. Img., vol. 6, pp. 81-94, 1984.
	[2] C. Axelsson and P.-E. Danielsson, “Three-dimensional reconstruction from cone-beam data in O(n3 log n) time,” Phys. Med. Biol., vol. 39, pp. 477-491, 1994.
	[3] S. Basu and Y. Bresler, "An O(n3 log n) backprojection algorithm for the 3D Radon transform," IEEE Trans. Med Imag., vol. 21, no. 2, pp. 76-88, 2002.
	[4] I. Buck, T. Foley, D. Horn, J. Sugerman, and P. Hanrahan, “Brook for GPUs: stream computing on graphics hardware,” ACM Trans. on Comp. Graph. (Siggraph ’04), vol. 23, no. 3, 2004.
	[5] S. Butler and M. I. Miller, "Maximum a Posteriori estimation for SPECT using regularization techniques on massively parallel computers," IEEE Trans. Med. Imag., vol. 12, no. 1, pp. 84-89, 1993.
	[6] B. Cabral, N. Cam, and J. Foran, “Accelerated volume rendering and tomographic reconstruction using texture mapping hardware,” 1994 Symp. on Vol. Visualization, pp. 91-98, 1994.
	[7] K. Chidlow and T. Moller, “Rapid emission volume reconstruction,” Volume Graphics Workshop, pp. 15-26, 2003.
	[8] L.A. Feldkamp, L.C. Davis, and J.W. Kress, “Practical cone beam algorithm,” J. Opt. Soc. Am., pp. 612-619, 1984.
	[9] M. King, B. Tsui, and T. Pan, ”Attenuation compensation for cardiac single-photon emission computed tomographic imaging: Part 1, Impact of attenuation and methods of estimating attenuation maps,” J. Nucl. Cardiol., vol.2, pp. 513-524, 1995.
	[10] J. Foley, A. van Dam, S. Feiner and J. Hughes, Computer Graphics: Principles and Practice. New York: Addison-Wesley, 1990.
	[11] R. Gordon, R. Bender, and G.T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X- ray photography,” J. Theoretical Biology, vol. 29, pp. 471-481, 1970.
	[12] H. Hudson and R. Larkin, “Accelerated Image Reconstruction Using Ordered Subsets of Projection Data,” IEEE Trans. Med. Imag., vol. 13, pp. 601-609, 1994.
	[13] U. Kapasi, W. Dally, B. Khailany, J. Ahn, P. Mattson, and J. Owens, “Programmable stream processors,” IEEE Computer, vol. 36, no. 8, pp. 54-62, 2003.
	[14] R.M. Lewitt, “Alternatives to voxels for image representation in iterative reconstruction algorithms,” Phys. Med. Biol., vol. 37, no. 3, pp. 705-715, 1992.
	[15] B. Lichtenbelt, R. Crane and S. Naqvi, Introduction to Volume Rendering, Prentice-Hall, 1998.
	[16] T. Malzbender, “Fourier volume rendering,” ACM Trans. on Graphics, vol. 12, no. 3, pp. 233-250, 1993.
	[17] W. Mark, S. Glanville, and K. Akeley, “CG: A system for programming graphics hardware in a C-like language, pp. 896-907, “SIGGRAPH’03, 2003.
	[18] K. Mueller and R. Yagel, "Rapid 3D cone-beam reconstruction with SART using texture mapping hardware," IEEE Trans. Med. Imag., vol. 19, no. 12, pp. 1227-1237, 2000.
	[19] K. Mueller, R. Yagel, and J.J. Wheller, "Anti-aliased 3D cone-beam reconstruction of low-contrast objects with algebraic methods," IEEE Trans. on Med. Imag., vol. 18, no. 6, pp. 519-537, 1999.
	[20] D. Ros, C. Falcon, I. Juvells, and J. Pavia, “The influence of a relaxation parameter on SPECT iterative reconstruction algorithms,” Phys. Med. Biol., no. 41, pp. 925-937, 1996.
	[21] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. E. Haeberli, “Fast shadows and lighting effects using texture mapping,” SIGGRAPH’92), vol. 26, pp. 249-252, 1992.
	[22] L. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography”, IEEE Trans. Med. Imag., vol. 1, pp. 113-122, 1982.
	[23] G. Zeng and G. Gullberg, “Unmatched projector/backprojector pairs in an iterative reconstruction algorithm,” IEEE Trans. Med. Imag., vol. 19, no. 5, pp. 548-555, 2000.
	Figure 8: CC and background CV for various reconstructions.

