
Accelerating Precise Race Detection Using Commercially-
Available Hardware Transactional Memory Support

Hassan Salehe Matar, Ismail Kuru,

Serdar Tasiran

Koç University, Istanbul

{hmatar, ikuru, stasiran}@ku.edu.tr

Roman Dementiev

Intel, Munich

roman.dementiev@intel.com

Abstract

It is typical for state-of-the-art dynamic race detection algorithms
for C programs to slow down an application by a large factor. Our
measurements indicate that a significant portion of this slowdown is
due to additional lock-based synchronization performed by instru-
mentation code. This synchronization is necessary to ensure atomic
update of analysis state. We present the first precise race detection
tool that improves race-detection slowdown by using commercial
hardware transactional memory support to synchronize analysis
and program data. By careful choice of transaction sizes, we obtain
noteworthy speedups over lock-based protection of race analysis
metadata.

1. Introduction

Data races in concurrent programs are widely considered harmful
because they can result in non-deterministic results for read ac-
cesses. Most of the time, this non-determinism is unintentional and
can lead to unanticipated program behavior. Race conditions are
also often symptomatic of higher-level logical errors, such as atom-
icity violations or poor program structure. Race detection tools are
therefore important debugging aids and have been widely studied.

Dynamic race detection techniques monitor program executions
and produce warnings about potential or actual race conditions. A
precise race-detection algorithm tracks the happens-before relation
as defined by the language specification and signals an error if and
only if two accesses to a memory location not ordered by this re-
lation are detected. Precise race-detection tools are desirable since
they neither miss races nor produce false alarms. Unfortunately,
they significantly slow down the application they are working on,
which limits their use in practice. This paper is on accelerating pre-
cise dynamic race detection for C programs.

Dynamic race detection requires a program to be instrumented
either statically or dynamically so that the race detection algorithm
can be notified of the program’s memory accesses and synchro-
nization operations (application events). Precise dynamic race de-
tection algorithms keep a significant amount of information, e.g.
per-thread and per-variable vector clocks, locksets, that records the
history of an execution. At each state of the execution, this anal-
ysis state’ must be consistent with the program state and the exe-
cution being monitored. The analysis state update associated with
each application event must be atomic with respect to other analy-
sis state accesses. Race detection tools ensure this by instrumenting
the program and performing additional synchronization. Our mea-
surements indicate that a lock-based implementation of a state-of-
the-art race detection algorithm spends more than half of its time
in these additional synchronization operations. This instrumenta-
tion synchronization is a primary slowdown factor for precise race-
detectors.

In this work, we take a pragmatic approach to combat instru-
mentation synchronization slowdown by using hardware transac-
tional memory support, now commercially-available in commodity
processors (Intel ®Transactional Synchronization Extensions, ab-
breviated as Intel ®TSX in the rest of the paper, in the 4th gener-
ation Intel ®Core microarchitecture, [9]). This approach could not
have been widely used until recently. Our preliminary experiments
indicate that hardware transactional memory for instrumentation
synchronization can reduce the race detection algorithm slowdown.
Currently, for C programs, slowdowns of 100X-200X are common
(See, e.g., [24]).

In our approach, we start with an application program that uses
conventional synchronization primitives, i.e., does not make use of
transactional memory. We use hardware transactional memory sup-
port to execute each application event atomically with the corre-
sponding race-detection algorithm processing. We accomplish this
by ensuring that each execution of a race analysis function runs in-
side a hardware transaction delineated by the XBEGIN and XEND

Intel TSX instructions.
This transactional instrumentation has a runtime overhead typ-

ically similar to the latency of atomic lock instructions and might
add noticeably to slowdown for very short transactions [8]. In or-
der to amortize this overhead, we experimented with longer trans-
actions that span multiple application events. This approach is
sound since application events remain atomic with the correspond-
ing analysis state updates. By introducing randomization into the
selection of transaction boundaries, we can ensure that every exe-
cution of the original program remains a possible execution of the
instrumented program.

To compare instrumentation synchronization via Intel TSX
hardware transactional support to lock-based instrumentation syn-
chronization, we experimented with precise race detection using
the lock-based implementation of the FastTrack algorithm ([4, 5],
the fastest precise race-detection algorithm in the literature) using
both approaches. We used five benchmarks from the SPLASH-
2x benchmark set. Our results indicate that the Intel TSX-based
approach is faster than the lock-based approach for large enough
transaction sizes.

Our novel contributions are

• the first precise race-detection approach built on commercially-
available hardware transactional synchronization support, there-
fore, practically usable widely,

• a demonstration that the use of transactional synchronization
can result in significant speedups in race detection compared to
earlier lock-based approaches,

• the use of coarser-grain instrumentation (longer instrumenta-
tion transactions) and an investigation of both lock-based and
Intel TSX-based race detection performance with this feature.

1 2014/2/13



2. Dynamic Race Detection Overview

2.1 Preliminaries

In this section, we present a simple formal model of multithreaded
program executions that is sufficient to describe our technique.

Variables and Actions. Threads in a program execute actions from
the following categories:

• Data variable accesses: read♣t, x, vq by thread t reads the cur-
rent value v of a data variable x, and write♣t, x, vq by thread t
writes the value v to x.

• Synchronization operations: These are operations such as lock
acquisitions and releases, thread fork and join operations, barri-
ers. We denote these operations with syncOp♣t, o, opnq, where
thread t performs synchronization operation opn on synchro-
nization variable o.

We refer to data variable accesses and synchronization operations
collectively as application events or application actions.

Multithreaded Executions. An execution E is represented by a

tuple E ✏ ①Tid , Act,
po
ÝÑ.,

so
ÝÑ.②.

• Tid is the set of identifiers for threads involved in the execution.

• Act is the set of actions that occur in this execution. Act⑤t is
the set of actions performed by t P Tid , and Act⑤x (resp.
Act⑤o) are the sets of actions performed on data variable x
(resp. synchronization variable o).

•
po
ÝÑt is the program order (observed execution order) per thread

t. For each thread t,
po
ÝÑt is a total order over Act⑤t and gives

in which order the actions were issued to execute.

•
so
ÝÑo is the synchronization order per synchronization variable.

For each o,
so
ÝÑo is a total order over Act⑤o.

The happens-before order
hb
ÝÑ on the execution E is induced

by the program and synchronization orders.

Data Races. Two data variable accesses are called conflicting if
they refer to the same shared data variable and at least one of them

is a write access. Formally, an execution E ✏ ①Tid , Act,
po
ÝÑ.

,
so
ÝÑ.② contains a race condition if there are two conflicting actions,

α, β P Act⑤x accessing a data variable x, such that neither α
hb
ÝÑ β

nor β
hb
ÝÑ α holds. Conversely, the execution is race free if

every pair of conflicting accesses to a data variable are ordered by
happens-before.

Precise dynamic race detection algorithms detect, for each ac-
cess by each thread t to a data variable x, whether it is ordered by
the happens-before relation with respect to all accesses to x by all
other threads.

2.2 FastTrack Algorithm Overview

Since the focus of this paper is accelerating the FastTrack algorithm
using hardware-supported transactional synchronization, we only
describe the specifics of FastTrack relevant to this purpose. The
correctness of FastTrack and and its performance were studied in
earlier work [4].

Conceptually, a data race-detection algorithm such as FastTrack
examines an execution of a multi-threaded program and identifies
the happens-before edges between data accesses. An implementa-
tion of FastTrack augments the program with monitoring state vari-
ables. These variables, collectively referred to as analysis state for
FastTrack, are

• a vector clock Ct for each thread t,

• a vector clock Lm for each lock m,

• a read vector clock Rx for each address (data variable) x that
keeps track of the history of read accesses to x,

• a write vector clock Wx for each address (data variable) x that
keeps track of the history of write accesses to x,

Implementations of FastTrack must ensure that the analy-
sis state update corresponding to each application event is per-
formed atomically with respect to other analysis state accesses.
For purposes of illustration, let FTDATAACC♣read♣t, x, vqq and
FTDATAACC♣write♣t, x, vqq denote the implementation of Fast-
Track analysis state update rules and race detection for read and
write accesses. Similarly, let FTSYNCOP♣syncOp♣t, o, opnqq de-
note the analysis state update for a synchronization event. Correct
implementation of FastTrack requires that for each read♣t, x, vq
access, the execution of the associated FTDATAACC♣read♣t, x, vqq
be performed atomically. The same constraint applies to write♣t, x, vq
and syncOp♣t, o, opnq and the corresponding executions of
FTDATAACC♣write♣t, x, vqq and FTSYNCOP♣syncOp♣t, o, opnqq.

We have implemented FastTrack for C programs, closely fol-
lowing the implementation presented in [4, 5]. We use pthreads

locks to ensure atomicity of analysis function executions. Our im-
plementation operates on a per-address granularity. In order to en-
sure the atomicity requirements outlined in the paragraph above,
we provide two mechanisms.

• In coarse-grain locking mode, we use a single lock to protect
all analysis state. This lock is acquired by each execution of
FTDATAACC♣write♣t, x, vqq, FTDATAACC♣read♣t, x, vqq and
FTSYNCOP♣syncOp♣t, o, opnqq before any analysis state is
accessed and released after the last access to analysis state.

• In fine-grain locking mode, we use per-address, per-lock and
per-thread locks to ensure the atomicity requirements. For
each analysis state variable associated with an address, lock
or thread, its lock is acquired by FTDATAACC♣write♣t, x, vqq,
FTDATAACC♣read♣t, x, vqq and FTSYNCOP♣syncOp♣t, o, opnqq
before the analysis variable is accessed for the first time and re-
leased after it is accessed for the last time.

We refer to the additional locks added by our instrumentation and
the FastTrack implementation as analysis locks in order to distin-
guish them from locks that exist in the original application pro-
gram. We experimented with both coarse-grain and fine-grain anal-
ysis lock modes in order to provide a fair comparison with the opti-
mistic concurrency control provided by the Intel TSX instructions.

2.3 Hardware-Supported Transactional Synchronization

Transactional memory simplifies concurrent programming by al-
lowing a sequence of instructions to execute atomically. Hardware
transactional memory support is now available on mainstream Intel
CPUs. In this study, we make use of hardware transactional mem-
ory support on Intel processors through Intel Transactional Syn-
chronization Extensions (Intel®TSX) instructions. Intel® TSX de-
buted in June 2013 in Intel microprocessors based on the Haswell
microarchitecture.

For processors with Intel® TSX support, code blocks can be
designated for transactional execution using Restricted Transac-
tional Memory (RTM) instructions. Intel® TSX enables optimistic
execution of transactional code blocks. The transactional memory
hardware monitors threads for conflicting memory accesses and
aborts and rolls back transactions that cannot be successfully com-
pleted. This ensures that transactional code is executed atomically
and that transactional blocks are serializable. Intel TSX implements
a best-effort Hardware Transactional Memory support not provid-
ing a guarantee that any particular transaction will successfully
commit. Therefore programmers need to implement a fall-back

2 2014/2/13



handler not using transactions. For this purpose Intel TSX provides
a mechanism to specify a software handler for aborted transactions.

RTM provides three instructions XBEGIN, XEND and XABORT.
The XBEGIN and XEND instructions mark the start and the end
of a transactional code block; the XABORT instruction explicitly
aborts a transaction. Transaction failure redirects the processor to
the fallback code path specified as an argument to the XBEGIN in-
struction, with the abort status returned in the EAX register. In this
study, we use RTM to protect blocks of code executing application
events and the corresponding race detection algorithm functions.
We also make use of the XTEST instruction. The return value of
this instruction indicates whether the logical core is executing a
transactional block.

3. Our Approach

3.1 Overview

The key idea in our approach is to use Intel® TSX hardware trans-
actional synchronization support rather than locks to provide syn-
chronization for FastTrack analysis state variables. Roughly speak-
ing, we partition the sequence of instructions of each application
thread into blocks, where each block is executed as a hardware
transaction. A new transaction begins as soon as one ends, thus,
a program that uses conventional synchronization is transformed
so that all shared memory accesses and synchronization operations
only appear within transactional blocks. I/O operations, system
calls, and, when possible without restricting the length of the trans-
action, non-shared variable accesses and application lock acquires
and releases are left outside transactional blocks. This is some-
what unconventional use of hardware transactional memory. Nor-
mally, within a hardware transaction, other synchronization con-
structs such as locks would not be used by an application. Here,
only the additional FastTrack locks are replaced by Intel® TSX
transactions. We refer to this latter approach as TSX-based Fast-
Track as opposed to lock-based FastTrack implementations.

We use the term transactional block to refer to a sequence of ac-
tions between an XBEGIN and XEND executed by a single thread.
When using Intel® TSX instructions, we ensure the atomicity of
each FastTrack function execution, as required for correct dynamic
race detection. Given the instruction stream of a thread, we place
pairs of XBEGIN and XEND instructions to partition the stream into
transactional blocks and make sure that race detection code asso-
ciated with each application event is run within the same transac-
tional block.

To the best of our knowledge, for previous lock-based imple-
mentations of FastTrack, locks are acquired prior to, and released
immediately after the corresponding FastTrack race checks and
analysis state updates are performed. To provide a fair compari-
son with Intel® TSX-based FastTrack and to explore whether per-
formance improves, we experiment with FastTrack implementa-
tions in which a single global lock is used to protect a code block
that covers several application accesses and synchronization oper-
ations and the corresponding FastTrack function executions. In or-
der to have a general term for the lock- or Intel® TSX transaction-
protected code blocks, we use the term analysis block.

The selection of the length of transactional or analysis blocks
must take into account the following concerns:

1. Hardware transactional memory limits the number of addresses
that can be accessed within a transaction. If this limit is ex-
ceeded, the transaction is aborted.

2. There is execution time overhead associated with transactional
instrumentation. (We perform experiments to measure this over-
head). In order to minimize application slowdown due to race

detection, this overhead must be amortized by using longer
transactions.

3. In the instrumented program, thread interleavings that involve a
context switch inside a transactional block are not explored. In
other words, for longer transactions, the instrumented program
allows only a subset of the thread interleavings of the original
program. Shorter transactions preserve more of the interleav-
ings of the original program.

In future work, we plan to eliminate concern (iii) by introducing
randomization into the choice of beginning and end points for
transactional and analysis blocks.

3.2 The Implementation

Dynamic vs. Static Instrumentation: In future work, we plan
to dynamically instrument x86 binaries in order to partition each
thread’s instruction stream into transactional blocks. While we
have this capability implemented, we had implementation diffi-
culties while integrating PIN instrumentation and the use of In-
tel® TSX instructions. In this work, our goal is to provide a proof-
of-concept implementation of the idea outlined and demonstrate
that commercially-available hardware transactional memory sup-
port can reduce application slowdown due to additional race de-
tection algorithm synchronization. We therefore implemented the
following approach for comparison, emulating dynamic instrumen-
tation of binaries.

Both for lock-based and Intel® TSX-based FastTrack imple-
mentations, we manually instrumented the C source code of the
benchmark applications being studied and inserted (i) calls to Fast-
Track functions after each memory access or synchronization ac-
cess, and (ii) calls for acquiring and releasing analysis locks and
calls to XBEGIN and XEND as described in earlier sections. By do-
ing so, we emulated what PIN dynamic instrumentation would have
accomplished with some additional runtime overhead, for each ap-
proach. In our experimental comparisons, we contrast lock-based
and Intel® TSX-based FastTrack implementations with the same
transactional or lock-protected blocks.

Fall-back to Lock-Based FastTrack: A transactional block
may fail to commit despite repeated re-tries for reasons including
but not limited to buffer overflows and presence of instructions that
are “unfriendly” with Intel® TSX in transactional blocks. To be
able to continue dynamic race detection using FastTrack in these
cases, during Intel® TSX-based FastTrack, we revert to using lock-
based FastTrack if a transactional block repeatedly aborts.

Constraints on Transaction Boundaries: In the following
cases, constraints on hardware transactional memory support forces
or makes it more desirable for a transactional block to be ended or
a new one started: system call instructions, input/output actions,
calls to standard memory allocators, and thread forks and joins.

Barriers: Barriers are constructed from other synchronization
primitives, and, one way of handling them in a dynamic race de-
tector is to instrument the barrier implementation. However, as in
FastTrack, there is a more efficient alternative, which is to treat
the release from the barrier of each thread as a higher-level syn-
chronization operation. We employ this approach as it is sound and
provides better performance.

4. Experimental Evaluation

We compare the performance of lock-based and Intel® TSX-based
implementations of the FastTrack algorithm for C programs. We
explore the design space for both approaches. In order to provide
as fair a comparison as possible, we and strive to make fair com-
parisons, for instance, by using the same code blocks for protection
using locks vs. protection using Intel® TSX transactions.

3 2014/2/13



Benchmark Threads Adresses Locks Shared
Reads

Shared
Writes

Lock
Operations

Barrier
Operations

Barnes

1 175051 219 63750909 23892727 34490 17
2 131738 111 63752154 23893192 34500 34
4 111994 64 63753951 23893815 34564 68
8 101722 67 63757781 23895013 34674 136
16 98859 74 63764960 23897144 34904 272

Fft

1 1574923 1 20392461 13566984 2 7
2 1575946 1 20394519 13566985 4 14
4 1577992 1 20398635 13566987 8 28
8 1582084 1 20406867 13566991 16 56
16 1590268 1 20423331 13566999 32 112

Lu cb

1 263698 1 103104431 45264525 2 67
2 263703 1 103129429 45264530 4 134
4 263713 1 103179425 45264540 8 268
8 263733 1 103279417 45264560 16 536
16 263773 1 103479401 45264600 32 1072

Lu ncb

1 262669 1 98858101 45264525 2 67
2 262673 1 98858630 45264530 4 134
4 262681 1 98859688 45264540 8 268
8 262697 1 98861804 45264560 16 536
16 262729 1 98866036 45264600 32 1072

Radix

1 2117649 1 13680665 7389189 2 11
2 2142229 1 13770808 7462916 4 22
4 2195485 1 13983864 7626754 8 44
8 2306093 1 14459132 7979006 16 88
16 2531404 1 15491596 8724470 32 176

Table 1. Concurrency data on benchmarks studied

4.1 Experimental Setup

We performed our experiments on an Intel(R) Haswell Microarchi-
tecture i7-4770 CPU desktop with support for Intel® TSX instruc-
tions, 4 cores with hyperthreading, 8GB RAM, and a clock speed
of 3.4GHz. The L1 caches were 8-way set-associative, had a size
of 32KB, coherency line size of 64. The L2 caches, also 8-way set-
associative, were 256KB. We used the Suse11 SP2, x86 64 Linux
distribution.

We report preliminary experimental results on five benchmarks
from the SPLASH-2x benchmark suite: barnes, fft, lu cb, lu ncb,
and radix. The characteristics of the benchmarks and the inputs
used are shown in Table 1. For each benchmark, as an indication of
the application workload, for a 4-thread configuration, we present
the number of unique memory addresses accessed, and the total
numbers of read and write accesses to these addresses. We also
show in the “locks” column the number of unique locks used by
the application (not counting analysis locks). The lock operations
column shows the number of times application locks were acquired
or released. In the last column, we show number of barrier opera-
tions executed.

Every running time result reported for each configuration of a
benchmark and race detection algorithm is the average of 100 runs.
For each benchmark and race detection algorithm configuration
pair, we experimented with 1-16 application threads. The inputs
used for the benchmark were from the “simsmall” input set.

As explained in Section 3.1, to amortize the cost of starting and
ending a Intel® TSX hardware transaction for Intel® TSX-based
FastTrack implementations, and the cost of acquiring and releasing
analysis locks for the single-lock-based Intel® TSX implementa-
tions, we experimented with different transactional (analysis) block
sizes. Since we are emulating dynamic instrumentation by static in-
strumentation of code, we found it convenient to explore transac-
tional block sizes from 1 to 16 application events.

Benchmark
Number of Application Threads

1 2 4 8 16

Barnes 69.08% 64.20% 57.06% 45.93% 34.80%

FFT 52.38% 47.06% 49.29% 36.53% 33.33%

Lu cb 66.144% 63.80% 61.026% 50.91% 48.98%

Lu ncb 68.21% 63.25% 61.68% 54.26% 51.67%

Radix 35.01% 32.74% 32.96% 29.78% 24.27%

Table 2. Percentage of running time FastTrack spends on instru-
mentation lock operations.

Figure 1. Slowdowns for lock-based vs. Intel® TSX-based Fast-
Track with 4 application threads

Figure 2. Slowdowns for lock-based vs. Intel® TSX-based Fast-
Track with 8 application threads

4.2 Findings

We next present the key findings from our preliminary experiments,
along with the experimental data that support them.

• Lock-based FastTrack spends a significant amount of its
running time on instrumentation locks As shown in Table 2,
even a per-address fine-grain lock-based implementation of
FastTrack spends a significant portion of the running time on
operations on instrumentation locks.

• Intel® TSX-based FastTrack is faster than lock-based Fast-
Track In Figures 1 and 2 we present for our benchmarks, run
with 4 and 8 threads respectively, the running time comparison
between fine-grain lock-based FastTrack (the better performing
lock-based option in these cases) and Intel® TSX-based Fast-
Track. In these comparisons, for the TSX-based implementa-
tion analysis block size of up to 16 operations is used. In both
the 4 and 8 thread cases, Intel® TSX-based FastTrack is up to
1.4 times faster than lock-based FastTrack.

• The advantage Intel® TSX-based FastTrack has over coarse-
grain lock-based FastTrack increases as the number of ap-
plication threads increase In Figures 3 and 4, we plot the
speedup Intel® TSX-based FastTrack accomplishes over lock-
based FastTrack (single analysis lock and fine-grain analysis
locking, respectively) as the number of application threads
increase. These graphs show a general trend that, for the
coarse-grain version of lock-based FastTrack, up to a point,
the speedup of the Intel® TSX-based approach becomes more
significant as the number of threads increase. We do not cur-

4 2014/2/13



Figure 3. Intel® TSX-based FastTrack speedup over coarse-grain
lock-based FastTrack vs number of application threads on a four-
core machine. Analysis transactions included up to eight applica-
tion events each.

Figure 4. Intel® TSX-based FastTrack speedup over fine-grain
lock-based FastTrack vs number of application threads on a four-
core machine. Analysis transactions included up to 16 application
events each.

rently understand why the speedup that Intel® TSX-based Fast-
Track has over fine-grain lock-based FastTrack diminishes as
the number of application threads grows beyond the number of
cores but plan to investigate this issue in future work. For ma-
chines with more cores, we expect the speedup of Intel® TSX-
based FastTrack to be more pronounced as locking is known
to become more expensive on machines with higher number of
cores.

• For larger transactional/analysis blocks, the win that In-
tel® TSX has over coarse-grain lock-based FT improves.
In Figure 5, we present how the speedup of Intel® TSX-based
FastTrack over fine-grain lock-based FastTrack varies as a func-
tion of the average analysis block size. Since the coarse-grain
lock-based FastTrack’s performance is worse than that of the
fine-grain version, we only carried out the comparison between
Intel® TSX-based FastTrack for different block sizes and fine-
grain lock-based FastTrack.

Figure 5. Intel® TSX-based FastTrack speedup over lock-based
FastTrack as a function of the analysis block size. 4 application
threads were used.

Although Intel® TSX in the 4th generation Intel ® Core ™ mi-
croarchitecture was mainly designed to implement lock elision
[13] for critical sections encountered in ordinary multi-threaded
software considered together, our preliminary findings demon-
strate that it can efficiently accelerate dynamic race detection.

5. Related work

We present the first fully-precise happens-before race detector sup-
ported by commercially-available hardware transactional memory.
This provides significant acceleration for dynamic race detection
without requring any custom hardware. Our approach can acco-
modate equally well other race detection algorithms. It can also
be combined with any sampling mechanism if further reduction of
runtime overhead at the expense of precision is desired.

There is a large body of work on dynamic race detection.
Among precise dynamic race detection algorithms, the one we
build on, FastTrack [4] is among the ones with best performance.
Dynamic race detection significantly slows down an application. To
reduce this slowdown, a variety of techniques have been explored.
Some approaches improve performance by sacrificing precision,
i.e., missing some races. They accomplish this by sampling the
accesses performed [18–20]. Speeding up race detection and/or
replay by parallelization has also been explored in the literature.
[21, 22]. Others (e.g., [16, 23]) make use of custom hardware to
accelerate race detection and similar parallel program monitoring
techniques.

Olszewski et al. [24] present a technique built using a hybrid of
existing hardware features and dynamic binary rewriting for accel-
erating dynamic analyses, including the FastTrack race detection
algorithm. In Aikido, a custom hypervisor is used to detect mem-
ory accesses and modest speedups of FastTrack is accomplished
on most benchmarks, with the exception of a factor of six speedup
on the raytracer benchmark. Aikido addresses race detection slow-
down due to the detection of the memory accesses whereas our
approach addresses race detection slowdown due to analysis data
synchronization. Thus, the two approaches are complementary.

[25] investigate ways of using transactional memory in exist-
ing lock-based applications with a focus on programmability. Sim-
ilar to our work, they allow lock operations within transactional
blocks. They find that, in a majority of cases, had TM been used to
implement the original program, the concurrency bugs would have
been avoided. They also find a significant number of cases in which

5 2014/2/13



the use of TM is not sufficient to fix an existing concurrency bug.
While we, similarly to this work, intend to pursue race avoidance
using TM in the future, the focus of this paper is to use race condi-
tions as concurrency bug symptoms and to accelerate their dynamic
detection as a debugging aid.

In addition to our own work on using software transactional
memory for accelerating race detection [10], the research closest
to ours in existing literature is by Gupta et al. [26]. Authors present
RaceTM, a tool using which race detection for an application that
uses transactional memory to protect portions of the code is con-
sidered. Non-transactional portions of code are wrapped in “de-
bug transactions” and conflicts between debug transactions are re-
ported as race conditions and conflicts between a debug transaction
and a transaction in the original program are flagged as potential
race conditions. For debug transactions, the rollback mechanism of
the hardware transactional memory is disabled. Our work is distin-
guished from RaceTM in the following ways.

• Differently from RaceTM, we provide sound, precise happens-
before race detection. In RaceTM, a race is informally defined
as conflicting accesses to the same memory location by two
threads, with the restriction that the conflicting accesses be
close to each other in time. This definition of races may miss
many actual races that take place in a given execution, for
instance, if two debug transactions do not overlap in time,
racy accesses contained within these transactions will not be
detected.

• RaceTM disables debug transactions during lock-protected
regions and barriers. There may be races in lock or barrier-
protected code, which would be missed by RaceTM but would
be handled precisely in our approach.

6. Conclusion and Future Work

We present the first precise dynamic race detection approach that
makes use of hardware transactional synchronization support to
reduce application slowdown. Our preliminary experiments show
noteworthy speedups.

References

[1] D. L. Bruening. Efficient, transparent and comprehensive runtime
code manipulation. Technical report, 2004.

[2] S. Chen, B. Falsafi, P. B. Gibbons, M. Kozuch, T. C. Mowry,
R. Teodorescu, A. Ailamaki, L. Fix, G. R. Ganger, B. Lin, and S. W.
Schlosser. Log-based architectures for general-purpose monitoring of
deployed code. In Proc. 1st Workshop on Architectural and system

support for improving software dependability, ASID ’06, pages 63–
65.

[3] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: a race and
transaction-aware java runtime. In PLDI ’07, pages 245–255.

[4] C. Flanagan and S. N. Freund. Fasttrack: efficient and precise dynamic
race detection. PLDI ’09, 44:121–133, June 2009.

[5] RoadRunner Lock-based FastTrack Implementation
https://github.com/stephenfreund/RoadRunner/blob/master/src/tools
/fasttrack/FastTrackTool.java

[6] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd Edition.
Morgan and Claypool Publishers, 2nd edition, 2010.

[7] M. Herlihy and J. E. B. Moss. Transactional memory: architectural
support for lock-free data structures. In ISCA ’93, pages 289–300.

[8] Intel. Chapter 8: Intel transactional synchronization extensions.
http://software.intel.com/sites/default/files/m/9/2/3/41604.

[9] Intel. Intel architecture instruction set extensions pro-
gramming reference with intel tsx. http://download-

software.intel.com/sites/default/files/319433-014.pdf.

[10] I. Kuru, H. Matar, A. Cristal, G. Kestor, and O. Unsal. PaRV: Par-
allelizing runtime detection and prevention of concurrency errors. In
Runtime Verification, volume 7687 of LNCS, pages 42–47, 2013.

[11] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: building customized pro-
gram analysis tools with dynamic instrumentation. PLDI ’05, 40:190–
200, June 2005.

[12] S. Qadeer and S. Tasiran. Runtime verification of concurrency-specific
correctness criteria. International Journal on Software Tools for Tech-

nology Transfer, 14(3):291–305, 2012.

[13] R. Rajwar and J. R. Goodman Speculative Lock Elision: Enabling
Highly Concurrent Multithreaded Execution In MICRO 34, pages
294–305, 2001.

[14] D. Sánchez, J. L. Aragón, and J. M. Garcı́a. A log-based redundant
architecture for reliable parallel computation. In HiPC, pages 1–10.
IEEE, 2010.

[15] A. H. Vineeth Mekkat and A. Zhai. Accelerating data race detection
utilizing on-chip data-parallel cores. In Intl. Conf. on Runtime Verifi-

cation (RV), 2013, INRIA Rennes, France, 24-27 September 2013.

[16] E. Vlachos, M. L. Goodstein, M. A. Kozuch, S. Chen, B. Falsafi, P. B.
Gibbons, and T. C. Mowry. Paralog: enabling and accelerating online
parallel monitoring of multithreaded applications. In ASPLOS ’10,
pages 271–284.

[17] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-
2 programs: characterization and methodological considerations. In
ISCA ’95, pages 24–36.

[18] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer: data race detec-
tion in practice. In Proc. of the Workshop on Binary Instrumentation

and Applications (WBIA ’09). pages 62-71. 2009

[19] T. Sheng, N. Vachharajani, S. Eranian, R. Hundt, W. Chen, and
W. Zheng. RACEZ: a lightweight and non-invasive race detection
tool for production applications. In (ICSE ’11). ACM, New York, NY,
USA, pages 401-410. 2011.

[20] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk. Effective
data-race detection for the kernel. In (OSDI’10). USENIX Associa-
tion, Berkeley, CA, USA, 1-16. 2010

[21] U. C. Bekar, T. Elmas, S. Okur, and S. Tasiran. Kuda: Gpu accelerated
split race checker. In Workshop on Determinism and Correctness in

Parallel Programming (WoDet), London, England, UK, March 2012.

[22] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn,
and S. Narayanasamy. DoublePlay: parallelizing sequential logging
and replay. In ASPLOS XVI, SIGPLAN Not. 46, 3 (March 2011),
pages 15-26.

[23] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-Assisted
Lockset-based Race Detection. In Proceedings of the 2007 IEEE 13th

International Symposium on High Performance Computer Architec-

ture (HPCA ’07). pages 121-132.

[24] M. Olszewski, Q. Zhao, D. Koh, J. Ansel, and S. Amarasinghe.
Aikido: accelerating shared data dynamic analyses. In (ASPLOS

XVII). ACM, New York, NY, USA, 173-184.

[25] H. Volos, A. .J. Tack, M. M. Swift, and S. Lu. Applying transactional
memory to concurrency bugs. In (ASPLOS XVII). pages 211-222.

[26] S. Gupta, F. Sultan, S. Cadambi, F. Ivancic, and M. Roetteler.
RaceTM: detecting data races using transactional memory. In Sym-

posium on Parallelism in algorithms and architectures (SPAA ’08).
pages 104-106.

6 2014/2/13


	Introduction
	Dynamic Race Detection Overview
	Preliminaries
	FastTrack Algorithm Overview
	Hardware-Supported Transactional Synchronization 

	Our Approach
	Overview
	The Implementation

	Experimental Evaluation
	Experimental Setup
	Findings

	Related work
	Conclusion and Future Work

