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Continuum quantum Monte Carlo (QMC) has proved to be an invaluable tool for predicting the properties of

matter from fundamental principles. By solving the many-body Schrödinger equation through a stochastic pro-

jection, it achieves greater accuracy than mean-field methods and much better scalability than quantum chemical

methods, enabling scientific discovery across a broad spectrum of disciplines. The multiple forms of parallelism

afforded by QMC algorithms make them ideal candidates for acceleration in the many-core paradigm. We

present the results of our effort to port the QMCPACK simulation code to the NVIDIA CUDA GPU platform.

We restructure the CPU algorithms to express additional parallelism, minimize GPU-CPU communication, and

efficiently utilize the GPUmemory hierarchy. Using mixed precision on GT200 GPUs and MPI for intercommu-

nication and load balancing, we observe typical full-application speedups of approximately 10x to 15x relative

to quad-core Xeon CPUs alone, while reproducing the double-precision CPU results within statistical error.

Introduction

In 1929, Paul Dirac, wittingly or unwittingly, issued a grand

challenge that continues to engage the scientific community even

today:

“The underlying physical laws necessary for a

large part of physics and the whole of chemistry

are thus completely known, and the difficulty is

only that the exact applications of these laws lead

to equations much too complicated to be soluble.”

This challenge reflects the understanding that an exact solution

of the Dirac equation (or its non-relativistic counterpart, the

Schrödinger equation), would allow us the predict all the properties

and behavior of matter, at least at terrestrial energy scales. For a

system containing N electrons, the Schrödinger equation, which

governs the quantum mechanical wave function, Ψ, is a partial
differential equation in 3N -dimensions. Because of this high di-
mensionality, exact solutions can be found only in extremely sim-

ple cases, such in an isolated hydrogen or helium atom. As such,

Dirac’s challenge has yet to admit defeat. Nevertheless, more than

eight decades of development in theoretical physics and chemistry

have producedmeans of finding ever more accurate, albeit approx-

imate, solutions to these equations. This methodological develop-

ment, coupled with an exponential increase in computing power,

has enabled progress from qualitatively correct models based on

empirically determined parameters to truly first-principles calcula-

tions with significant predictive capability. Such ab initio methods

take as input only the atomic numbers and positions of the atoms in

the molecule or material. These methods complement experiment

and analytic theory and have helped drive discovery and advance

understanding across a very broad range of disciplines.

Ab initio methods can be categorized in roughly three broad

areas. Mean-field methods, including Hartree-Fock (HF), and
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density-functional theory (DFT), make an approximate mapping

of the 3N -dimensional equation onto a coupled set of N three-

dimensional equations. While these methods often yield great in-

sight and reasonable accuracy, there are many outstanding cases

in which a mean-field description is quantitatively, or even quali-

tatively, incorrect. A second class of methods, utilized primarily

in quantum chemistry, expand the wave function in a linear basis

which is truncated intelligently to capture the important physics.

While these can be very accurate, the computation time scales as

N4 or higher, which limits the most accurate calculations to small

systems.

The final class, continuum quantum Monte Carlo (QMC) meth-

ods, addresses the high dimensionality of the Schrödinger equa-

tion by casting it as an integral which can be performed through

stochastic sampling. By treating electron correlation in a natural

and robust way, QMC has been demonstrated to give results sig-

nificantly more reliable than those provided by mean-field meth-

ods [1]. The computational cost of QMC grows as N3, the same

as DFT, although the prefactor is typically two to three orders

of magnitude greater in QMC. Nonetheless, simulations includ-

ing tens of atoms and hundreds of electrons are now routine, and

landmark simulations beyond a thousand electrons have been per-

formed. The need for greater accuracy has led to a quickly increas-

ing adoption of QMC in areas of chemistry, physics, and materials

science [2].

During the 80s and 90s, computational methods enjoyed a “free

lunch” from advances in silicon process technology. Serial codes

could expect a doubling of clock speeds about every eighteen

months. Taking advantage of larger installations required paral-

lelizing the code with a message-passing layer such as MPI. While

this process was often nontrivial, once this “lunch pass” was pur-

chased, one had access to any number of publicly allocated clus-

ters, which have grown over the years to exceed one petaFLOPS

of performance. Since CMOS technology hit the power wall in the

last decade, clock speeds have plateaued, constraining the growth

in computational power to come almost exclusively through paral-

lelism. In particular, multicore processors have enabled a rapid in-

crease in the core-count of clusters without a concomitant increase

in cost.

Digital Object Indentifier 10.1109/MCSE.2010.122              1070-9924/$26.00  2010 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.

Some content may change prior to final publication.



2

In recent years, a new computational meal ticket has hit the

market, in the form of computing with graphics processing units

(GPUs). These processors push beyond multicore to the extreme

of many-core, by combining numerous floating point units and rel-

atively simple execution units with a very wide memory bus to al-

low dramatically higher peak throughput than conventional CPUs.

Single GPU performance exceeding 20 CPU cores is not uncom-

mon, and some applications have enjoyed much higher degrees of

acceleration. In order to make use of these capabilities, algorithms

and data structures must be reorganized to expose parallelism and

make good use of the explicit memory hierarchy of a given GPU

platform. Work has to be divided between the CPU and GPU, and

the transfer of data between the two explicitly managed. As was

the case with moving fromworkstations to clusters, this investment

is nontrivial.

The many levels of parallelism afforded by QMC algorithms

make QMC intrinsically scalable and ideally suited to take advan-

tage of this many-core architecture. Early work which partially ac-

celerated QMC algorithms on GPUs showed promise [3]. Other

electronic structure methods, including HF and DFT, have also

benefited from GPU acceleration [4]. As such, we have elected to

make the investment, and have ported a large fraction of our QMC

code to the NVIDIA’s CUDA GPU platform. No one can yet be

certain whether the long-term payoff for moving to this new com-

puting paradigmwill be as large as it was with distributed memory

clusters, but our hopes remain high.

QMCMethods

Many methods fall under the broad heading of quantum Monte

Carlo. We consider the two continuum methods most widely

used: variational Monte Carlo (VMC) and diffusion Monte Carlo

(DMC). These methods are stochastic means to solve the time-

independent Schrödinger equation, an eigenvalue equation of the

form, ĤΨ = EΨ, where Ĥ is the Hamiltonian, or total energy op-
erator. The Hamiltonian depends on the type of system studied and

describes the interactions in the system. In this work, we consider

a system of electrons and ionized atomic cores, so that

Ĥ = −
h̄2

2m
∇2 +

∑

i<j∈elecs

e2

rij

+
∑

I∈ions

V̂ NL
I , (1)

where the first term is the kinetic energy, the second is the

Coulomb repulsion between electrons, and V̂ NL
I is a nonlocal pseu-

dopotential operator[1]. For a system containing N electrons, we

use the notation that R is a 3N -dimensional vector representing
the positions of the electrons.

In variational Monte Carlo, an approximation for the lowest-

energy eigenstate is found by 1) parametrizing a trial wave func-

tion, ΨT (R); 2) generating electron positions, Rn, sampled

stochastically from the probability distribution |ΨT (R)|2; 3) find-
ing the parameters that minimize the expectation value of the en-

ergy or variance over the set of samples. This yields the best wave-

function consistent with the parametrization. Diffusion Monte

Carlo begins with an optimized trial function, ΨT , and projects

out the ground state by repeated application of an imaginary

time Green’s function or propagator. This propagator is applied

(a) Diamond phase of carbon (b) BC8 phase of carbon

(c) 32-molecules of liquid water (d) FeO in a rocksalt structure

FIG. 1: Visualizations of atomic structures and orbitals from systems un-

der study with QMCPACK. Red and blue transparent surfaces are positive

and negative isosurfaces of example orbitals.

stochastically by a combination of a drift-diffusion process fol-

lowed by a branching process. The drift-diffusion is akin to a

force-bias Monte Carlo for classical simulations.

Example Applications

In the initial development of our GPU implementation, we have

focused on the simulation of real materials and molecules com-

prised of electrons and ions[5]. This allows an extremely wide

class of systems to be studied. We have depicted some example

applications in Figure 1. Figures 1(a) and 1(b) show two structural

phases of carbon. Diamond is metastable at low pressure, and is

believed to be stable until approximately ten million atmospheres

at room temperature. We are presently using our GPU code to

determine the precise transition pressure, which may be of great

practical importance to laser-induced fusion experiments.

Figure 1(c) shows a configuration of 32 molecules of liquid

water. Several hundred such configurations were recently simu-

lated using QMCPACK on a Cray-XT5 system, consuming over

30 million CPU hours. We believe our GPU version will allow

us to further this research at greatly reduced computational cost.

Figure 1(d) shows the mineral wüstite, FeO, in its rocksalt struc-

ture. We are using our GPU version of QMCPACK to under-

stand pressure-induced changes in its electronic structure. Under-

standing such transition metal oxides is closely linked to a broad
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range of phenomena ranging from superconductivity to metal-to-

insulator transitions.

Variational Monte Carlo

Variational Monte Carlo (VMC) computes the expectation value

of a quantum-mechanical operator, Ô, defined as

〈

Ô
〉

=

∫

d3N
R |ΨT (R)|

2 ÔΨT (R)

ΨT (R)
︸ ︷︷ ︸

OL(R)

, (2)

where OL(R) is termed the local value of the operator. When

the operator is the Hamiltonian, Ĥ, the average of the local en-
ergy, EL(R), gives the expected value of the total energy. Other
observables commonly computed are the potential energy, pair

correlation functions, the electronic charge density, and, more re-

cently, the forces on the atoms[6, 7]. To compute this very high-

dimensional integral, VMC utilizes the standardMetropolis Monte

Carlo method to generate samples from the probability distribution

P (R) ∝ |ΨT (R)|
2
.

To sample this distribution, we generate an ensemble of points in

3N -dimensional space, {Ri}, which we call walkers. Each walker
is propagated by attempting a random move to R

′
i, which is ac-

cepted or rejected based on the ratio |ΨT (R′
i
)|

2
/ |ΨT (Ri)|

2
. In

practice, highest efficiency is usually achieved when only a single

electron is moved at a time. After the walkers have reached their

equilibrium distribution, the expected value of observable proper-

ties can be computed as an average of the local values OL(Rn
i )

taken over all walkers, i, and all Monte Carlo steps, n.
We write the trial wave function in an analytic form with ad-

justable parameters, pj , so that ΨT (R) = ΨT (R; {pj}). It sat-
isfies a variational principle, i.e., for any set of parameters {pj},
the average energy of ΨT (R; {pj}) must be greater than or equal
to the true ground state energy, E0. Thus, the parameters may be

optimized to minimize the energyE({pj}). Alternatively, we may
minimize the variance of the local energy, EL(Ri; {pj}) over the
ensemble of samples.

Diffusion Monte Carlo

Diffusion Monte Carlo modifies the stochastic procedure in or-

der to repeatedly apply a Green’s function operator that projects

out the ground state from the trial wave function. Since smaller

steps must be taken, DMC is somewhat more expensive thanVMC,

but provides much more accurate results.

In practice, the stochastic projection is effected through a

branching process. After a single-particle move is attempted for

each electron in turn, EL(Ri) is computed for each walker. Each
walker carries a weight, wn, which is updated as

wn+1
i = wn

i exp

{

τ

[

ET −
EL(Rn+1

i ) + EL(Rn
i )

2

]}

, (3)

where the superscripts label Monte Carlo generations, and τ is an
adjustable time step which must be chosen small enough to avoid

error. After the weights are assigned, walkers are stochastically

replicated or destroyed so that the final number of copies of each

is proportional to its weight. The trial energy, ET , is adjusted

through a slow feedback process to keep the population size cen-

tered around a target.

Algorithm 1 Pseudocode for diffusion Monte Carlo, with loop

ordering optimized for CPUs.

for generation = 1 · · ·NMC do

for walker = 1 · · ·Nw do

letR = {r1 . . . rN}
for particle i = 1 · · ·N do

set r
′

i = ri + δ

letR
′

= {r1 . . . r
′

i . . . rN}

ratio ρ = ΨT (R
′

)/ΨT (R)
if r → r

′ is accepted then

update inverse matrix, distance tables, etc.

end if

end for{particle}

Compute local energy, EL = ĤΨT (R)/ΨT (R)
Kinetic energy = − 1

2
∇2ΨT (R)/ΨT (R)

Electron-electron energy (Coulomb)

Pseudopotential energy

Reweight and branch walkers

Update ET

if generation > Neq then

Collect properties

end if

end for{walker}
end for{generation}

For bosons (e.g. 4He atoms), the DMC method is exact (within

statistical errors) if the time step, τ , is chosen sufficiently small.
However, for fermions, including electrons, the fixed-node ap-

proximation is introduced to alleviate the fermion sign problem.

It yields exact results if the nodes of ΨT (i.e. the (3N − 1)-
dimensional surface defined by ΨT (R) = 0) are exact. With ap-
proximate nodes, the error in the energy is quadratic in the error

in the nodes. In practice, the error is usually very small if ΨT is

reasonable. For example, using a trial wave function derived from

density functional theory, the accuracy of DMC usually greatly

surpasses that of the DFT calculation.

The Trial Wave Function

The most commonly used trial wave function for solid state sys-

tems takes the Slater-Jastrow type,

ΨT = det
[

φ↑
n(r↑j )

]

det
[

φ↓
n(r↓j )

]

eJ1(R;I)eJ2(R), (4)

where φn are single-particle orbitals, and J1 and J2 are one-body

and two-body Jastrow correlation factors. Here, I = {i1 . . . iM}
is the 3M -dimensional vector giving the coordinates of the nuclei

or ions. In the absence of magnetic fields, electrons are assigned a

definite spin and the configuration is given as

R = {r↑1 . . . r↑
N↑ , r

↓
1 . . . r↓

N↓}. (5)
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For simplicity, we will omit the spin label for the remainder of our

discussion.

In general, it is possible to optimize both the single-particle or-

bitals and Jastrow correlation functions. In practice, however, only

a small number of parameters (typically ∼ 20) are needed to de-
scribe the Jastrow factors, while very many may be required to de-

scribe the orbitals. At present, then, we parametrize and optimize

only the Jastrow functions.

Standard CPU implementation

We first describe our reference QMC implementation in QMC-

PACK [8] and discuss the performance issues on common archi-

tectures based on multicore CPUs. QMCPACK, an open-source

QMC simulation code written in C++, implements advanced QMC

algorithms for large-scale parallel computers. Designed with the

modularity afforded by object-oriented architecture, it makes ex-

tensive use of template metaprogramming to achieve high com-

putational efficiency through inlined specializations. It utilizes a

hybrid OpenMP/MPI approach to parallelization to take advantage

of the growing number of cores per SMP node. Finally, it uti-

lizes standard file formats for input and output, including XML

and HDF5, to facilitate data exchange.

The main design goal of the computation kernels and physical

abstractions of QMCPACK is to minimize the time to complete a

generation, a step in the stochastic projection process in DMC as

summarized in Algorithm 1. The propagation of the walkers within

the walker loop can be carried out independently by distributing

Nw walkers over parallel processing units, i.e., MPI nodes and

OpenMP threads in QMCPACK. Once a generation has evolved,

the properties of all the walkers in an ensemble are collected to de-

termine ET and Nw of the next generation. This requires a global

communication among the parallel units and redistribution of the

walkers to keep the load balanced. To initialize the DMC sim-

ulation, uncorrelated walker positions are generated with VMC.

The ensemble of walkers must then be propagated for many gen-

erations (typically 500-1000) to reach the steady-state distribution.

The properties collected during this equilibration period are dis-

carded for the final results.

GPU implementation

Several differences between CPU and GPU architecture man-

date changes in how algorithms are best implemented in each case.

Present multicore CPUs have relatively low memory bandwidth

relative to GPUs, but this deficit is partly compensated by the in-

clusion of a hierarchy of large caches. The working set of data

required for a single walker is usually small enough to reside en-

tirely within the L2 or L3 cache of a typical workstation CPU.

In this case, it is most efficient to make many moves on a single

walker before moving onto the next in order to reuse data in the

cache.

In contrast, on GPUs, a very large number of in-flight threads

is required to fully utilize all the functional units on the processor

and to hide latency. For this reason, it is greatly advantageous to

propagate all walkers in parallel, i.e. to interchange the walker and

particle loops in Algorithm 1. Since the working data set for a

single walker is far too large to fit in the shared memory in present

GPUs, the advantage of working on a single walker at a time is

also lost. In practice, this loop reordering requires restructuring all

the computational kernels.

In typical simulations, only 64 to 256 walkers are assigned to

each GPU. If only walker-level parallelism were exploited, an in-

sufficient number of threads would be available to hide latency.

Furthermore, the GPUs we employ load and store data to DRAM

in 64-byte chunks. Hence, the highest bandwidth utilization is

achieved when memory accesses have unit stride. This memory

operation coalescing would be difficult to achieve if we assigned

adjacent threads to distinct walkers. Thus, in each kernel, we ex-

ploit additional parallelism, typically loops over electrons, atomic

cores, or orbitals. In order for the kernels to operate efficiently,

the data structures employed required reorganization to allow coa-

lesced memory access, and to allow efficient use of shared mem-

ory. In some cases, functions were broken into two or more kernels

to allow for use of less shared memory, different block sizes, and

synchronization between blocks.

To the major computational classes in QMCPACK, we have

added routines which act on an ensemble of walkers rather than

a single walker. These C++ member functions transfer any neces-

sary data to the GPU, call C functions which launch CUDA ker-

nels, and copy back results required by the host CPU. By incorpo-

rating the GPU functionality into an existing code, we have been

able to perform cross-checks for correctness and accuracy at each

stage, essentially providing a facility for built-in unit tests. The

stochastic nature of the method, combined with the generality and

complexity of QMCPACK, has made this method of debugging

and validation invaluable. Identifying one of dozens of kernels re-

sponsible for a statistically erroneous result in a stochastic code

may otherwise have proven intractable.

Data Structures

For each walker, temporary data associated with each compo-

nent of the wave function must be stored to avoid recomputation,

e.g. the inverse matrices associated with determinant evaluation.

To avoid spending excessive time allocating, deallocating, and

transferring data in small chunks, we aggregate all data associated

with a walker into a single anonymous buffer. In a pre-allocation

stage, each object which requires per-walker storage makes a stor-

age request for each data member. Each preallocation request re-

turns an offset into the buffer. Requests are padded to 64-byte

boundaries to assure coalesced access to global memory. After the

preallocation requests, a single buffer is allocated for each walker.

This scheme has particular benefits during DMC simulation, in

which walkers are dynamically created, destroyed, and migrated

between nodes.

Multi-GPU Parallelization

In both the CPU and GPU versions of QMCPACK, MPI is used

for parallelization between nodes. In particular, MPI is used to:

1) migrate walker data sets between nodes for load balancing in
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FIG. 2: GPU speedup versus quad-core Xeon E5410 with four threads.

DMC; 2) accumulate statistical averages; 3) update the trial en-

ergy, ET , as DMC progresses; 4) broadcast large input data sets.

The dynamic duplication and annihilation of walkers during DMC

simulation can result in a load imbalance between nodes. To cor-

rect this, we redistribute walkers between nodes with point-to-

point transfers after each branching step. To effect this transfer,

the GPU-resident walker data must first be copied to host mem-

ory. By storing the entire data set in an anonymous buffer, this

copy can be accomplished in a single transfer, greatly mitigating

overhead. In practice, we have observed very little overhead from

the transfers due to load balancing. All other communication (i.e.

2-4) represents either one-time or very small transfers, and do not

impose practical limitations on MPI scaling.

Overall Performance and Accuracy

Because the NVIDIAGT200 GPU has a significant gap between

single and double-precision peak FLOP rate, we elected to uti-

lize single-precision where possible. After computing properties

for each walker in single-precision, results are transferred to CPU

memory and ensemble averages are accumulated in double preci-

sion. We found that only one GPU kernel, namely the inversion

of determinant matrices, required double-precision to retain very

high accuracy. At present, however, we have not yet modified the

CPU version to take advantage of this property. Thus, in our per-

formance comparison, we compare double precision performance

on the CPU to a mixed-precision implementation on the GPU.

Figure 2 gives a plot of the GPU-to-CPU speedup, measured by

the ratio of the average time to execute a block of Monte Carlo

moves. The vertical axis gives the ratio of execution rates when

comparing GT200 GPUs (in Tesla S1070s) to quad-core Xeon

E5410 CPUs in dual-socket compute blades. The speedup is truly

one GPU to one CPU, with four threads running on each CPU, in

contrast to the commonly used comparison to single-core perfor-

mance.

The relative speedup increases with both the number of elec-

trons and with the number of walkers running on each GPU. This

reflects the fact that many in-flight threads are required to fully hide

memory access latency. As we discuss below, some further restruc-

turing of our kernels may lower the number of walkers needed to

saturate GPU performance. Nonetheless, for large systems in our

present implementation, one GT200 can exceed the performance

of 15 quad-core Xeon E5410 processors. We note further that our

CPU code has been highly optimized, with some critical routines

hand-optimized with SSE intrinsics, so that this is not a “straw

man” comparison.

If the mostly single-precision GPU implementation does not

yield sufficiently accurate results, it is useless. We have conducted

numerous tests comparing the results of the CPU and GPU imple-

mentations. So far, we have not found any statistically significant

discrepancies. Despite the use of single precision, the GPU code

appears to be as accurate as the CPU version, at least to the level

of statistical error we have achieved thus far.

Main Computational Kernels

We have implemented approximately 100 CUDA kernels (in-

cluding a number of specializations), which perform essentially

all the computation needed to simulate real materials in periodic

boundary conditions and molecules in open boundary conditions.

Most can be divided into kernels that evaluate wave function ratios

and derivatives, and those that evaluate potential energy.

To determine the acceptance probability for single-particle

moves, we need to compute the ratio of the trial wave func-

tion values at the new and old positions, i.e. ΨT (R′)/ΨT (R),
where R and R

′ differ by the position of one electron. In or-

der to compute the kinetic energy, we also require the quantities

∇iΨT (R)/ΨT (R) and ∇2
i ΨT (R)/ΨT (R). Since the trial wave

function is the product of several components, we have expressed

the derivatives in terms of logarithms, making the complicated ap-

plication of the product rule at run time unnecessary.

Single-Particle Orbital Evaluation

To evaluate the determinant part of the wave function, we must

first evaluate the single-particle orbitals, a set of functions defined

on the 3D domain of our simulation cell. Other ab initio meth-

ods for solids typically expand the orbitals in plane-waves, eiG·r,

allowing the use of FFTs to efficiently evaluate the orbitals at all

points on a regular grid simultaneously. In real-space, however,

the number of basis function evaluations required to compute the

value of an orbital at a single location grows with system size, and

many thousands are needed even for a modest number of atoms.

In QMC, it is more efficient to use a localized basis with com-

pact support. 3D tricubic B-splines provide a basis in which only

64 elements are nonzero at any given point in space[9], allowing

the rapid evaluation of each orbital in constant time. Furthermore,

the basis can be improved systematically simply by decreasing the

spacing parameter. On the downside, the 3D B-splines require a

comparatively large amount of memory.
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B-splines are also very amenable to parallel evaluation on GPUs.

When we move an electron in QMC, we must compute the values

of all the orbitals at the new position. By arranging the B-spline

coefficients so that the orbital index runs fastest in memory, we can

ensure coallesced reads, minimizing wasted memory bandwidth.

The gradient and Laplacian of the orbitals, needed for the kinetic

energy, can be evaluated simply by taking derivatives of the basis

functions. We have released a separate CPU and GPU library for

the construction and evaluation of cubic B-splines in 1D, 2D, and

3D (http://einspline.sf.net).

Determinant Ratios

Consider the Monte Carlo move of the kth electron from rk to

r
′
k . Defining Ain = φn(ri) and A′

in = φn(r′i), we need to com-
pute the ratio, det(A′)/ det(A). Since we have moved only elec-
tron k, A and A′ differ only by row k. By expanding in cofactors,
the determinant ratio may be written in terms of the inverse of A
as,

det [A′]

det [A]
=

∑

n

φn(r′k)
[
A−1

]

nk
. (6)

The logarithmic gradient and Laplacian with respect to rk of detA
can be written similarly.

Inverses and Updates

Using the ratio formulae given above requires that we store the

inverse of A for each walker. To compute the inverse initially, we
use a relatively simple in-place Gauss-Jordan inversion with par-

tial pivoting. Since this process involves numerous subtractions,

truncation error would accumulate for large systems in single pre-

cision, resulting in a bias in the simulation. For this reason, we

perform this inversion in double precision.

Since the moves we employ change only one row of the A ma-
trices at a time, we employ a rank-1 update of A−1 using the

Sherman-Morrison formula. This allows the inverse to be updated

inO(N2) time rather thanO(N3) time for a full inversion. In par-
ticular, if we replace row k of matrix A with a vector v, then A−1

is updated as

[
A + ek ⊗ δT

]−1
= A−1 −

(
A−1ek

)
⊗

(
δT A−1

)

1 + δT A−1ek

, (7)

where δ is the change in row k ofA, and ek is the vector with a 1 as
the kth element and zeros for all others. To implement this update,
we divide the operations into two kernels. In the first, the product

u ≡ δT A−1 is computed. While computing this product, we store

the kth column of A−1, i.e. v ≡ A−1ek, contiguously in global

memory. This avoids using uncoalesced reads in the second ker-

nel, which adds on the outer product of u and v, scaled by the con-
stant −1/(1 + uk). Since repeated updates in single precision can
eventually result in an inaccurate inverse, we occasionally reinvert

from scratch using our double-precision Gauss-Jordan routine.

Jastrow Evaluation

Jastrow factors allow the wave function to have explicit correla-

tion between pairs of electrons and between electrons and ions.

J2(R) =
∑

i<j

uij

(
|ri − rj |min

)
. (8)

The function uij(r) depends on whether i and j have the same
or opposite spin label, and is constructed to vanish for distances

beyond a cutoff radius, rc. Since we perform the simulation in

periodic boundary conditions, we utilize the minimum image con-

vention when evaluating all distances. Kernel specializations are

used when rc is less than the inscribed radius of the simulation cell.

This permits a much faster determination of the minimum-image

distance.

The one-body, electron-ion term is similarly given by

J1(R) =
∑

i,j

χj (|ri − Ij |) , (9)

where χj depends on the atomic number of ion j. Both u and χ
functions are represented with cubic B-splines, whose coefficients

have been constrained to give the right behavior at the origin and

at rc. The gradients and Laplacians of J1 and J2 are computed

analytically in separate kernels.

Only a few B-spline coefficients are required to represent the

function, so these may be read into sharedmemory at the beginning

of kernel execution. Since the distances are stochastically gener-

ated, however, the index of the coefficient read by each thread is

random. If more than one thread attempts to read the same coeffi-

cient simultaneously, serialization due to bank conflicts may result

if more than one broadcast is required. NVIDIA’s next genera-

tion architecture, Fermi, will mitigate this by supporting multiple

simultaneous broadcasts from shared memory.

Coulomb Interaction

To compute the energy arising from Coulomb interaction be-

tween electrons, we must sum over all pairs of electrons. In peri-

odic boundary conditions, the sum must include not only the par-

ticles in the simulation cell, but all their periodic images. A naive

summation over images does not converge, but a rapidly converg-

ing method was given by Ewald, which divides the sum into a real-

space part and Fourier-space part. In practice, we use a more ef-

ficient breakup which converges even more quickly[10], resulting

in two functions, vs(r) and vl(r), the latter of which is Fourier
transformed to reciprocal space, yielding vG. vs(r) is tabulated
on a fine grid and used to create a 1D “texture object” which al-

lows linear interpolation with the GPU image-sampling hardware.

The long-range part is summed in Fourier-space taking advantage

of the fast hardware transcendental instructions. In both cases, we

use the fast on-die shared memory to minimize loads from GPU

DRAM.
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FIG. 3: Percentage of run time consumed by the main kernel categories

for QMCPACK running on CPUs and GPUs.

Nonlocal Pseudopotential Evaluation

In many first-principles methods, including DFT, quantum

chemistry, and QMC, the core electrons are eliminated and their

effect on the valence electrons replaced by a nonlocal potential op-

erator. This operator can be applied by approximating an angular

integral by a quadrature on a spherical shell surrounding the atom,

as
[

V̂NLΨT (R)
]

ΨT (R)
= Vloc(r) +

�max∑

�=0

2ℓ + 1

4π
[V�(r) − Vloc(r)]×

∑

r′
i

P� [cos (θ′i)]
ΨT (r1, . . . , r

′
i, . . . , rN )

ΨT (r1, . . . , ri, . . . , rN )
.

(10)

The vast majority of the computation work involved in evaluating

this expression is in the wave function ratios in the last term. Be-

yond a cutoff radius, rc, [V�(r) − Vloc(r)] = 0, by construction.
The first kernel for this routine simply determines which electrons

are within rc of each ion, and constructs a list of job objects, spec-

ifying the ratios which must be computed in the second phase.

These jobs are concatenated into a contiguous list on the CPU,

since this cannot be done easily in parallel. Finally, the ratios are

computed on the GPU and passed back to the CPU, which then

performs the summation.

Performance Analysis

It is instructive to consider the execution time of each class of

kernels relative to the total execution time, and compare these per-

centages between the CPU and GPU implementations. Figure 3

shows bar charts representing the proportion of execution time

spent in the main categories of kernels when executed on the same

physical system. Note that these are percentages, rather than ab-

solute times. Since the GPU speedup is over 10×, the absolute
times are considerably smaller on the GPU for all kernels. Signifi-

cant differences between the breakdowns can be readily identified.

Most of these differences can be understood by comparing the dif-

ference in memory hierarchy between the GT200 GPUs and Xeon

CPUs.

The Harpertown CPUs in this comparison have relatively low

memory bandwidth of approximately 10 GB/s per socket in a dual-

socket configuration, but feature a large 12 MB L2 cache which

greatly mitigates this disadvantage in many cases. In contrast, the

Tesla 10 series offers global memory bandwidth exceeding 100

GB/s, but the user-controlled cache (i.e. shared memory) is in-

sufficient to store some larger data sets used in our code. We can

identify three classes of kernels, based on the size of their data sets:

1) those with working sets too large for both CPU and GPU cache;

2) those with working sets that fit in the CPU cache, but not the

GPU cache; 3) those with small data sets that fit in both CPU and

GPU cache.

The most expensive kernels are those that perform the B-spline

evaluation of the orbitals. Because this involves reading a series

of N coefficients from random locations in a 3D table typically

over 1 GB in size, cache is of very little benefit. With only two

FLOPs per load, this kernel is strongly limited by bandwidth, and

our implementation achieves 75% of the peak bandwidth available

on the Tesla 10. As such, B-spline evaluations constitute a smaller

percentage of total run time on the GPU.

In the CPU version, matrix inverses are computed fully only

once at the beginning of a run and are then updated with each

move, so that the inverse contributes a negligible amount to run

time. On GPUs, they constitute a small time, though not com-

pletely negligible. On CPUs, the inverse matrices fit comfortably

in L2 cache on Xeons, so that the updates are relatively fast. In

contrast, on GPUs these matrices are much too large for shared

memory, so that the kernel is again bandwidth limited and takes

a larger percentage of time. A similar observation may be made

about the determinant ratios.

The Jastrow evaluations require only particle positions and B-

spline coefficients, both of which can reside in L1 on CPUs or

shared memory on GPUs, so that the kernels are compute-limited.

In the CPU implementation, distances are computed and tabulated

outside the Jastrow evaluation, while they are done inline in the

GPU version. Thus, if we combine the times for J1, J2, and Dist.,

we find that the total percentage of runtime used for Jastrow and

distance evaluation is quite similar on the CPU and GPU.

Considering these kernels, we can then make the following gen-

eral observations about relative run times. When operating on data

sets which cannot be contained in cache on either CPU or GPU, the

GPU’s superior bandwidth leads to the largest observed speedup.

On data sets which fit in CPU cache, but not in GPU shared mem-

ory, we observed the least speedup. On very small data sets which

fit in both CPU cache and GPU shared memory, the speedup is

between these two extremes.

Dealing with limited memory

At present, our GPU implementation enables us to perform our

typical production simulations with much less hardware. In the

broader picture, however, we also desire to use GPUs to extend

the range of what is computationally feasible. The application of

QMC to real materials has until recently been mostly restricted
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(a)Uniform B-spline (b)Mixed basis

FIG. 4: Schematic of uniform B-spline and mixed-basis representation

for orbitals. With a uniform B-spline representation, a dense Cartesian

mesh is required. In a mixed-basis representation, a much coarser mesh is

sufficient between the atoms.

to the bulk properties of perfect crystals. Addressing defects and

disordered materials requires the ability to simulate larger systems

and achieve higher statistical accuracy. At present, a number of

factors limit the size of the systems to which our GPU implemen-

tation can be applied.

While computationally efficient, the 3D B-spline basis for the

orbitals requires a large amounts of memory, which grows quadrat-

ically with system size. Currently, the largest GPU memory buffer

available is 4 GB on the Tesla C1060 card, which limits the size of

the system we can address. For larger systems, a number of meth-

ods can be used to reduce the required storage. In a perfect crystal,

symmetry can be used to allow the memory usage to grow only

linearly with the number of atoms, allowing simulations with over

500 electrons. In disordered systems, such as liquid water, this

type of reduction is not possible and system size is more limited.

To go further, we implement a mixed-basis approach. The mesh

spacing required to accurately represent the orbitals is determined

by their smallest feature size. The shortest wavelength features

are concentrated around the atomic cores, while in the area be-

tween the atoms, the functions are smooth. For this reason, we

divide space into spherical regions called muffin tins surrounding

the atoms, and an interstitial region between them. Inside the muf-

fin tins, the orbitals are atomic-like, and can thus be represented

accurately and compactly by spherical harmonics, as

φn,j
MT(r) =

�max∑

�=0

�∑

m=−�

unj
�m(|r − Ij |)Y

�
m

(
r − Ij

|r − Ij |

)

. (11)

Since the high-frequency components in the muffin tins have been

removed, we can represent the orbitals in the interstitial region by

3D B-splines on a much coarser grid. This is represented schemat-

ically in Figure 4. The radial functions, unj
�m(r) are represented as

1D Hermite splines. We did not use B-splines as elsewhere, since

in single precision, truncation error leads to a poor estimate for the

second derivative. Utilizing this dual basis in place of 3D B-splines

alone typically allows the same accuracy to be achieved with 5×
to 10× less memory, with about the same performance.

Final thoughts

QuantumMonte Carlo simulations have long been, and continue

to be, a major consumer of supercomputing power, from vector

machines such as the Cray XMP[11], to superclusters such as the

Cray XT-5. The accuracy they afford in predicting the properties of

a diverse set of real materials justifies this consumption. Nonethe-

less, we have seen that through the use of GPUs, the same scien-

tific results may be achieved at considerably less expense. Further-

more, as the processors develop, the software is refined, and larger

GPU clusters are built, this technology will allow us to progress

from perfectly periodic systems to those systems with defects, dis-

ordered systems, etc. The speedups afforded by the GPUs may

also allow us to proceed from simulations with the atoms frozen in

a single configuration to those which couple the dynamics of the

electronswith those of the atomic cores[12]. With further progress,

perhaps in a few years QMC simulations will be as ubiquitous as

DFT calculations are at present.
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