
70	 Copublished by the IEEE CS and the AIP	 1521-9615/07/$25.00 ©2007 IEEE� Computing in Science & Engineering

S cie   n t i f ic   P r o g r a m m i n G

Editors: George K. Thiruvathukal, gkt@cs.luc.edu
Konstantin Läufer, laufer@cs.luc.edu

Accelerating Scientific Applications 
with Reconfigurable Computing
Getting Started

By Volodymyr V. Kindratenko, Craig P. Steffen, and Robert J. Brunner

High-performance reconfigurable computing combines the advantages of the coarse-grain parallel processing 
provided in conventional multiprocessor systems with the fine-grain parallel processing available in field-
programmable gate arrays.

R econfigurable computing1 based on the combina-
tion of conventional microprocessors and field-
programmable gate arrays (FPGAs) has reached a 

point at which we can substantially accelerate select scien-
tific kernels with the ease of a C/Fortran style of program-
ming. It wasn’t until the late 1990s that FPGAs achieved 
sufficient gate density and functional capability to support 
the nontrivial, double-precision, floating-point operations 
that many scientific kernels require, and only recently have 
high-level languages (HLLs) and code development tools 
become available that hide the complexity involved in a 
typical FPGA design implementation cycle. Consequently, 
high-performance reconfigurable computing (HPRC)—
or reconfigurable supercomputing—is a relatively recent 
technology that rapidly evolves with new systems coming 
online and new software being written.

Traditional high-performance computing (HPC) ven-
dors, such as SGI and Cray, have introduced several com-
mercial HPRC products, but newcomers, including SRC 
Computers and Nallatech, have also emerged with viable 
solutions. All these systems consist of a traditional com-
puter based on general-purpose processors and a separate 
“accelerator” component built around an FPGA. Although 
similar in their basic concepts, these individual solutions 
differ in the accelerator component’s design, the coupling 
between the accelerator and the general-purpose computer 
system, and the access and control software.

Several tools can compile code written in an HLL di-
rectly into the hardware circuitry description. Dividing 
code between the general-purpose processor and the FPGA 
accelerator isn’t a trivial task2 and is still the software de-
veloper’s responsibility. However, once the code-partition-
ing decision is made, the code developer can implement 
the algorithm’s hardware side on the selected FPGA via 
the appropriate toolset and the software side on the gen-
eral-purpose processor via conventional code development 

techniques. Developers have successfully ported numerous 
codes to various reconfigurable supercomputing platforms, 
including molecular dynamics,3 linear algebra solvers,4 and 
bioinformatics (http://sourceforge.net/projects/mitc-open 
bio), to name a few.

Today, reconfigurable computing technology is easier 
to use than you might think—at least for problems that 
map well to a particular HPRC architecture. In this in-
troductory article, we demonstrate the steps necessary to 
implement a simple computational kernel on an SRC-6 
MAP Series E reconfigurable processor. In a future arti-
cle, we’ll present an actual scientific computational kernel 
and show how we achieved a substantial speedup on the 
SRC-6 platform.

The SRC-6 Reconfigurable Computer
The SRC-6 MAPstation used in this work consists of a 
standard dual 2.8-GHz Intel Xeon motherboard and a 
MAP Series E processor interconnected with a 1.4-Gbyte/
second low-latency four-port Hi-Bar switch (see Figure 
1). The SNAP Series B interface board connects the CPU 
board to the Hi-Bar switch; SNAP plugs directly into a 
CPU board’s dual in-line memory module (DIMM) slot.

The MAP Series E processor module contains two user-
controlled FPGAs, one control FPGA, and the associated 
memory. For the six banks (A through F) of on-board 
memory (OBM), each bank is 64 bits wide and 4 Mbytes 
deep, for a total of 24 Mbytes. The programmer is explic-
itly responsible for application data transfer to and from 
these memory banks via vendor-supplied programming 
macros invoked from within the FPGA application. An ad-
ditional 4 Mbytes of dual-ported memory is dedicated to 
data transfer between the two FPGAs, but this memory 
can also be used as two additional OBM banks (G and H).

The two user FPGAs in the MAP Series E are Xilinx 
Virtex-II Pro XC2VP100 FPGAs; each contains 88,192 



September/October 2007� 71

four-input lookup tables, 88,192 flip flops, 444 dedicated 
18 × 18 integer multipliers, and 999 Kbytes of internal 
dual-ported block RAM. These FPGA elements aren’t di-
rectly visible to the programmer, but are interconnected 
via the programmer’s MAP C algorithm code, the SRC 
Carte programming environment tools, and the Xilinx 
FPGA place and route tools. The SRC programming envi-
ronment enforces the static FPGA clock rate of 100 MHz.

As Figure 2 shows, the Carte programming environment 
for the SRC-6 MAPstation is highly integrated: a single 
makefile can generate all the compilation targets. The two 
main compilation targets are a software-emulated debug 
version that verifies functional correctness and a final ver-
sion that contains the embedded circuit bitmap that runs 
on the actual hardware FPGA. The Intel icc compiler 
generates both the CPU-only debug executable and the 

CPU side of the combined CPU/MAP executable. make-
file invokes the SRC MAP compiler to produce the FPGA 
design’s hardware description for the final combined CPU/
MAP target executable and passes this intermediate hard-
ware description to the Xilinx Integrated Synthesis Envi-
ronment’s (ISE’s) place and route tools, which produce the 
FPGA bit file. Finally, the linker is invoked to combine the 
CPU code and the FPGA hardware bit files into a unified 
executable. Fortunately, make debug and make hw are the 
only two build commands the programmer has to learn; 
they hide the underlying complexity.

First Program
Programming an SRC-6 reconfigurable computer is simi-
lar to programming any other HPC system: achieving the 
highest performance possible requires exploiting abun-

PCI-X

Memory

Two microprocessors

Dual-Xeon motherboard
2.8 GHz, 1 Gbyte memory

MAP-E
reconfigurable
processor

OBM A
(4 Mbytes)

User FPGA 0
XC2VP100

User FPGA 1
XC2VP100

OBM B
(4 Mbytes)

OBM C
(4 Mbytes)

OBM G
(2 Mbytes)

OBM H
(2 Mbytes)

OBM D
(4 Mbytes)

OBM E
(4 Mbytes)

OBM F
(4 Mbytes)

Control FPGA

64 6464 64 64 64

64 6464 64 64 64

4.8 Gbytes/sec

1.4 Gbytes/sec1.4 Gbytes/sec

192

108

108

192

GPIO 2,400 Mbytes/sec each

SNAP

SRC Hi-Bar four-port switch (sustained 1.4 Gbytes/sec per port with 180-ns latency per tier)

Figure 1. SRC-6 MAPstation architecture. The MAP Series E processor connects to a commodity dual-Xeon 
motherboard via the Hi-Bar switch. 

Source (C or Fortran) Macro source (VHDL/Verilog)

Verilog sourceC/Fortran compiler

Linker

FPGA code�P code �P codeUnified executable

Logic synthesis

Place and route

Binary objects Binary objects Netlist

Bitstream

MAP library

MAP compiler

Source (MAP C)

Figure 2. Outline of the SRC Carte code compilation flow. The CPU side of the algorithm is compiled with the Intel 
icc compiler whereas the FPGA side is compiled to a hardware description language via the MAP C compiler and 
converted into an FPGA configuration bitstream using Xilinx ISE.



72� Computing in Science & Engineering

S cie   n t i f ic   P r o g r a m m i n G

dant resources while working around any limited ones. 
As a specific example, consider a simple application that 
evaluates the following rational function for a million val-
ues of x:

R x
P x
Q x

p p x p x p x p x p x

q
( )

( )
( )

= =
+ + + + +
+

0 1 2
2

3
3

4
4

5
5

0 qq x q x q x q x q x1 2
2

3
3

4
4

5
5+ + + +

.

Reference C Implementation
The left columns of Figures 3 and 4 show a reference micro
processor implementation of the entire application. The 
compute kernel subroutine, ratval5, is called from the 
main subroutine (line #25 in Figure 3); accepts a pointer 

to an array, X, containing double-precision floating-point 
values of x for which we evaluate the rational function, a 
pointer to the array for storing the results, R, and the size 
of the input and output arrays, sz. The subroutine iterates 
through the array of x values, computes the P(x) and Q(x) 
polynomials using Horner’s rule,5 divides P(x) by Q(x), and 
stores the results in the output array.

We use the RDTSC (read time stamp counter) mi-
croprocessor instruction to count the number of CPU 
clock cycles necessary to execute the kernel subroutine 
(lines 23 and 27 in Figure 3). We then divide the num-
ber of clock cycles by the CPU frequency (2,800,733,000 
Hz happened to be the frequency of the microprocessor 

01 /*main_cpu.c*/ /*main_map.c*/
02 #include <stdlib.h> #include <stdlib.h>
03 #include <libmap.h>
04
05 #define SZ 1048576 #define SZ 1048576
06
07 void ratval5(double *X, double *R, int sz); voidratval5(double X[], double R[], int sz, int mapnum);
08
09 int main (int argc, char *argv[]) int main (int argc, char *argv[])
10 { {
11   int nummap=0;
12
13   double *X=(double *)malloc(SZ* sizeof(double));   double *X=(double *)Cache_Aligned_Allocate(SZ * sizeof(double));
14   double *R=(double *)malloc(SZ* sizeof(double));   double *R=(double *)Cache_Algined_Allocate(SZ * sizeof(double));
15
16   for (int i = 0; i < SZ; i++)   for (int i = 0; i < SZ; i++)
17     X[i]=(float)rand()/rand();     X[i]=(float)rand()/rand();
18
19   map_allocate(1);
20   ratval5(X, R, 0, nummap);
21
22   unsigned long long start, stop;   unsigned long long start, stop;
23   _asm_ _volatile_(“rdtsc”:”=A”(start):);   _asm_ _volatile_(“rdtsc”:”=A”(start):));
24
25   ratval5(X, R, SZ);   ratval5(X, R, SZ, nummap);
26
27   _asm_ _volatile_(“rdtsc”:”=A”(stop):);   _asm_ _volatile_(“rdtsc”:”=A”(stop):);
28   unsigned long long t = stop – start;   unsigned long long t = stop – start;
29
30   map_free(1);
31
32   printf(“CPU ticks %lli, time %f seconds\n”,   printf(“CPU ticks %lli, time %f seconds\n”,
33     t, (float)t/2800733000);     t, (float)t/2800733000);
34
35   free(X);   Cache_Aligned_Free((char*)X);
36   free(R);   Cache_Aligned_Free((char*)R);
37 } }

Figure 3. Microprocessor implementation. The left column shows the original main.c subroutine, and the right 
column shows main.c modified to use the SRC-6 MAP reconfigurable processor.



September/October 2007� 73

used in our system) to calculate the total execution time 
(line #33).

MAP C Implementation
Only a few lines of additional code need to be added to 
the main C routine to enable the reconfigurable pro-
cessor’s use. First, we include the libmap.h header file 
(line #3) to provide the reconfigurable MAP processor 
library function prototypes. We then change the ker-
nel subroutine’s function declaration to comply with 
the MAP C language (line #7) and add an extra vari-
able, nummap (line #11). Before the application can use 
the MAP reconfigurable processor, it must be allocated 
via the map_­allocate() library function call (line #19). 
At this point, we can also instruct the system to config-
ure the FPGA with an appropriate bitstream by calling 
the FPGA subroutine once with dummy data (line #20). 
Although this step isn’t strictly necessary and requires 
merely one call, we chose to implement it this way to de-
couple the FPGA bitstream configuration from the actu-
al calculations. This simplifies the timing analysis—the 
FPGA configuration is done only once per kernel used 
and generally takes roughly 100 milliseconds.

The actual call to the FPGA-based subroutine (line 
#25) closely resembles the original microprocessor im-
plementation. The Carte preprocessor and compiler will 
automatically generate the wrapper code to replace the 
call to this subroutine with a call to its FPGA-based 
implementation (without the developer’s involvement). 
When the algorithm is executed, we release the MAP 
processor back to the system via the map_free function 
call (line #30).

Note that we use both a different memory alloca-
tion subroutine, Cache_Aligned_Allocate instead of 
malloc (lines #13 and 14), and also a different memory 
deallocation subroutine, Cache_Aligned_Free instead of 
free (lines #35 and 36). These subroutines are part of the 
Carte API, and they ensure memory alignment at 64-bit 
word boundaries, which is important for Direct Memory 
Access (DMA) transfers of data from main RAM to the 
MAP processor’s OBM.

The MAP C implementation of the computational kernel 
subroutine (right column of Figure 4) is more complex than 
the original code (left column). They’re algorithmically 
the same, but several additions are needed to transfer data 
in and out of the MAP processor. In essence, the program-
mer is responsible for cache memory management—some-
thing taken for granted on a conventional microprocessor 

architecture. This process has several required steps. First, 
we must declare which memory banks will be used (lines 
#6 through 9 in Figure 4, right column). Next, we issue 
instructions for the controller FPGA to transfer data from 
the system memory to the corresponding OBM banks on 
the MAP processor board (line #22) and wait until these 
transfers are completed (line #23). Each OBM bank is capa-
ble of holding 4 Mbytes of data, but because we’ll process 8 
Mbytes at once, we instruct the DMA engine to distribute 
the data across two OBM banks (line #22), modify the loop 
array access instruction to fetch the data from an appropri-
ate bank (line #27), and modify the result store instruction 
(line #31). The calculation code looks like standard C (lines 
#28 through 30), it just uses data stored in two OBM banks 
and stores the results in two other banks. Once the calcula-
tions are done, we instruct the controller FPGA to transfer 
the results from the OBM banks to the system memory 
(lines #34 and 35).

Compiling the SRC-6 MAP C code is somewhat dif-
ferent from compiling a regular microprocessor code, 
although all we have to do is type make hw and wait pa-
tiently. For this example algorithm, the entire synthesis, 
place, and route process for our FPGA design takes more 
than 30 minutes. In general, though, this process takes 
even longer because an implementation that uses a sub-
stantial fraction of the resources in an FPGA typically 
takes many hours to place and route. Another result of the 
compilation process is the production of extensive diag-
nostic output by the compiler and makefile suite, which 
we now analyze.

Performance Analysis
One of the Carte compiling environment’s useful outputs 
is the loop pipelining analysis report:

############################################# 

############ INNER LOOP SUMMARY ############# 

loop on line 25: 

clocks per iteration: 1 

pipeline depth: 170 

#############################################

This report tells us that the compiler encountered a loop 
in line 25 and successfully pipelined it. After the initial 170 
clock cycles (the pipeline’s depth), each iteration of the loop 
will bring in a new set of values and produce a new result. 
With this information, we can calculate the loop’s overall 
execution time:



74� Computing in Science & Engineering

S cie   n t i f ic   P r o g r a m m i n G

 
 

T
N D S

Fcompute
loop=

+ +
= + +1 048 576 170 14

100 000

, ,

, ,,
. ,

000
0 0104876

1s
s

−

=

where N is the number of loop iterations, D is the pipeline 
depth, Sloop is the loop startup time expressed in the num-
ber of clock cycles, and F is the operational frequency of 
the FPGA.

We can also calculate the transfer time for moving data 
between the main memory and OBM storage. DMA in-
structions, lines #22 and #34 in Figure 4’s code, force the 
DMA engine to operate at the full bandwidth—that is, 
after some initial DMA engine startup time, two 64-bit-
wide words are transferred between the main memory 

and the OBM banks on each FPGA clock cycle. Thus, 
it takes

T T
M S

Fdin dout
DMA= =

+
= +1 048 576 2 5 300

100 000

, , / ,

, ,,
.

000
0 00529588

1s
s

−

=

to transfer the entire data set in or out of the OBM, where 
M is the number of 128-bit words transferred, and SDMA is 
the DMA engine startup time measured in the number of 
FPGA clock cycles. On average, we find that SDMA = 5,300 
clock cycles.

The overall execution time of our algorithm running on 
the MAP processor is the sum of four components: Tcompute, 

01 /*subroutine.c*/ /*subroutine.mc*/
02 #include <libmap.h>
03
04 void ratval5(double *X, double *R, int sz) void ratval5(double X[], double R[], int sz, int mapnum)
05 { {
06   OBM_BANK_A(AL, double, MAX_OBM_SIZE)
07     OBM_BANK_B(BL, double, MAX_OBM_SIZE)
08   OBM_BANK_C(CL, double, MAX_OBM_SIZE)
09   OBM_BANK_D(DL, double, MAX_OBM_SIZE)
10
11   float p0=0.434f;	 float q0=0.595f;   float p0=0.434f;	 float q0=0.595f;
12   float p1=-0.3434f;	 float q1=0.34152f;   float p1=-0.3434f;	 float q1=0.34152f;
13   float p2=3.4545f;	 float q2=-1.4653f;   float p2=3.4545f;	 float q2=-1.4653f;
14   float p3=-0.0045f;	 float q3=3.2323f;   float p3=-0.0045f;	 float q3=3.2323f;
15   float p4=-22.344f;	 float q4=0.67578f   float p4=-22.344f;	 float q4=0.67578f;
16   float p5=-0.4542f;	 float q5=0.112f;   float p5=-0.4542f;	 float q5=0.112f;
17
18   int i;   int i;
19 
20   if (!sz) return;
21
22   DMA_CPU(CM2OBM,AL,MAP_OBM_stripe(1,”A,B”),X,1,sz*8,0);
23   wait_DMA(0);
24
25   for(i=0; i<sz;i++)   for(i=0; i<sz;i++)
26   {   {
27        const double x=X[i];        const double x=(i%2==0)?AL[i/2]:BL[i/2];
28        double P=p0+x*(p1+x*(p2+x*(p3+x*(p4+x*p5))));        double P=p0+x*(p1+x*(p2+x*(p3+x*(p4+x*p5))));
29        double Q=q0+x*(q1+x*(q2+x*(x3+x*(x4+x*q5))));        double Q=q0+x*(q1+x*(q2+x*(q3+x*(q4+x*q5))));
30        R[i]=P/Q;        double val=P/Q;
31        if(i%2==0)CL[i/2]=val; else DL[i/2]=val;
32   }   }
33
34   DMA_CPU(OBM2CM,CL,MAP_OBM_stripe(1,”C,D”),R,1,sz*8,0);
35   wait_DMA(0);
36 } }

Figure 4. Kernel subroutine. Compare the left column (the original subroutine.c) with the right column (subroutine.
mc, implemented in the MAP C programming language targeting the SRC-6 MAP E reconfigurable processor).



September/October 2007� 75

Tdin, Tdout, and Tstartup—the time it takes to pass control 
from the CPU to the MAP processor. We measured that 
on average Tstartup = 0.00013 seconds. Thus, we estimate 
that our algorithm’s overall execution time on the MAP 
processor will be 0.02120936 seconds.

Resources Utilization
Another useful piece of information the compiler produces 
is the place and route summary:

#############################################

########## PLACE AND ROUTE SUMMARY ########## 

No. of Slice Flip Flops: 29,807 out of 88,192 33% 

No. of 4 input LUTs: 25,507 out of 88,192 28% 

No. of occupied Slices: 22,621 out of 44,096 51% 

No. of Block RAMs: 1 out of 444 1% 

No. of MULT18X18s: 66 out of 444 14% 

freq = 100.7 MHz 

#############################################

This reports the level to which our program uses vari-
ous FPGA resources. The place and route summary tells 
us that our design uses 22,621 out of 44,096 slices (a slice 
is a small set of basic building blocks used as a basic unit 
area when determining an FPGA-based design’s size), 66 
out of 444 hardware multipliers, and one out of 444 block 
RAMs—three distinct types of logic “islands” in the “sea” 
of connectors. The report tells us that the design is capable 
of running at up to 100.7 MHz.

With the help of the FPGA editor (one of the many tools 
included in Xilinx ISE), we can also visualize the FPGA re-
sources that the design uses. Figure 5a shows the placement 
of the components used in the design, and Figure 5b shows 
the connections made between them, with the route superim-
posed on a rectangular grid of switches. Although extensive 
design analysis and editing capabilities exist in Xilinx ISE, 
their use generally requires a deep knowledge of the hard-
ware design principles—something that computational sci-
ence application developers needn’t be concerned with while 
using high-level programming languages such as MAP C.

The place and route summary specifies that our design 
uses less than half the FPGA. As a result, we can consider 
implementing multiple parallel computations to fill in the 
remaining space and speed up the calculations, a subject 
we’ll return to later.

Runtime Performance
We compile our reference C implementation in version 8.1 of 

the Intel C compiler, with the  architecture-specific processor 
optimizations turned on (-O3 -tpp7 –xW). When we execute 
our application’s microprocessor implementation, the num-
ber of CPU clock cycles it takes to execute the kernel varies 
from one run to another. The differences can be as much 
as a few hundred thousand clock cycles—the CPU executes 
other tasks while we perform our tests—but, on average, the 
reference implementation takes 66,958,113 clock cycles on a 
2.8-GHz CPU, for an elapsed mean time of 0.024 seconds.

When we execute the MAP-based algorithm, it takes on 
average 64,732,678 CPU clock cycles (0.023 seconds) to give 
control to the MAP and wait for the calculations to finish 
until control returns to the CPU. This time is close to the pre
dicted performance (based on the pipeline and DMA trans-
fer analysis) of 0.021 seconds.

MAP Code Optimization
Although our algorithm’s MAP-based implementation 
runs and produces correct results, it doesn’t really outper-
form the reference C implementation. Can we improve 
the overall performance at all? Have we learned anything 
while writing this first implementation that we can use to 
improve performance?

The first step in addressing these questions is to under-
stand how well we used the system resources, such as I/O 
bandwidth, memory, and FPGA logic. Let’s look at how 
we can apply unused resources to speed up the calcula-
tions. We can also examine implementation or algorithm 
modifications that might lead to better performance.

System Resource Usage
As we noted earlier, DMA instructions (lines #22 and #34 
in Figure 4) force the DMA engine to operate at full band-
width. Therefore, we’ve reached the system’s data transfer 
bandwidth limit (main RAM to FPGA OBM).

But as we noticed earlier, this algorithm implementa-
tion uses less than half the available space on the FPGA; 

(a) (b)

Figure 5. Component design. For the right column of 
Figure 4, we can visualize (a) the components and (b) the 
FPGA design’s routes and connections.



76� Computing in Science & Engineering

S cie   n t i f ic   P r o g r a m m i n G

thus, we can implement an additional rational function 
computation that can execute in parallel with the one 
already implemented. This is easy to achieve using the 
concept of parallel sections, which the MAP C language 
supports. The approach will work particularly well be-
cause the input (and output) data is stored in two sepa-
rate OBM banks, so we can have noninterfering access to 
the data needed for executing two sets of simultaneous 
calculations. (This is a very important architecture con-
sideration. In the MAP processor, a critical constraint is 
the number of simultaneous accesses to operands from 
local storage.) Once this approach is implemented, we 
will have cut the compute loop’s overall execution time 
in half:

T
N D S

Fcompute
loop=

+ +
= + +/ , , /2 1 048 576 2 170 14

100,, ,
. .

000 000
0 00524472

1s
s

−

=

Adding the data transfer times and the MAP subroutine 
startup time to the modified loop execution time, we arrive 
at a new execution time of 0.01596648 seconds, which is 
roughly 1.5 times faster than the C implementation’s ex-
ecution time. With this approach, however, we’ll also hit 
the FPGA resource limit (our new design will use up all 
slices available on the chip) in addition to the data transfer 
bandwidth saturation.

Implementation Restructuring
So far, we’ve observed that there are sufficient FPGA 
resources to implement two calculations in parallel, 
with each calculation generating one 64-bit result (for 
a total of 128 bits of data per single FPGA clock cycle). 
We also know that the DMA engine transfers data at 
the same rate: 128 bits per FPGA clock cycle. There-
fore, we can restructure the code to fully overlap the 
calculations with the data transfer, and thus effectively 
hide one operation behind another. This is easy to im-
plement by using the concept of streams as supported 
in the MAP C language: results produced in one sec-
tion of the code are consumed simultaneously in an-
other section (with some minimal latency) without the 
need for explicit intermediate storage. Because Tdout >  
Tcompute, this implementation’s overall execution time will 
be the sum of the data transfer operations and the MAP 
subroutine startup time: 0.01072176 seconds, which is 
roughly 2.2 times faster than the reference C implemen-

tation. Figure 6 shows the final MAP subroutine that 
implements this and the previous code modifications.

This implementation’s measured execution time is 
0.0125 seconds, compared to the 0.0107 seconds predicted. 
Compared with the microprocessor-based implementa-
tion’s 0.024 seconds, we’ve improved the computational 
time by a factor of 1.9. At this stage, however, we can’t im-
prove execution time any further because we’ve run into a 
fundamental hardware limitation: I/O bandwidth. We use 
the full bandwidth to transfer in the data required to per-
form the calculations, and we also use the full bandwidth 
to transfer out the results, while overlapping calculations 
with data output. Interestingly, we haven’t exhausted all 
the MAP processor’s FPGA resources—we aren’t even us-
ing the second user FPGA.

S oftware development for an FPGA-based system 
is an iterative process. The first, and perhaps most 

obvious, step is to identify an appropriate computational 
kernel—not all algorithms are appropriate for HPRC ar-
chitectures. The next step is to implement the selected 
kernel “as is” and analyze its performance. Depending 
on this step’s outcome, we might opt to continue with 
the chosen algorithm and just work on improving its 
performance by removing bottlenecks, overlapping data 
transfer with computations, pipelining loops, and paral-
lelizing the code. Alternatively, we might choose to use an 
entirely different algorithm that’s more appropriate for a 
given problem or architecture. The two driving forces in 
making this decision are the selected algorithm’s perfor-
mance characteristics and the system resources necessary 
to support its implementation. Eventually, space, memo-
ry, or bandwidth limitations will prevent any additional 
performance improvements. With experience, developers 
can recognize these application performance characteris-
tics before code implementation, thereby speeding up the 
overall process.

With what might seem like a considerable effort, the 
HPRC system we described in this article produced a 1.9x 
speedup. A natural question, therefore, is whether the ef-
fort justifies the reward? After all, several other articles 
state significant performance boosts of 10x, 100x, or even 
1,000x by using FPGA-based systems. But in reality, not 
all algorithms or applications lend themselves to FPGA 
implementations that can easily outperform fast micropro-
cessors. Other factors that work against the FPGA are a 
limited I/O bandwidth between the main system memory 



September/October 2007� 77

and the MAP processor and the need to copy data to OBM 
banks. In a future article, we’ll use a different algorithm to 
demonstrate that we can achieve significant performance 
improvements for many computational kernels, in spite of 
these disadvantages.�

References
M.B. Gokhale and P.S. Graham, Reconfigurable Computing: Accelerating 
Computation with Field-Programmable Gate Arrays, Springer, 2005.

V. Kindratenko, “Code Partitioning for Reconfigurable High-Perfor-
mance Computing: A Case Study,” Proc. Eng. Reconfigurable Systems and 
Algorithms (ERSA 06), CSREA Press, 2006, pp. 143–149.

V. Kindratenko and D. Pointer, “A Case Study in Porting a Production 
Scientific Supercomputing Application to a Reconfigurable Computer,” 
Proc. IEEE Symp. Field-Programmable Custom Computing Machines (FCCM 
06), IEEE CS Press, 2006. pp. 13–22.

G. Morris and V. Prasanna, “Sparse Matrix Computations on Reconfigu-
rable Hardware,” Computer, vol. 40, no. 3, 2007, pp. 58–64.

W. Press et al., Numerical Recipes in C: the Art of Scientific Computing, 2nd 
ed., Cambridge Univ. Press, 1997, pp. 173–176.

Volodymyr V. Kindratenko is a senior research scientist at the 

1.

2.

3.

4.

5.

National Center for Supercomputing Applications at the Uni-
versity of Illinois. His research interests include scientific, high-
performance, and reconfigurable computing. Kindratenko has 
a D.Sc. in analytical chemistry from the University of Antwerp, 
Belgium. Contact him at kindr@ncsa.uiuc.edu.

Craig P. Steffen is a senior research scientist at the National Cen-
ter for Supercomputing Applications at the University of Illinois. 
His research interests include programming unusual processor 
architectures, genome bioinformatics, and data archiving. Stef-
fen has a PhD in high-energy physics from Indiana University. 
Contact him at csteffen@ncsa.uiuc.edu.

Robert J. Brunner is an assistant professor in the Department of 
Astronomy and a research scientist at the National Center for 
Supercomputing Applications at the University of Illinois. His 
research interests include black holes, cosmology, and high-
performance computing. Brunner has a PhD in astrophysics 
from the Johns Hopkins University. Contact him at rb@astro.
uiuc.edu. 

01 void ratval5(double X[], double R[], int sz, int mapnum)
02 {
03     OBM_BANK_A (AL, double, MAX_OBM_SIZE)
04     OBM_BANK_B (BL, double, MAX_OBM_SIZE)
05     OBM_BANK_C (CL, double, MAX_OBM_SIZE)
06     OBM_BANK_D (DL, double, MAX_OBM_SIZE)
07
08     Stream_64 S0, S1;
09
10     float p0=0.434f;	 float q0=0.595f;
11     float p1=-0.3434f;	 float q1=0.34152f;
12     float p2=3.4545f;	 float q2=-1.4653f;
13     float p3=-0.0045f;	 float q3=3.2323f;
14     float p4=-22.344f;	 float q4=0.67578f;
15     float p5=-0.4542f;	 float q5=0.112f;
16
17     if (!sz) return;
18
19      �DMA_CPU (CM2OBM, AL, MAP_OBM_stripe(1,”A,B”), 

X, 1, sz*sizeof(double), 0);
20     wait_DMA (0);
21
22    #pragma src parallel sections
23     {
24        #pragma src section
25        {
26        int i;
27        double x, P, Q;
28
29       for (i = 0; i < sz/2; i++)

30       {
31       x = AL[i];
32       �P = p0 + x * (p1 + x * (p2 + x * (p3 + x * (p4 + x * p5))));
33       �Q = q0 + x * (q1 + x * (q2 + x * (q3 + x * (q4 + x * q5))));
34       put_stream_dbl(&S0, P / Q, 1); 
35       }
36      }
37
38     #pragma src section
39     {
40       int i;
41       double x, P, Q;
42
43       for (i = 0; i < sz/2; i++)
44       {
45         x = BL[i];
46         �P = p0 + x * (p1 + x * (p2 + x * (p3 + x * (p4 + x * p5))));
47          �Q = q0 + x * (q1 + x * (q2 + x * (q3 + x * (q4 + x * q5))));
49         put_stream_dbl(&S1, P / Q, 1);
50       }
51     }
52
53     #pragma src section
54     {
55         �stream_dma_cpu_dual(&S0, &S1, STREAM_TO_

PORT, CL, DMA_C_D, R, 1, sz*sizeof(double));
56     }
57    }
58   }
 

Figure 6. Final MAP C implementation of the computational kernel. In this implementation, two rational functions 
are computed at the same time, and the calculations overlap with the data transfer.


