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Abstract—Single-FPGA spatial implementations can provide
an order of magnitude speedup over sequential microprocessor
implementations for data-parallel, floating-point computation in
SPICE model-evaluation. Model-evaluation is a key component
of the SPICE circuit simulator and it is characterized by
large irregular floating-point compute graphs. We show how to
exploit the parallelism available in these graphs on single-FPGA
designs with a low-overhead VLIW-scheduled architecture. Our
architecture uses spatial floating-point operators coupled to local
high-bandwidth memories and interconnected by a time-shared
network. We retime operation inputs in the model-evaluation to
allow independent scheduling of computation and communica-
tion. With this approach, we demonstrate speedups of 2–18×
over a dual-core 3GHz Intel Xeon 5160 when using a Xilinx
Virtex 5 LX330T for a variety of SPICE device models.

Index Terms—Spice, Analog Circuit Simulator, Spatial Com-
putation, VLIW Scheduling, Loop Unrolling, Floating-Point

I. INTRODUCTION

SPICE (Simulation Program with Integrated Circuit Empha-
sis) [1] is a circuit-simulator used to model static and dynamic
analog behavior of electronic circuits. SPICE is part of the
SPEC92 Floating-Point benchmarks [2] which is a collection
of challenge problems for processors. Even today, accurate
SPICE simulations of large sub-micron circuits can often take
days or weeks (see Table I) of runtime on modern processors.
Various other attempts at reducing these runtimes by paralleliz-
ing SPICE have met with mixed success (see Section II-D)
SPICE does not parallelize easily on conventional processors
due to the irregular structure of the computation, limited peak
floating-point capacities and constraints due to scarce memory
bandwidth.

Modern FPGAs contain thousands of configurable logic
elements, hundreds of high-bandwidth, distributed on-chip
memories and a rich interconnect. FPGAs are now large
enough to support double-precision floating-point computation
on a single-chip and can be customized to implement irregular
floating-point datapaths. As a result, they are an attractive
architectural candidate for accelerating SPICE.

When parallelizing SPICE, we must consider two phases of
its operation: Matrix-Solve and Model-Evaluation. In this pa-
per, we demonstrate how to parallelize the Model-Evaluation
phase of SPICE using FPGAs; in future work we intend to
parallelize the Matrix-Solve phase and integrate a complete
SPICE simulator. The SPICE Model-Evaluation phase has
high data parallelism consisting of thousands of independent
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device evaluations each requiring hundreds of floating-point
operations. A completely unrolled spatial representation of the
Model-Evaluation compute graph is too large to fit entirely on
a single FPGA today (Table III) forcing us to either partition
processing across several chips or virtualize it over the single
chip. In this paper we estimate multi-chip implementations
(Section III) and investigate architectures that virtualize com-
putation over limited single-FPGA resources efficiently to
provide speedups over a sequential implementation.

The key contributions of this paper include:
• Design and demonstration of single-FPGA implementa-

tions that accelerate model-evaluation for a variety of SPICE
device models using IEEE double-precision floating-point
arithmetic.
• A Verilog-AMS compiler for optimizing high-level device

model descriptions with an extensible backend for targeting
various computing architectures (e.g. FPGAs, GPUs).
• Quantitative comparison of two strategies for programming

the FPGA using a VLIW architecture: Loop Unrolling and
Software Pipelining with GraphStep Scheduling.
• Quantitative empirical comparison of SPICE model eval-

uation on the Intel Xeon processor and Virtex-5 FPGA.

II. BACKGROUND

A. Structure of SPICE Model Evaluation

SPICE simulates the dynamic analog behavior of a circuit
described by non-linear differential equations. SPICE circuit
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equations model the linear (e.g. resistors, capacitors, inductors)
and non-linear (e.g. diodes, transistors) behavior of devices
and the conservation constraints (i.e. Kirchoff’s conservation
laws—KCL) at the different nodes and branches of the circuit.
SPICE solves the non-linear circuit equations by alternately
computing small-signal linear operating-point approximations
for the non-linear elements and solving the resulting system of
linear equations until it reaches a fixed point. The linearized
system of equations is represented as a solution of A~x = ~b,
where A is the matrix of circuit conductances, ~b is the
vector of known currents and voltage quantities and ~x is
the vector of unknown voltages and branch currents. The
simulator calculates entries in A and ~b from the device model
equations that describe device transconductance (e.g., Ohm’s
law for resistors, transistor I-V characteristics) in the Model-
Evaluation phase. It then solves for ~x using a sparse-direct
linear matrix solver in the Matrix-Solve phase. We illustrate
the steps in the SPICE algorithm in Figure 1. The inner
loop iteration supports the operating-point calculation for the
non-linear circuit elements, while the outer loop models the
dynamics of time-varying devices such as capacitors.

We make the following observations about the requirements
and characteristics of the Model-Evaluation phase.
• At the start of the simulation, the simulator processes all

the devices in the circuit to build A and ~b. At subsequent
timesteps, only the entries associated with the non-linear and
time-varying elements change and must be recalculated.
• Each device in the circuit updates a constant number of

entries in the matrix corresponding to its node terminals.
• For non-linear elements, the simulator must search for an

operating-point using Newton-Raphson iterations. This re-
quires repeated evaluation of the non-linear model equations
multiple times per time-step.
• For time-varying components, the simulator must recalcu-

late their contributions at each timestep based on voltages at
several previous timesteps. This also requires a re-evaluation
of the device-model in each timestep.
For circuits dominated by non-linear transistor devices, the

simulator can spend almost half its time evaluating the device
models (see “no parasitics” case in Table I; we generated
datapoints in this table by running spice3f5 on an Intel Xeon
5160 using Simucad memory benchmarks [22]). For circuits
dominated by linear parasitics (e.g. parasitic capacitances),
simulation time may be dominated by the Matrix-Solve.
Since we are ultimately interested in accelerating both Model-
Evaluation and Matrix-Solve (See Section VIII), it is important
to understand how far we can improve Model-Evaluation
runtimes even in these cases where it is currently not the
dominant percentage of runtime.

Furthermore, note that as transistor devices shrink in
feature-size, the complexity of the device models required to
simulate them correctly grows over time. Newer device models
often have complexity 4–5× that of the classic bsim3 model
[10] (e.g. compare psp [11] and bsim3 models in Table IV).
This further motivates the need to accelerate device model
evaluation to avoid paying a large modeling cost for future sub-

TABLE I: spice3f5 runtime distribution (Intel Xeon 5160)
Benchmark Model Matrix Model
Circuits Eval. Solve Eval.
(bsim3) (seconds) (seconds) (Percent)

no parasitics
ram2k 55 10 84
ram8k 237 87 73
ram64k 2005 1082 64

with parasitics
ram2k 69 149 31
ram8k 300 2395 11
ram64k 2597 99487 3

micron circuit netlists. For example, when model evaluation
time increases by 5×, the no parasitic ram8k will spend 80%
of its time in model evaluation, and the parasitic case will
spend 36%.

B. Parallelism Potential

We enumerate the potential of parallelizing Model-
Evaluation here:
• Data Parallelism: Each individual Model-Evaluation

(e.g. for each transistor) within a timestep is completely
independent.
• Pipeline Parallelism: Model-Evaluation operations can

be represented as an acyclic feed-forward dataflow graph
(DAG) with nodes representing operations and edges repre-
senting dependencies between the operations.
• Specialization Potential
• Static Workload: The Model-Evaluation phase process

all devices in the circuit in each timestep.
• Early Bound Graph: The Model-Evaluation compute

graphs are known entirely in advance and do not change
during the simulation.

• Limited Diversity of Graphs: Within a simulation,
there may be very few unique device models active.
(e.g. typically all transistors in a circuit will use same
bsim3 model).

• Parameterized Reuse of Graphs: Individual device
instances are customized using parameters. Typically the
CMOS process determines most of these parameters
leaving a handful of parameters which vary from device
to device (e.g. W, L of a transistor).

C. Architecture Potential

There are several competitive architectural choices for ac-
celerating floating-point applications (See Table II). These
architectures exploit different forms of parallelism, support
various programming models and require differing amount
of programming effort. A full comparison between all archi-
tectures in Table II is beyond the scope of this paper (see
Section VIII).

D. Related Work

Previous attempts [4], [5] to accelerate Model-Evaluation
using FPGAs used a VLIW approach and required table-
lookup model evaluation, trading off accuracy for capacity,



TABLE II: Peak Floating-Point Throughputs
Family Intel Xeon Xilinx Virtex-5 IBM Cell NVIDIA GPU AMD GPU Clearspeed

Chip 5160 LX330T PowerXCell8i GTX-280 AMD 9270 CSX700
Technology 65 nm 65 nm 65 nm 65 nm 55 nm 90 nm

Clock 3 GHz 200 MHz 3.2 GHz 1.3 GHz 750 MHz 250 MHz
Double-Precision 12 11.4 102.4 74 240 96

(GFLOPS)
Single-Precision 24 33 204.8 624 1200 96

(GFLOPS)
Power 100 Watts 20–30 Watts 92 Watts 236 Watts 220 Watts 9 Watts

TABLE III: Estimated Speedup on Multi-FPGA Designs
Device FPGAs Total
Models Required Speedup

Fully Virtual No IO Fully Virtual
Spatial Wires Limits Spatial Wires

bjt 6 4 2 25 25
diode 1 1 1 26 26
hbt 41 9 6 264 132
jfet 1 1 1 21 21
mos1 7 4 2 10 10
vbic 14 4 3 67 67
mos3 28 4 3 53 53
mextram 850 64 52 602 120
bsim3 319 25 18 199 49
bsim4 107 16 12 223 111
psp 1250 64 61 664 110

in order to make implementation feasible. This FPGA im-
plementation called Tina [5] used the Marc-1 reconfigurable
board with 9 XC4005 FPGAs coupled to a discrete FPU
to implement Model-Evaluation (speedup figures are unpub-
lished). Our single-FPGA implementation exploits a different
parallelization approach that exploits the significantly larger
FPGA densities available today to provide speedups when
compared to the latest generation processors without any
lookup-table approximations.

[9] tries to parallelize existing SPICE Model-Evaluation
code using OpenMP pragmas (no code modification) and
shows limited speedups and scaling (saturates at 2× with
4 processors). [8] uses a multi-threaded implementation and
demonstrates moderate speedups (5× with 8 processors) and
decent scaling trends without sacrificing quality. [7] paral-
lelizes transient simulations by optimistically evaluating mul-
tiple timesteps in parallel (3× with 8 processors) without
specifically accelerating individual Model-Evaluations. Xyce
is a highly-parallel simulator engineered for supercomputers
that demonstrates good speedups (24× on 40 processors)
only on sufficiently large circuits [6]. Recently, GPUs have
been used to accelerate SPICE Model-Evaluation by an im-
pressive 10×–50× (Double-Precision evaluation in [12]) and
32×–40× (Single-Precision evaluation in [13]). Our FPGA
implementation exploits a different parallelization approach
and high on-chip communication and memory bandwidth
to deliver an order of magnitude or greater acceleration of
full, double-precision floating-point Model-Evaluation using a
single FPGA without sacrificing accuracy.

III. MULTI-FPGA DESIGNS

A fully spatial FPGA implementation of Model-Evaluation
maps every operation in the computation to dedicated FPGA
logic and uses FPGA interconnect to physically implement
communication between the operations. With suitable pipelin-
ing of communication between the operations, we can start a
new evaluation of the compute graph in each cycle. If cost
is not a concern, this approach provides two to three orders
of magnitude speedup over sequential implementations on an
Intel Xeon 5160 3 GHz microprocessor as can be seen in
Table III when compared to a Xilinx Virtex5 LX330T.

However, a fully-spatial implementation of the SPICE
Model-Evaluation must be partitioned across multiple FPGAs.
Since external FPGA IO is limited, we have to choose a multi-
FPGA configuration that can accommodate communication
over external IO without any serialization. We use VPR [14] to
route inter-FPGA communication and estimate the minimum
FPGAs required for an IO-limited mapping in Table III
(Column Fully-Spatial). We can reduce cost at the expense
of performance by serializing communication over external
IO [15] (see Column Virtual-Wires in Table III). Both cases
still require multiple FPGAs for the large Model-Evaluation
graphs. Performance and design cost are dictated purely by
our ability (or inability) to move data across external pins.
Hence, we are motivated to consider affordable single-FPGA
designs for the problem and avoid external IO entirely.

IV. ORGANIZING PRINCIPLES

We highlight the principles used to design an efficient
single-FPGA architecture for Model-Evaluation.

1) Virtualization: We must virtualize the computation and
the communication on finite hardware. The virtualized ar-
chitecture consists of heterogeneous floating-point operators
coupled to local, high-bandwidth memories and interconnected
to other operators through a communication network (See
Figure 2). This virtualization must be managed with minimum
overhead to allow most of the resources to service the actual
application.

2) Balanced Provision of Resources: Model-evaluation
graphs contain a diverse set of floating-point operators such
as adds, multiplies, divides, square-roots, exponentials and
logarithms. Not all operators are used equally. We must choose
an operator mix proportional to the frequency of their use since
spatial implementations of floating-point operators can be
quite expensive. We must also tune the interconnect richness to
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Fig. 2: An Example Parallel Architecture for SPICE Model-Evaluation

properly support communication traffic between the operators.
For example, in Figure 2 we provision multiple adders and
multipliers and just one each of the remaining operators within
a Processing Element (PE). The FPGA consists of multiple
PEs. Different device models will have different operator
distributions and will require suitable operator mixes.

3) Static Scheduling: When we virtualize operation over
finite hardware, we must co-ordinate access to the virtualized
resources. The logic to mediate access to shared resources at
runtime costs area and introduces additional latency into the
execution. We minimize this overhead by statically scheduling
the resources offline in VLIW (Very-Large Instruction Word
[16]) fashion, thus avoiding runtime decisions entirely. The
VLIW instruction for the shared operator consists of read/write
address and control signals for the input and output memories
along with multiplexer control signals for the datapath (See
Figure 2). The time-multiplexed switch also contains configu-
ration instructions that provide routing information to schedule
communication between the input and output ports.

4) Scheduling to Maximize Resource Usage: An offline
VLIW scheduler has access to the entire program graph and
has a global view of available resources. In our virtualized
architecture, we expose both the scheduling of floating-point
instructions and communication between these instructions
to the scheduler. A good scheduler will attempt to schedule
the critical path in the program graph first and then try to
fit the remaining operations into the idle slots left behind.
However, model-evaluation graphs are irregular and do not
have sufficient work to fill these slots. A key challenge is to
expose work to use these slots productively.

V. VLIW ARCHITECTURES ON FPGAS

We consider two strategies for scheduling our VLIW archi-
tecture.

A. Conventional Loop Unrolling

When scheduling single loop iterations on fully-pipelined
hardware, the total number of active pipeline stages doing
useful work may be limited. We can create additional work
for the scheduler to fill these empty pipeline slots by unrolling
multiple iterations of the loop. Loop Unrolling on Model-
Evaluation graphs is possible with no increase in the critical
path since iterations are independent of each other. This

allows the scheduler to get better utilization of provisioned
hardware resources. The per-iteration efficiency gains more
than compensates for the slight increase in scheduling latency.
For example, in Figure 3, the latency to get the output of
a single iteration is 8 cycles. After unrolling 3 iterations,
the total latency increases to 12 cycles, but the average per-
iteration latency drops to 4 cycles. However, these efficiency
gains come at the expense of increased memory cost for
storing intermediate state and instruction context. We now
need to store 12 VLIW configuration instructions instead of
just 6 for the single-iteration case. Also, the intermediate state
requirements increase from 3 registers to 9 registers. For 100
total iterations of example graph, this unrolled design will
require 100 × 4 = 400 cycles. For 100 total iterations of
example graph, this unrolled design will require 100×4 = 400
cycles. We empirically determine the extent of the unroll that
provides the most judicious use of resources (Section VII).

B. Software Pipelining with GraphStep Scheduling
Software pipelining with Modulo Scheduling [17], [18]

improves the per-iteration performance by initiating execution
of successive loop iterations at a rate faster than their indi-
vidual execution latencies (which in our case is the resource-
constrained initiation interval) without requiring any unrolling.
It overlaps execution of different portions of the loop in
a single repetitive macro-cycle. The benefit of a software-
pipelined schedule is that a single schedule is valid for all
iterations thereby saving instruction storage costs. It does
increase the amount of intermediate state for instructions com-
municating across macro-cycle boundaries. For example, in
Figure 3 we need only 2 cycles to schedule all the instructions
and communication between instructions in a macro-cycle
(throughput is 1 result every 2 cycles) while the result of the
first iteration is available after 5 macro-cycles (latency is 10
cycles). For 100 iterations of the example graph, our software
pipelined design will require (100+4)×2 = 208 cycles which
is a speedup of almost 2× over loop unrolling example (note
that the +4 accounts for the initial macro-cycles required to
fill the scheduled pipeline).

For our scheduling problem:
• We must typically evaluate a large number of devices

compared to depth of the graph (number of instructions
along the critical path).
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• We have access to several on-chip distributed FPGA mem-
ories to store intermediate state.
• We have to generate a schedule for the switching network

in addition to compute scheduling.
• We are able to provision interconnect resources as neces-

sary to meet the demands of the application.
For data-independent loop-iterations, conventional modulo-

scheduling will generate a schedule while obeying intra-
iteration dependencies. Based on our observations, we propose
a simplified scheduler described here:
• We distribute instructions to different operators with load-

balancing and schedule all instructions on an operator
without precedence constraints.
• Within a macro-cycle, all instructions are processed on the

operators and all instruction dependencies are routed on the
communication network in parallel with each other.
• We schedule data movement between operators concur-

rently but independently from the computation. This adds
an extra macro-cycle of latency before the dependent in-
structions can see their inputs.
• We levelize the instructions in the compute graph based on

an ASAP ordering of the instructions within an iteration. We
retime the inputs to each instruction based on these levels
and ensure they receive inputs from the correct iteration.
These simplifications allow us to densely pack both the

floating-point operators and the communication network be-
tween these operators with high efficiency. We call this Graph-
Step scheduling since it is inspired by the GraphStep system
architecture [19].

VI. FRAMEWORK

We now explain the experimental framework we use in our
experiments.

A. Verilog-AMS

Modern SPICE simulators accept a wide-variety of device
models that cater to different designer requirements. Rather
than manually rewrite each device model for each unique
simulator interface, models are now released as simulator-
independent Verilog-AMS code [20], [21]. We use open-source
Verilog-AMS descriptions of a variety of devices available

TABLE IV: Optimized Instruction Counts
Device Models Instruction Distribution

Add Multiply Divide Sqrt Exp Log
bjt 22 30 17 0 2 0
diode 7 5 4 0 1 2
hbt 112 57 51 0 23 18
jfet 13 31 2 0 2 0
mos1 24 36 7 1 0 0
vbic 36 43 18 1 10 4
mos3 46 82 20 4 3 0
mextram 675 1626 397 22 52 37
bsim3 v3.2 283 634 122 9 8 1
bsim4 v3.0 222 286 85 16 24 9
psp 1345 2319 247 30 19 10

from Silvaco [22]. We developed a Verilog-AMS compiler
that supports a subset of the Verilog-AMS language for device
models [20]. We compile the device model equations into a
flexible intermediate representation that allows us to perform
analysis, optimization and code generation for different archi-
tectures easily. Our compiler currently performs simple dead-
code elimination, mux-conversion, constant-folding, and iden-
tity simplification optimizations. It generates a generic feed-
forward dataflow graph of the computation that is processed
by architecture-specific backend tools.

B. Tool Flow

The different FPGA organizations considered in this paper
require a variety of mapping tools to implement the dataflow
graphs on the system.
• For the fully-spatial implementations spanning multiple-

FPGAs, we use a packing algorithm that assigns nodes of
the graph onto FPGAs with user-supplied area and IO con-
straints. We use VPR [14] to place the packed instructions
on the different FPGAs and calculate the minimum channel-
width required to route the fully-spatial design. We then find
the minimum system size necessary to permit a feasible
fully-spatial design (See Table III).
• For the two VLIW designs, we share part of the mapping

flow. We start by first deciding system size (i.e. number of
floating-point operators) and partitioning the nodes based on
locality using a high-quality partitioner MLPart [23]. We



TABLE V: FPGA Cost Model
Area Latency Speed Ref.

(Slices) (clocks) (MHz)
Add 296 8 280 [26]
Multiply 611 9 237 [26]
Divide 1499 57 258 [26]
Square Root 822 57 282 [26]
Exponential 1022 30 200 [27]
Logarithm 1561 30 200 [27]
PE support logic 82 - 300 -
BFT T-Switchbox 48 2 300 -
BFT Pi-Switchbox 64 2 300 -
Switch-Switch Wire 32 2 300 -

then provision the number of hardware operators of each
type according to instruction frequency and allocate them
to partitions using need-proportional distribution [24], [25].
Each partition can process operations of a single operator
type. We then reassign nodes paired with invalid operators
to the nearest valid operator that is least occupied.
• For loop unrolling, we provide an unrolled graph to the

partitioner/placer. Once instructions have been placed on
proper operators, we then use a greedy list scheduler to
assign those instruction to schedule slots on the operator.
We use a priority function that prefers nodes along the
circuit critical path. We schedule communication between
the nodes using a greedy time-multiplexed router that uses
A* routing. We developed this scheduler and router as part
of the Graph Machine project [19], [28], [32].
• For the GraphStep scheduler, we separately schedule com-

putation and communication. The compute scheduler simply
assigns all instructions to consecutive scheduling slots on
the fully-pipelined hardware operator. The communication
scheduler routes every edge with A* routing without any
precedence constraints.

C. FPGA Implementation

We use spatial implementations of individual floating-point
add, multiply, divide and square-root operators from the
Xilinx Floating-Point library in CoreGen [26]. For the exp
and log operators we use FPLibrary from Arénaire [27]
group. Neither of these implementations support denormalized
(subnormal) numbers. We use the Xilinx Virtex 5 LX330T
for our experiments. We limit our implementations to fit on
a single-chip and use only on-chip memory resources for
storing intermediate results. The time-multiplexed switches are
a collection of multiplexers whose select bits are generated by
a configuration context memory on each cycle. We pipeline
the wires between the switches and between the floating-point
operator and the coupled-memories for high-performance. You
can find additional details of our time-multiplexed switches in
[28]. We synthesize and implement a sample double-precision
8-operator design for the bsim3 model on a Xilinx Virtex-5
device [29] using Synplify Pro 9.6.1 and Xilinx ISE 10.1. We
provide placement and timing constraints to the backend tools
and attain a frequency of 200 MHz (See Table V). Aggressive
pipelining of exp and log operators should enable higher rates.

D. Sequential Baseline

We compile Verilog-AMS models into loop-unrolled, multi-
threaded C-code for our sequential baseline comparison. We
measure sequential performance on a dual-core 3 GHz Intel
Xeon 5160 processor with a 4MB shared L2 cache and
16GB main memory running 64-bit Debian Linux. We use
gcc-4.3.3 (-O3) with either the GNU libm math library
or the Intel MKL vector math library (with accelerated vector
implementations of math functions) to compile device models.
We use PAPI 3.6.2 [30] performance counters to measure
runtimes and report runtime averaged across the 16384 device
evaluations.

VII. EVALUATION

In this section, we discuss the tradeoffs between the two
VLIW FPGA architectures and compare their performance to
a sequential mapping (Section VI-D).

We define a Processing Element (PE) as a configuration of
floating-point operators interconnected by a shared network
(See Figure 2). A PE can have a variable number of floating-
point operators and an FPGA can have multiple PEs. The
smallest PE has one floating-point operator of each type
(minimum 6 operators). There is no network between PEs.
Both schedulers map the compute graphs to a PE. We measure
cycles required per device evaluation as the average number
of cycles required to run a single iteration on one PE divided
by the number of PEs that can fit on that single-FPGA. We
use a Butterfly Fat-Tree (BFT) topology for our mapping
experiments, and we tune the bisection bandwidth available
in the BFT by increasing the Rent parameter p (Bisection
Bandwidth IO = c × Np). A network with a p = 0 has
as much bandwidth as a ring while a network with a p = 1 is
equivalent to a crossbar. The smallest BFT PE has 8 operators.

For the two scheduling strategies, we must pick the best
design configuration for comparison with the sequential base-
line. For Loop Unrolling, this requires choosing three param-
eters: extent of unroll (unroll factor), number of floating-point
operators per PE and the Rent parameter (p) of the shared
network. For GraphStep Scheduling, we must pick the number
of floating-point operators per PE and the Rent parameter of
the shared network.

A. Loop Unrolling

1) Extent of Unroll: In Figure 4, we show the impact of
unroll factor on performance per-iteration for bsim3 graphs
when using 16 floating-point operators per PE and a network
with a p = 0.5. As expected, we initially see an improvement
in performance per iteration as we increase the unroll factor.
After 20 unrolls, performance improvements start to diminish.
By 35 unrolls, we exceed on-chip BlockRAMs capacity of a
single FPGA (XC5VLX330T).

2) Number of Floating-Point Operators: In Figure 5, we
see marginal improvement in performance per-PE when using
larger PEs. When considering per-FPGA speedups, we find
that it is best to use the smallest sized PE design (i.e. 8 oper-
ators per PE) and populate the FPGA with several instances
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of this 8-operator PE instead of using the larger PEs. The
scheduler is able to efficiently utilize available resources even
at small operator counts.

3) Interconnect Richness: In Figure 6, we illustrate the
impact of varying interconnect richness for an unroll factor of
15. We see that increasing interconnect richness results in no
significant improvement in performance. The runtime is dom-
inated by computation from the unrolling and dependencies
within loops while communication requirements are limited.

B. Software Pipelining with GraphStep Scheduling

1) Number of Floating-Point Operators: In Figure 5, we
see a significant improvement in performance per-PE as we
scale to larger PEs. This is because the GraphStep scheduler
separately schedules computation and communication and is
able to generate a compact schedule. When considering per-
FPGA performance, the 16-operator PE is the most efficient
design and marginally beats the 8-operator design by a few
cycles. Both these designs can fit multiple PEs per FPGA and
lower the average number of cycles required.

Note that we do not count the prologue and epilogue costs of
a software-pipelined schedule as circuit netlists are sufficiently
large compared to depth of the compute graphs and on-chip
memories are large enough to hold the dataflow graph IO
(e.g. ram2k from Table I has 17000 transistors while the
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bsim3 model has only 100 levels. The 46K non-zeros in ~A
and 4K rows in ~b and ~x can fit in ≈ 30% of the BRAMs on
the XC5VLX330T).

2) Interconnect Richness: In Figure 6, we observe that
as we increase the Rent parameter of the network, we can
improve performance by as much as a factor of 3 (this
increases interconnect area from 3% to 8% since the floating-
point datapaths account for most of the system area). A
GraphStep scheduled design exposes all communication to an
independent phase that increases the bandwidth requirements
on the network. A richer network is better able to support this
increased traffic demand.

C. Speedup Comparison

We compare the performance achieved on an Intel Xeon
(with loop-unrolling and multi-threading) with that achieved
on the best single-FPGA configuration using the two schedul-
ing strategies applied independently as well as simultaneously.
In Figure 7 we observe that Loop-Unrolling and GraphStep
scheduling together provide the best speedup over a sequen-
tial implementation that either of them can provide inde-
pendently. For most small designs (bjt, diode, jfet,
mos1), Loop Unrolling offers better speedups than GraphStep
scheduling since a larger degree of unrolling is possible and
performance gets amortized across the unrolled iterations. For
the larger device models, Loop-Unrolling can actually slow
down evaluation (mextram, psp) as these large designs are
harder to unroll and fit within a single-FPGA. The GraphStep
design is better able to exploit limited hardware resources with
efficient scheduling.

VIII. FUTURE WORK

We identify the following broad areas for additional research
that can improve upon our current parallel design or extend
its applicability.
• A parallel solution to the sparse Matrix-Solve phase is

essential for achieving balanced total speedup for the SPICE
application. [31] demonstrates a potential for at least 10×
speedup for sparse-direct LU factorization.
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• Reduced-precision floating-point datapaths provide the po-
tential to deliver even higher acceleration per FPGA. Ad-
ditional work is needed to determine the precision required
to achieve a given accuracy requirement.
• Table II suggests the latest NVIDIA GPU and IBM Cell

processors have impressive raw double-precision perfor-
mance. It will be useful to characterize the performance
they can actually deliver for SPICE Model-Evaluation.

IX. CONCLUSIONS

A single FPGA can accelerate SPICE Model-Evaluation
computation by 2–18× over sequential single-core micro-
processor implementations. Fully-Spatial implementations of
Model-Evaluation graphs can deliver two to three orders
of magnitude speedups but require 10s–100s of FPGAs to
provide that speedup. With limited on-chip FPGA memory
capacities, Loop Unrolling of independent iterations is ef-
fective at exploiting parallelism only for small loop bodies.
Software Pipelining with GraphStep scheduling can offer
better speedups for larger loop bodies. Efficient single-FPGA
schedules are possible when performing both Loop-Unrolling
and GraphStep scheduling because we can separate the com-
putation and communication phases of a loop-iteration and
schedule multiple-iterations simultaneously.
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