
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Accelerating String Set Matching in FPGA Hardware for
Bioinformatics Research
Yoginder S Dandass*†1,2, Shane C Burgess1,3,4, Mark Lawrence1,4 and
Susan M Bridges†1,2

Address: 1Institute of Digital Biology, Mississippi State University, Mississippi, 39762, USA, 2Department of Computer Science and Engineering,
Mississippi State University, Mississippi, 39762, USA, 3Life Science and Biotechnology Institute, College of Veterinary Medicine, Mississippi State
University, Mississippi, 39762, USA and 4Department of Basics Science, Mississippi State University, Mississippi, 39762, USA

Email: Yoginder S Dandass* - yogi@cse.msstate.edu; Shane C Burgess - burgess@cvm.msstate.edu; Mark Lawrence - lawrence@cvm.msstate.edu;
Susan M Bridges - bridges@cse.msstate.edu

* Corresponding author †Equal contributors

Abstract
Background: This paper describes techniques for accelerating the performance of the string set
matching problem with particular emphasis on applications in computational proteomics. The
process of matching peptide sequences against a genome translated in six reading frames is part of
a proteogenomic mapping pipeline that is used as a case-study. The Aho-Corasick algorithm is
adapted for execution in field programmable gate array (FPGA) devices in a manner that optimizes
space and performance. In this approach, the traditional Aho-Corasick finite state machine (FSM)
is split into smaller FSMs, operating in parallel, each of which matches up to 20 peptides in the input
translated genome. Each of the smaller FSMs is further divided into five simpler FSMs such that each
simple FSM operates on a single bit position in the input (five bits are sufficient for representing all
amino acids and special symbols in protein sequences).

Results: This bit-split organization of the Aho-Corasick implementation enables efficient utilization
of the limited random access memory (RAM) resources available in typical FPGAs. The use of on-
chip RAM as opposed to FPGA logic resources for FSM implementation also enables rapid
reconfiguration of the FPGA without the place and routing delays associated with complex digital
designs.

Conclusion: Experimental results show storage efficiencies of over 80% for several data sets.
Furthermore, the FPGA implementation executing at 100 MHz is nearly 20 times faster than an
implementation of the traditional Aho-Corasick algorithm executing on a 2.67 GHz workstation.

Background
String set matching is an important operation in computa-
tional biology. For example, when proteomics data is used
for genome annotation in a process called proteogenomic
mapping [1-5], a set of peptide identifications obtained
using mass spectrometry is matched against a target

genome translated in all six reading frames. Given a large
number of peptides and long translated genome strings,
the fundamental problem here is to efficiently search for
a large set of pattern strings (i.e., the set of peptides) in a
larger text string (i.e., the translated genome).

Published: 15 April 2008

BMC Bioinformatics 2008, 9:197 doi:10.1186/1471-2105-9-197

Received: 4 January 2008
Accepted: 15 April 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/197

© 2008 Dandass et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/197
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18412963
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:197 http://www.biomedcentral.com/1471-2105/9/197
Efficient substring search algorithms such as Boyer-Moore
[6] and Knuth-Morris-Pratt [7] that locate single pattern
strings within a larger text string can be used in a multi-
pass manner (i.e., one pass for each string in the set of
peptides). However, this approach does not scale well
with an increasing number of pattern strings. In particu-
lar, assuming p patterns with an average length of n and a
text string of length m, naïve, multi-pass, approaches have
computational complexity of O(p(m + n)).

The Aho-Corasick algorithm [8] provides a scalable solu-
tion to the string set matching problem in that it incorpo-
rates the search mechanism for the entire set of patterns
into a single finite state machine (FSM). The power of
Aho-Corasick stems from the ability of the algorithm to
find the location of the strings in the pattern set in the text
string in a single pass. The computational complexity of
Aho-Corasick search is O(m + k) where k is the total
number of occurrences of the pattern strings in the text.
This linear processing time complexity has resulted in the
widespread use of Aho-Corasick in string matching appli-
cations.

The performance of the Aho-Corasick algorithm can be
further enhanced by implementing it in hardware. Tan
and Sherwood [9]were the first to describe an area-effi-
cient hardware approach for implementing the Aho-Cora-
sick for network intrusion detection systems implemented
in application specific integrated circuits (ASICs). How-
ever, the complexity and costs associated with ASIC devel-
opment is a significant impediment in their adoption in
computational biology. Field programmable gate array
(FPGA) devices, on the other hand, can be repeatedly
reconfigured to create a variety of application-specific
processing elements. This reconfigurable nature makes
FPGAs a popular low-cost alternative to the development
of specialized ASICs for a variety of application domains,
including computational biology.

Although the fundamental Aho-Corasick algorithm is
identical for all string set matching applications, optimi-
zation for specific applications and target hardware results
in significant performance and storage efficiencies. The
main contribution of this paper is a case-study demon-
strating how an Aho-Corasick architecture and finite state
machine (FSM) organization can be specifically opti-
mized for incorporation into proteogenomic pipeline
using field programmable gate array (FPGA) hardware.
This paper also demonstrates how the 18-kbit random
access memory (RAM) blocks available on Xilinx's Virtex-
4 FPGAs and 9-kbit RAM blocks available in Altera's
FPGAs can be utilized to create resource-efficient amino
acid sequence set matching engines. Furthermore, the use
of RAM instead of FPGA logic resources for encoding FSM

state transitions enable the FPGA to be quickly reconfig-
ured for matching different peptide sets.

Related Work
The Aho-Corasick algorithm (ACA) is widely used in com-
putational biology for a variety of pattern matching tasks.
For example, Brundo and Morgenstern use a simplified
version of ACA to identify anchor points in their CHAOS
algorithm for fast alignment of large genomic sequences
[10,11]. The TROLL algorithm of Castelo, Martins, and
Gao uses ACA to locate occurrences of tandem repeats in
genomic sequence [12]. Farre et al. use Aho-Corasick as
the search algorithm for predicting transcription binding
sites in their tool PROMO v. 3. [13] Hyyro et al. demon-
strate that Aho-Corasick outperforms other algorithms for
locating unique oligonucleotides in the yeast
genome[14]. The SITEBLAST algorithm [15] employs the
Aho-Corasick algorithm to retrieve all motif anchors for a
local alignment procedure for genomic sequences that
makes use of prior knowledge. Sun and Buhler use Aho-
Corasick deterministic finite automata (DFA) to design
simultaneous seeds for DNA similarity search [16]. The
AhoPro software package adapts the Aho-Corasick algo-
rithm to compute the probability of simultaneous motif
occurrences [17].

There has been a good deal of attention in the use of
FPGAs to address bottlenecks in computational biology
pipelines. Examples include the use of FPGAs to improve
the speed of homology search [18,19] for computing phy-
logenetic trees [20], for the pairwise alignment step in
multiple sequence alignment using CLUSTALW [21], and
for acceleration of the Smith-Waterman sequence align-
ment algorithm [18]. In computational proteomics, Alex,
et al. [22] have demonstrated the use of FPGAs to acceler-
ate peptide mass fingerprinting. (Note that one step in
their algorithm is similar to ours except they translate the
peptide in all possible ways in all six reading frames and
compare to a nucleotide sequence.) Bogdan et al. [23]
have applied FPGAs to the problem of analyzing mass
spectrometric data generated by MALDI-ToF instruments
by developing hardware implementations of algorithms
for de-noising, baseline correction, peak identification,
and deisotoping.

Hardware implementations of ACA have been developed
for applications other than bioinformatics. Snort is a pop-
ular computer security program that looks for a set of "sig-
nature" patterns corresponding to known intrusion
attacks in network packets. Tan and Sherwood [9] split the
Aho-Corasick implementation for Snort into four separate
FSMs such that each FSM is responsible for two separate
bit positions in the signature string set and network
packet. This bit-split implementation is more efficient in
terms of hardware area. However, their paper does not
Page 2 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:197 http://www.biomedcentral.com/1471-2105/9/197
exploit the availability of specialized hardware resources
in FPGAs.

Jung, Baker and Prasanna [24] describe an implementa-
tion of the bit-split Aho-Corasick algorithm for Snort
using field programmable gate array (FPGA) technology.
They optimize the bit-split implementation of Aho-Cora-
sick for Snort by using RAM blocks available on Xilinx
FPGAs. However, in Snort, the input alphabet consists of
all 256 distinct symbols that can be represented using 8
bits in a byte. In string-matching for proteogenomic map-
ping, the alphabet consists of 20 amino acids and a small
number of additional symbols that can be represented in
five bits. Furthermore, Jung et al. do not exploit the dual-
ported nature of RAM blocks in modern FPGAs that ena-
bles more efficient utilization of storage resources. There-
fore, the previously described bit-split implementations
designed for Snort are not optimal for proteomics process-
ing in FPGAs.

Sidhu and Prasanna describe a technique for constructing
non-deterministic finite state automata (NFA) from regu-
lar expressions that can be used for string matching [25].
Their solution requires O(n2) space where n is the number
of characters in the regular expressions to be searched.
Because their NFA is implemented entirely in FPGA logic,
this technique requires large FPGAs in order to implement
searches for large string sets.

Lin et al. describe a technique for improving the space effi-
ciency by up to 20% for NFA implementations in FPGA
logic fabric [26]. Their architecture optimizes space by
sharing common prefixes, infixes, and suffixes between
multiple regular expressions.

Fide and Jenks provide an extensive survey of string
matching techniques and implementations in hardware
[27]. The survey focuses on intrusion detection and net-
work router implementation.

Methods
The Aho-Corasick Algorithm
The Aho-Corasick algorithm consists of an initial preproc-
essing phase that creates the FSM from the set of pattern
strings. The FSM resulting from the preprocessing phase is
subsequently used for performing the string set matching.
The preprocessing phase has a runtime complexity of
O(pn) and the search phase has a runtime complexity of
O(m + k). Detailed description and analysis of Aho-Cora-
sick can be found in [8]. A brief description follows below.

In the preprocessing phase, the FSM is constructed using
two steps. In the first step, a set of target strings is organ-
ized into a "keyword" tree. The root of the tree represents
the state when no part of any pattern string has been

found in the input message. The remaining nodes of the
tree represent states where the pattern strings have been
partially or fully matched. The edges in the tree represent
the transitions resulting from the occurrence of specific
symbols in the text string. The path from the root node to
any node on the tree represents the subset of pattern
strings that are potential matches.

In the second preprocessing step, "failure links" are added
to the tree. Failure links lead from nodes on one branch of
the tree to nodes on other branches. Failure links are
needed because patterns strings can overlap in the text
string and when the current branch of the tree fails to pro-
duce a match because of the current symbol in the text
string, the FSM needs to resume processing from a new
branch, without having to rescan input symbols.

In a computer, the FSM state transitions can be repre-
sented in the form of a table. Figure 1 illustrates the organ-
ization of the FSM for an implementation of Aho-
Corasick that matches the peptide set {ACACD, ACE,
CAC}; Table 1 presents a table-oriented representation
used for implementation of the same FSM. In Figure 1, the
state 0 is the start state and the shaded states 4, 5, 6, and 9
match peptides CAC, ACACD, ACE, and CAC, respec-
tively. When the FSM is in any state and receives an input
symbol not shown in the figure, the FSM transitions to
state 0. At runtime, the FSM interpreter reads the row cor-

An FSM for matching peptide set {ACACD, ACE, CAC}Figure 1
An FSM for matching peptide set {ACACD, ACE,
CAC}.

0

Start

1

A

A

2

C

3

A

4

C

5

D

A

A

 Found: CAC

Found: ACACD

6

E

E

A

7

8

9

C

A

C

C

C

A

C

E

A

Found: ACE
Found: CAC

Note: for clarity, transitions on all other

inputs to state 0 are not shown.

C

C

Page 3 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:197 http://www.biomedcentral.com/1471-2105/9/197
responding to the current state from the table, reads the
next input symbol from the reading frame, and deter-
mines the next state from the row entry corresponding to
the input symbol. When the FSM transitions to as state, it
looks at the pattern match column of the table's corre-
sponding row in order to determine if a match has
occurred. A non-null entry in the pattern match entry of
row specifies the pattern that has been located by the FSM.

The Bit-Split Aho-Corasick Implementation
The branching factor of the Aho-Corasick FSM tree
depends on the number of symbols possible in the input
text string. For example, the branching factor is 256 when
eight bits are used for representing the alphabet of valid
symbols in the strings (as is the case with intrusion detec-
tion applications such as Snort). However, because only
five bits are needed for representing all the 20 amino acids
and additional special symbols (e.g., those representing
ambiguous amino acids), the size of the table can be
reduced significantly by reducing the total number of col-
umns.

Additional savings in storage can be obtained by splitting
the FSM into smaller FSMs. Following are two approaches
to make an FSM smaller:

1. Reduce the number of peptides in the peptide set. This
will reduce the number of states in the FSM, and therefore,
will reduce the number of bits required to store the "next
state" transition value.

2. Split the FSM into simpler FSMs that are responsible for
encoding and operating on individual bit positions of the
symbols in the peptides patterns and the text string. For
example, the FSM in Table 1 can be split into five separate
bit-split FSMs, FSM0, FSM1, FSM2, FSM3, FSM4, one for
each of the five bit positions it takes to encode all the pep-
tides. Because the bit-split FSMs operate independently

from each other, all of the separate bit-split FSMs must
agree on a match before a peptide match is confirmed.

The general bit-split FSM algorithm is described in detail
in [24]. The bit split FSM process is described below for
the FSM in Table 1, resulting in the five bit-split FSMs des-
ignated as FSM0, FSM1, FSM2, FSM3, and FSM4 shown in
Tables 3, 4, 5, 6, and 7, respectively. Consider the con-
struction of FSM0, the bit-split FSM corresponding to bit
position 0; table 2 describes the bitwise encoding of
selected amino acids. State n in the original FSM is desig-
nated as FSM:n and state m in FSM0 is designated as
FSM0:m.

Initially, the root node FSM0:0 is added to FSM0. Next, all
states in the original FSM that can be reached from FSM:0
(the root node from the original FSM) when the bit posi-
tion in the transition is 0 are determined and aggregated
into a new bit-split node FSM0:1. In the example, FSM:1
and FSM:7 are aggregated to form FSM0:1. Because
FSM0:1 does not already exist in FSM0 (i.e., there in no
state in FSM0 that is aggregated from FSM:1 and FSM:7),
it is added to FSM0 with a transition from FSM0:0 when
the input bit is 0. Next, all states in the original FSM that
can be reached from FSM:0 when the bit position in the
transition is 1 are determined and aggregated; in this
example, there are no such states. Therefore, the transition
from FSM0:0 goes back to FSM0:0 when the input bit is 1.
This process is repeated for all newly added states in
FSM0.

FSM0:1 was added previously and is examined next. Note
that FSM0:1 is an aggregate of FSM:1 and FSM:7. There-
fore, all states in the original FSM that can be reached
from either FSM:1 or FSM:7 when the input at bit position
is 0 are aggregated into FSM0:2. In this example, FSM0:2 is
created from FSM:2 and FSM:8. Because FSM0:2 does not
already exist in FSM0, it is added to FSM0 with a transient
of 0 from FSM0:1. Again, there is no transition from
FSM0:1 when the input bit is 1, therefore, state FSM0:1
transitions back to FSM0:0 when the input bit is 1.

Table 1: A table-oriented representation of the FSM for peptide
set {ACACD, ACE, CAC}.

Input Text Symbol

Current State A B C D E F ... Z Match

0 1 0 7 0 0 0 0,0,...,0 0 Ø
1 1 0 2 0 0 0 0,0,...,0 0 Ø
2 3 0 7 0 6 0 0,0,...,0 0 Ø
3 1 0 4 0 0 0 0,0,...,0 0 Ø
4 3 0 7 5 6 0 0,0,...,0 0 Pep2
5 1 0 7 0 0 0 0,0,...,0 0 Pep1
6 1 0 7 0 0 0 0,0,...,0 0 Pep3
7 8 0 7 0 0 0 0,0,...,0 0 Ø
8 1 0 9 0 0 0 0,0,...,0 0 Ø
9 3 0 7 0 6 0 0,0,...,0 0 Pep2

Table 2: Bit encoding of selected peptides

Bit encoding of selected peptides

Peptide 4 3 2 1 0

A 0 0 0 0 0
C 0 0 0 1 0
D 0 0 0 1 1
E 0 0 1 0 0
...
M 0 1 1 0 1
...
Y 1 1 0 0 1
Page 4 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:197 http://www.biomedcentral.com/1471-2105/9/197
This process is continued until there are no new states
added to FSM0. Note that only unique new nodes are
added to FSM0. When a new node FSM0:n is created by
aggregation but another node, FSM0:k, created by aggre-
gating the same set of nodes already exists in FSM0, then
instead of inserting the new node, FSM0:n, a transition to
FSM0:k is inserted into FSM0. Peptide matches are also
handled using aggregation (i.e., state FSM0:k matches all
the peptides that are matched by the states in the original
FSM that were aggregated into FSM0:k). This process is
repeated for all bit positions resulting in the five separate
bit-split FSMs depicted in tabular form in Tables 3, 4, 5, 6,
and 7.

Because several states from the original FSM that match
different peptides may be combined into a single state in
a bit-split FSM, a mechanism to indicate multiple matches
is required. In the bit-split FSM, a vector of bits is used to
encode the peptide matching attribute of for each state.
For example, state FSM0:3, matches peptides 2 and 4, and
therefore, has a peptide matching bit vector containing
110. Using this mechanism, after the various state
machines enter their respective new states, a bitwise logi-
cal and operation can be used to determine the peptide
match that all five FSMs agree on. For example, assume
that a some point in time, the bit-split FSMs in Tables 3,
4, 5, 6, and 7 are in states FSM0:3, FSM1:7, FSM2:6,
FSM3:5, and FSM4:5 with match bit vectors of 110, 100,
101, 111, and 111, respectively. The bitwise logical AND
of the five match bit vectors results in the bit vector 100

that indicates that peptide 3 is matched in this case. How-
ever, if FSM0 is in state FSM0:5, with a matching bit vector
of 001, then the result of the logical and will result in 000,
indicating that no peptides are currently matched.

FPGA Implementation
The Aho-Corasick algorithm can be implemented in an
FPGA by directly using the table representation depicted
in Tables 3, 4, 5, 6, and 7. Implementing the bit-split state
machines in this manner (i.e., using lookup tables) is
more resource efficient as compared with encoding
sequences of conditional state transitions in the FPGA
logic fabric. In modern FPGAs, the tables can be stored
using either configurable logic block resources (i.e., dis-
tributed RAM) or blocks of random access memory (i.e.,
BRAM). However, BRAM is more efficient when storing
large tables because it has higher storage density than dis-
tributed RAM [9].

Xilinx FPGAs provide a large number of 18-kbit BRAMs
that can be organized into 512 rows of 36-bit wide words
[28]. The Xilinx BRAMs are dual ported; therefore, by
tying the high order bit of the 9-bit BRAM address input
to 0 on one port and to 1 on the other port, the BRAM can
be divided into two independent 9-kbit RAM blocks con-
taining 256 rows of 36-bit words each. Altera FPGAs also
provide a large number of 9-kbit BRAMs that can be
organized into 256 rows of 36-bit wide words (other
BRAM configurations are also possible but are not useful
in this application) [29].

Table 6: The Bit-Split FSM corresponding to bit position 3
(FSM3)

State 0 1 Match

0 1 0 Ø:0
1 2 0 Ø:0
2 3 0 Ø:0
3 4 0 3,2:110
4 5 0 3,2:110
5 5 0 3,2,1:111

Table 4: The Bit-Split FSM corresponding to bit position 1
(FSM1)

State 0 1 Match

0 1 2 Ø:000
1 1 3 Ø:000
2 4 2 Ø:000
3 5 2 Ø:000
4 1 6 Ø:000
5 1 7 2:010
6 5 2 3:100
7 5 8 3:100
8 4 2 1:001

Table 3: The Bit-Split FSM corresponding to bit position 0
(FSM0)

State 0 1 Match

0 1 0 Ø:000
1 2 0 Ø:000
2 3 0 Ø:000
3 4 0 3,2:110
4 4 5 3,2:110
5 1 0 1:001

Table 5: The Bit-Split FSM corresponding to bit position 2
(FSM2)

State 0 1 Match

0 1 0 Ø:000
1 2 0 Ø:000
2 3 4 Ø:000
3 5 4 3:100
4 1 0 2:010
5 6 4 3:100
6 6 4 3,1:101
Page 5 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:197 http://www.biomedcentral.com/1471-2105/9/197
A 256 by 36 bit block of RAM can hold 256 rows of a bit-
split Aho-Corasick FSM. Recall that the bit-split FSM reads
the row corresponding to the current state in order to out-
put the peptide match bit vector and to determine the next
state. The FSM can transition into one of two states (note
that the FSM can transition back into the state it is cur-
rently in) depending on the input value (i.e., 0 or 1).
Because 8 bits are required to represent each of the 256
possible next state values, 16 bits in each 36-bit wide row
are used for storing the two possible next state values. The
remaining 20 bits in the row are used to store the 20 posi-
tion peptide match bit vector.

Figure 2 illustrates the architecture of a bit-split FSM. In
addition to the 9-kbit RAM block, the implementation
requires an 8-bit register to store the current state and a
multiplexer to select one of the two next state values based
on the value of the input bit. Five of these bit-split FSM
modules are combined in order to create a complete Aho-

Corasick tile as depicted in Figure 3. Inside a tile, the 5-bit
input to the Aho-Corasick implementation is distributed
to the five bit-split FSMs. A bit-wise and operator com-
bines the bit-split peptide match vectors into the consen-
sus 20-bit peptide match vector output.

In order to conserve signal routing resources, the consen-
sus peptide match vector is converted into a 5-bit numer-
ical value using a 20-to-5 bit priority encoder (the reason
for using a priority encoder is provided towards the end of
this section). The encoder essentially scans the consensus
peptide match vector in increasing index order and
returns the index of the first bit that has a value of 1.
Therefore, peptides that appear near the beginning of the
list of peptides have higher priority than those appearing
later. If all consensus peptide match vector bits are clear
(i.e., there is no match), the priority encoder returns an
undefined value. Therefore, in order to indicate that a
peptide has been found, a valid output signal is also gen-
erated when any of the consensus peptide match vector
bits are set.

Typically, proteomics pipelines require the detection of
more than 20 peptides. In this case, several Aho-Corasick
tiles can be utilized in parallel as shown in Figure 4. The
input reading frame is simultaneously streamed to all
tiles. The output of the tiles is combined into a single out-
put peptide number using a priority encoder. Because the
priority encoder produces an undefined value when no
peptide is matched, a match indicator signal is also gener-
ated when any of the tiles indicate a valid match.

Bit-Split Aho-Corasick FSM ArchitectureFigure 2
Bit-Split Aho-Corasick FSM Architecture.

State
(8-bit register)

256×36
RAM Block 8

8

Mux

Clock

20

36

Input
 Bit

Peptide
Match
Vector

Table 7: The Bit-Split FSM corresponding to bit position 4
(FSM4)

State 0 1 Match

0 1 0 Ø:0
1 2 0 Ø:0
2 3 0 Ø:0
3 4 0 3,2:110
4 5 0 3,2:110
5 5 0 3,2,1:111
Page 6 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:197 http://www.biomedcentral.com/1471-2105/9/197
Using the architecture described above, each tile can
detect up to 20 peptides in an input stream of reading
frame data. However, because the tile has a capacity of
only 256 states per bit-split FSM, in some cases, it may be
necessary to reduce the number of peptides that can be
detected in order to create a bit-split FSM with no more
than 256 states (note that all five peer bit-split FSMs must
represent the same reduced number of peptides). A simple
iterative greedy algorithm can be employed to allocate
peptides to tiles using a trial-and-error approach. Initially,

the algorithm assigns a set of 20 peptides to a tile. If the
bit-split FSM for the given number of peptides has more
than 256 states, the algorithm reduces the number of pep-
tides assigned to the tile and tries again until the bit-split
FSM is successfully created.

In order to minimize the number of states required in the
Aho-Corasick implementation, strings beginning with the
same sequence of characters should be grouped together
into the same tile. This is because the strings will share the

Aho-Corasick Implementation Architecture using 140 tiles (clock and reset signals are not shown for clarity)Figure 4
Aho-Corasick Implementation Architecture using 140 tiles (clock and reset signals are not shown for clarity).

Aho-Corasick
Tile1

Aho-Corasick
Tile2

Aho-Corasick
Tile140

Input
ASCII
Character

Subtract
‘A’ (65)

8 5

Priority
Encoder

5

5

5

8

Matching
Tile
Number

5

Matching
Pattern
Number

Aho-Corasick Tile ArchitectureFigure 3
Aho-Corasick Tile Architecture.

Bit-Split FSM0

Bit-Split FSM1

Bit-Split FSM2

Bit-Split FSM3

Bit-Split FSM4

5

20

20

20
20

20

20

Input
Character

Match

Valid Match
Indicator

Clock

Priority
Encoder

5

Page 7 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:197 http://www.biomedcentral.com/1471-2105/9/197
same initial states in the FSM. One way to achieve this is
to sort the set of peptide strings in ascending alphabetical
order before being assigned to the Aho-Corasick tiles.

Additionally, this bit-split Aho-Corasick implementation
architecture can only indicate a single peptide match at
any given time. This is typically not a problem unless one
peptide is a suffix of another peptide. Peptide ps is a suffix
of peptide p if and only if the length of p is greater than or
equal to the length of ps and p ends with a substring that is
identical to ps. In this case, if the string for p appears in the
text, it is sufficient to simply indicate that p has been
found because this also implies that ps has been found.
The priority encoding architecture ensures that the detec-
tion of a match with p receives higher priority than ps as
long as p appears before ps in the sorted set of peptide
strings. Therefore the sorting of the peptide string set must
account for both alphabetical and suffix-based priority
ordering.

Analysis of FSM Storage Utilization Efficiency
Assume that Pi, 1 = Pi = 20, is the number of peptides that
can be detected by tile i. This means that in each bit-split
FSM table row, 20 – Pi bits are unused for indicating
matches. Furthermore, in a majority of cases, a bit-split
FSM requires fewer than 256 states to detect Pi peptides.
This means that when FSMb of tile i requires Si,b states,
such that 1 <Si,b = 256, then 256 – Si,b rows of available
storage in the 9-kbit RAM block are unused.

The storage utilization efficiency of a single 256 by 36 bit
block used by a single bit-split FSM is computed as fol-
lows:

The overall storage utilization for an implementation
requiring T tiles can be computed using the following
expression:

Results and Discussion
The bit-split Aho-Corasick algorithm was implemented
on the Xilinx Virtex-4 FX-100 FPGA. This device has 376
18-kbit BRAM blocks, of which 350 are used for imple-
menting Aho-Corasick tiles and the remaining 26 are
reserved for meeting the storage requirements of other
modules that support the implementation (e.g., I/O func-
tions and the memory for the embedded processor core
that controls the overall implementation).

Recall that a Xilinx BRAM can be configured as two 9-kbit
RAM blocks. This means that there are effectively 700
RAM blocks available that can hold a total of 140 tiles.
Because each tile requires five 9-kbit RAM blocks and can
search for at most 20 peptides, the maximum number of
peptides that can be searched using this device is 700 ×
20/5 = 2,800. Note that larger FPGA devices can be used
to search for more than 2800 peptides in a single pass. For
example, the Virtex-4 FX-140 has 552 BRAM blocks that
can be configured to hold over 4,000 peptides. For the
experiments, sets of 2,800 peptides were derived by per-
forming in-silico trypsin digestion on reading frames cor-
responding to chromosome 1 of the human genome. The
maximum size of the peptides was fixed at 30 amino
acids. However, in order to measure the effect of peptide
size on the storage efficiency, the minimum size was var-
ied in order to produce 100 unique sets each of peptides
with minimum sizes of 5, 10, 15, and 20.

Table 8 summarizes the results from generating the Aho-
Corasick implementation for the various peptide sets.
Most of the peptide sets where the minimum peptide size
is 5 and having an average length of just over 11 amino
acids were accommodated using 140 tiles. Two of these
peptide sets require an additional tile because for each of
these sets one of the tiles can only accommodate 19 pep-
tides within the 256 state limit. The average storage utili-
zation in the tiles is approximately 52.7% because many
of the bit-split FSMs require significantly fewer than the
available 256 states.

The number of tiles required for the peptide sets with the
minimum peptide length of 10 amino acids (average
length of 15.40) varies between 141 and 142 with an aver-

η i b
Si b Si bPi Si b Pi

,
, , , .=

+
×

=
+()16

256 36

16

9216
(1)

η =
+

=
∑

=
∑

× ×
=

+
=
∑

=
∑Si b Pi

bi

T

T

Si b Pi
bi

T
, () , ()16

0

4

1
5 9216

16
0

4

1
46080TT

.

(2)

Table 8: Tile packing efficiency result

Peptide Length Average Number of Tiles Required Average Peptides Per Tile Average Storage Efficiency
Min Max Average

5 30 11.28 140.02 19.99 52.70%
10 30 15.40 141.41 19.80 81.12%
15 30 19.79 178.40 15.70 81.53%
20 30 23.70 277.23 12.32 72.96%
Page 8 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:197 http://www.biomedcentral.com/1471-2105/9/197
age of 19.8 peptides detected per tile. The average storage
utilization is a much higher 81.12%.

The average number of tiles required for the peptide sets
with the minimum peptide length of 15 amino acids
(average length of 19.79) is 178.40 with an average of
15.7 peptides detected per tile. The average storage utiliza-
tion is relatively high at 81.53%. This efficiency is compa-
rable to the efficiency of the peptide sets with average size
of 15.40. However, while in the case of the shorter pep-
tides, underutilization of row storage is the main cause of
inefficiency, for longer peptides, underutilization of the
peptide match vector storage has a larger contribution to
the overall inefficiency.

The average number of tiles required for the peptide sets
with the minimum peptide length of 20 amino acids
(average length of 23.70) is 277.23 with an average of
12.32 peptides detected per tile. The number of tiles
required is significantly larger than in the previous cases
because the bit-split FSMs have more states. The storage
efficiency is also reduced to 72.96% because of significant
underutilization of match vector storage.

The runtime performance of the FPGA-based bit-split
Aho-Corasick implementation was compared to the per-
formance of the Aho-Corasick implementation on a
standard workstation. The bit-split Aho-Corasick design
with supporting elements such as an embedded PowerPC
processor, an ATA hard disk controller, an RS232 link, sys-
tem busses, and memory are synthesized to run at a clock
frequency of 100 MHz. The ATA disk controller is used for
reading data at a peak rate of 100 MB/s (i.e., one character
from the reading frame is streamed to the Aho-Corasick
tiles every clock cycle). The PowerPC is responsible for ini-
tializing the disk drive and initiating the read operations.
The PowerPC also monitors the peptide match indica-
tions from the tiles and reports match data (e.g., peptide
and location) to the host workstation over the RS232 link.

Simulation results show that the Aho-Corasick tiles can
operate at frequencies over 150 MHz, resulting in input
rates exceeding 1.2 gigabits per second. Although the Aho-
Corasick tiles can operate at faster frequencies, in this
series of experiments the clock frequency was restricted to
execute at 100 MHz system clock in order to eliminate the
complexity that arises with designs containing multiple
clock domains. Essentially, the Aho-Corasick tiles operate
at 100 MHz in order to match the ATA controller's peak
data delivery rate of 100 MB/s. Note that the tiles do not
introduce any processing delays (i.e., the disk drive is the
primary performance bottleneck in this implementation
and increasing the implementation's clock frequency to
150 MHz produces no tangible improvements in process-
ing time). Furthermore, in order to minimize processing

and concomitant delays associated with a file system, the
reading frame data is stored on consecutive sectors on a
raw disk (i.e., the disk is not formatted using a well-
known, operating system supplied, file system).

Reading frame data is derived using software on a stand-
ard workstation by concatenating all the chromosomes in
the human genome (separated by sequences of 100 'N'
characters) and subsequently translating the concatenated
genome data into reading frames. The six resulting read-
ing frames are also concatenated together, giving
6,160,844,220 bytes of text to be searched for a set of
2,800 peptides. The reading frame data is written to
12,032,899 consecutive sectors on an IDE disk drive, at a
known starting location. A database of reading frame data
for various genomes can be maintained in a similar man-
ner on a large disk drive.

For testing the performance of the FPGA-based imple-
mentation, the disk drive containing the reading frame
data is connected to the FPGA board. A flash RAM module
containing the Aho-Corasick implementation configura-
tion file and RAM block content implementing the FSM is
also connected to the board. On bootup, the FPGA board
reads the configuration information from the flash RAM
and begins executing the Aho-Corasick algorithm.

For these experiments, a set of 2,800 peptides that fit in
exactly 140 tiles (i.e., a set with minimum and average
peptide lengths of 5 and 11.5257 amino acids, respec-
tively) was selected. Note that storage efficiency of the
selected peptide set has no bearing on the runtime per-
formance of the bit-split Aho-Corasick implementation.
This is because the Aho-Corasick tiles each search for a
subset of 20 peptides in parallel. The performance of the
FPGA-based implementation was compared with the per-
formance of a software implementation employing a tra-
ditional table-driven Aho-Corasick organization in which
a single large table represents a single FSM with all the
states for all 2,800 peptides. The software implementation
was executed on a Windows XP workstation having a 2.67
GHz Intel Core2 Duo processor, 2 GB RAM, and a pair of
Serial ATA disks configured as a RAID 0 disk drive (i.e.,
striped data for fast disk I/O), formatted as an NTFS vol-
ume.

Five runs each of the FPGA and workstation implementa-
tions were performed. The FPGA implementation takes,
on average, 94.17 seconds to process the entire 6 gigabytes
of reading frame data. The workstation implementation
takes an average of 1870.18 seconds to complete the
search. This means that the FPGA-based implementation
is nearly 20 times faster than the workstation implemen-
tation.
Page 9 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:197 http://www.biomedcentral.com/1471-2105/9/197
Implementations of larger designs in FPGAs typically have
lower operating frequencies as compared with smaller
designs. Therefore, in order to study the practical limits of
implementations with large numbers of tiles, Xilinx's
FPGA application development tool, XST 9.1, was used to
implement a number of designs with varying number of
Aho-Corasick tiles for a hypothetical board containing the
Virtex-4 FX-140 device. Table 9 lists the performance sta-
tistics of the designs reported by XST. The smallest design
composed of 40 tiles, requiring 100 BRAM blocks with a
capacity of 800 peptides operates at a frequency of
177.054 MHz. The largest design composed of 200 tiles,
requiring 500 BRAM blocks with a capacity of 4,000 pep-
tides operates at a frequency of 134.971 MHz. Clearly,
even the largest design meets the 100 MHz frequency
requirement.

Conclusion
This paper describes a technique for accelerating string set
matching implementation using FPGAs for use in pro-
teomics processing pipelines. FPGAs provide a large
number of embedded memory blocks that enable more
efficient implementation of FSMs than possible using the
FPGA logic fabric. Furthermore, the synthesized tile-based
design can be reused for different peptide sets by simply
initializing the RAM block content with appropriate bit-
split FSM state data. This is much faster than having to
rerun the significantly time consuming "placing and rout-
ing" synthesis stages required for logic-based implementa-
tions in FPGA fabric for each new peptide set.

Empirical results show that the FPGA-based implementa-
tion outperforms the workstation implementation by a
factor of 20. This result shows that using specialized hard-
ware to solve the string set matching problem can make a
significant impact on the runtime of a number of compu-
tational biology processes where exact string matching is
commonly required. The throughput of FPGA implemen-
tation described here is essentially limited by the data
transfer speed of the ATA disk drives. Higher frequency
implementations utilizing Serial ATA (SATA) disk drives,
parallel disk arrays, and gigabit Ethernet interfaces under
investigation as part of ongoing implementation efforts
and future research.

This paper also demonstrates that the significantly smaller
string alphabets found in computational biology enable
more space efficient designs for string matching as com-
pared to previously published implementations focused
on network intrusion detection. Although the case study
focused on exact string matching, the Aho-Corasick algo-
rithm can also accommodate regular expressions. The
implementation described can easily be adapted for other
types of search using, for example, spaced seeds.

The implementation presented here is restricted to search-
ing for a maximum of 4,000 peptides. Two different
approaches can be used to overcome this limitation. The
simplest technique is to perform multiple passes over the
string data such that a different subset of the peptides is
encoded in the tiles during each pass. This approach
requires only a single FPGA, but increases the overall
search time by a factor given by the following expression:

In other words, the complexity of the search becomes
O(F × (m + k)).

A more performance oriented approach would be to use F
separate FPGAs performing the search on separate subsets
of the peptides in parallel. The cost of replicating the read-
ing frame data for a large F can be eliminated by imple-
menting a data streaming interface between the separate
FPGA boards. Tools to facilitate building such interfaces
are typically provided by the FPGA vendors [30,31]. Using
such an interface, only one board needs to be connected
to a single disk drive containing the reading frames while
the other boards are connected to each other in a chain.
This way, the reading frame data can be streamed from the
disk drive to each board (i.e., as soon as an FPGA board
receives a byte of data, it forwards the data to the next
board in the chain). The runtime complexity of this latter
implementation is essentially O(m + k + λ), where λ rep-
resents the cumulative latency of transmitting a single
character over the entire chain. The λ value will typically
be negligibly small because modern FPGAs are capable of
performing serial communication at gigabit per second
(or faster) rates.

Authors' contributions
YSD developed the algorithm and implementation for
string matching in FPGA hardware and conducted the
experiments. SMB, SCB, and ML formulated the proteoge-
nomic mapping pipeline problem, identified the string
matching bottleneck, provided data for developing and
testing the system, and assisted with the analysis of results.
YSD and SMB wrote the manuscript.

F = ⎡
⎢⎢

⎤
⎥⎥

total number of peptides
4000

. (3)

Table 9: Operating frequencies of Aho-Corasick designs with a
variety of tiles on Virtex-4 FX-140

Peptides Tiles BRAMs Frequency (MHz)

800 40 100 177.054
1,600 80 200 166.030
2,400 120 300 167.954
3,200 160 400 132.503
4,000 200 500 134.971
Page 10 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:197 http://www.biomedcentral.com/1471-2105/9/197
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Acknowledgements
This research was funded in part by grant DEFG3606G086025 from the
Department of Energy to the Sustainable Energy Research Center at Mis-
sissippi State University and NSF EPSCoR grant EPS-0556308. The authors
also acknowledge Nan Wang for assistance with developing the proteoge-
nomics testbench.

References
1. Jaffe JD, Berg HC, Church GM: Proteogenomic mapping as a

complementary method to perform genome annotation.
Proteomics 2004, 4(1):59-77.

2. Jaffe JD, Stange-Thomann N, Smith C, DeCaprio D, Fisher S, Butler J,
Calvo S, Elkins T, FitzGerald MG, Hafez N, Kodira CD, Major J, Wang
S, Wilkinson J, Nicol R, Nusbaum C, Birren B, Berg HC, Church GM:
The complete genome and proteome of Mycoplasma
mobile. Genome Res 2004, 14(8):1447-1461.

3. Kalume DE, Peri S, Reddy R, Zhong J, Okulate M, Kumar N, Pandey
A: Genome annotation of Anopheles gambiae using mass
spectrometry-derived data. BMC Genomics 2005, 6:128.

4. Kuster B, Mortensen P, Andersen JS, Mann M: Mass spectrometry
allows direct identification of proteins in large genomes. Pro-
teomics 2001, 1(5):641-650.

5. McCarthy FM, Cooksey AM, Wang N, Bridges SM, Pharr GT, Burgess
SC: Modeling a whole organ using proteomics: the avian
bursa of Fabricius. Proteomics 2006, 6(9):2759-2771.

6. Boyer RS, Moore JS: A Fast String Searching Algorithm. Com-
munications of the ACM 1977, 20:762-772.

7. Knuth DE, Morris JH, Pratt VB: Fast pattern matching in strings.
SIAM Journal of Computing 1977, 6:323-350.

8. Aho A, Corasick M: Efficient string matching: an aid to biblio-
graphic search. Communications of the ACM 1975, 18:333-340.

9. Tan L, Sherwood T: A High Throughput String Matching Archi-
tecture for Intrusion Detection and Prevention: Madison,
Wisconsin US. ; 2005.

10. Brudno M, Morgenstern B: Fast and sensitive alignment of large
genomic sequences. Proc IEEE Comput Soc Bioinform Conf 2002,
1:138-147.

11. Brudno M, Steinkamp R, Morgenstern B: The CHAOS/DIALIGN
WWW server for multiple alignment of genomic sequences.
Nucleic Acids Res 2004, 32(Web Server issue):W41-4.

12. Castelo AT, Martins W, Gao GR: TROLL--tandem repeat occur-
rence locator. Bioinformatics 2002, 18(4):634-636.

13. Farre D, Garcia D, Alba MM, Messeguer X: Prediction of Tran-
scription Factor Binding Sites with PROMO v. 3: Improving
the Specificity of Weight Matrices and the Searching Proc-
ess. In 5th Annual Spanish Bioinformatics Conference Barcelona Spain ;
2004.

14. Hyyro H, Juhola M, Vihinen M: On exact string matching of
unique oligonucleotides. Comput Biol Med 2005, 35(2):173-181.

15. Michael M, Dieterich C, Vingron M: SITEBLAST--rapid and sen-
sitive local alignment of genomic sequences employing motif
anchors. Bioinformatics 2005, 21(9):2093-2094.

16. Buhler J, Keich U, Sun Y: Designing seeds for similarity search in
genomic DNA. Journal of Computer and System Sciences 2005,
70(3):342-363.

17. Boeva V, Clement J, Regnier M, Roytberg MA, Makeev VJ: Exact p-
value calculation for heterotypic clusters of regulatory
motifs and its application in computational annotation of cis-
regulatory modules. Algorithms Mol Biol 2007, 2(1):13.

18. Li IT, Shum W, Truong K: 160-fold acceleration of the Smith-
Waterman algorithm using a field programmable gate array
(FPGA). BMC Bioinformatics 2007, 8:185.

19. Mak TST, Lam KP: Embedded computation of maximum-like-
lihood phylogeny inference using platform FPGA.
2004:512-514.

20. Lokhov PG, Tikhonova OV, Moshkovskii SA, Goufman EI, Serebriak-
ova MV, Maksimov BI, Toropyguine IY, Zgoda VG, Govorun VM,
Archakov AI: Database search post-processing by neural net-
work: Advanced facilities for identification of components in
protein mixtures using mass spectrometric peptide map-
ping. Proteomics 2004, 4(3):633-642.

21. Oliver T, Schmidt B, Nathan D, Clemens R, Maskell D: Using recon-
figurable hardware to accelerate multiple sequence align-
ment with ClustalW. Bioinformatics 2005, 21(16):3431-3432.

22. Alex AT, Dumontier M, Rose JS, Hogue CW: Hardware-acceler-
ated protein identification for mass spectrometry. Rapid Com-
mun Mass Spectrom 2005, 19(6):833-837.

23. Bogdan I, Coca D, Rivers J, Beynon RJ: Hardware acceleration of
processing of mass spectrometric data for proteomics. Bioin-
formatics 2007, 23(6):724-731.

24. Jung HJ, Baker ZK, Prasanna VK: Performance of FPGA Imple-
mentation of Bit-split Architecture for Intrusion Detection
Systems. 2006.

25. Sidhu R, Prasanna VK: Fast Regular Expression Matching Using
FPGAs. 2001:227-238.

26. Lin C, Huang C, Jiang C, Chang S: Optimization of regular
expression pattern matching circuits on FPGA: March 06 -
10 2006; Munich, Germany. ; 2006.

27. Fide S, Jenks S: A Survey of String Matching Approaches in
Hardware. University of California Irvine; 2006.

28. Xilinx I: Virtex-4 Family Overview. 2007.
29. Altera: Stratix III Device Handbook, Volume 1. 2007.
30. Altera: SerialLite II Protocol Reference Manual. 2005.
31. Xilinx: DS128: Aurora v2.8. 2007.
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14730672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14730672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15289470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15289470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15289470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16171517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16171517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11678034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11678034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16596704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16596704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15838131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15838131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12016062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12016062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15567185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15567185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15598827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15598827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15598827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17927813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17927813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17927813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17555593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17555593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17555593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15085171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15085171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14997487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14997487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14997487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15919726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15919726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15919726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15723443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15723443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17277335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17277335
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Related Work

	Methods
	The Aho-Corasick Algorithm
	The Bit-Split Aho-Corasick Implementation
	FPGA Implementation
	Analysis of FSM Storage Utilization Efficiency

	Results and Discussion
	Conclusion
	Authors' contributions
	Acknowledgements
	References

