
University of Connecticut

OpenCommons@UConn

Doctoral Dissertations University of Connecticut Graduate School

12-14-2018

Accelerating Synchronization on Futuristic
1000-cores Multicore Processor with Moving
Compute to Data Model
Halit Dogan
University of Connecticut - Storrs, halitdoganeem@gmail.com

Follow this and additional works at: https://opencommons.uconn.edu/dissertations

Recommended Citation
Dogan, Halit, "Accelerating Synchronization on Futuristic 1000-cores Multicore Processor with Moving Compute to Data Model"
(2018). Doctoral Dissertations. 2026.
https://opencommons.uconn.edu/dissertations/2026

http://lib.uconn.edu/?utm_source=opencommons.uconn.edu%2Fdissertations%2F2026&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.uconn.edu/?utm_source=opencommons.uconn.edu%2Fdissertations%2F2026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu?utm_source=opencommons.uconn.edu%2Fdissertations%2F2026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/dissertations?utm_source=opencommons.uconn.edu%2Fdissertations%2F2026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/gs?utm_source=opencommons.uconn.edu%2Fdissertations%2F2026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/dissertations?utm_source=opencommons.uconn.edu%2Fdissertations%2F2026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/dissertations/2026?utm_source=opencommons.uconn.edu%2Fdissertations%2F2026&utm_medium=PDF&utm_campaign=PDFCoverPages


Accelerating Synchronization on Futuristic

1000-cores Multicore Processor with Moving

Compute to Data Model

Halit Dogan, Ph.D.

University of Connecticut, 2018

ABSTRACT

Single chip multicore processors are now prevalent and processors with hundreds of cores are

being proposed and explored by both academia and industry. Shared memory cache coherence is

the state–of–the–art technology for these processors to enable synchronization and communica-

tion between cores. However, since the synchronization of cores on shared data using hardware

cache coherence suffers from instruction retries and cache line ping-pong overheads, it prevents

performance scaling as core counts increase on a chip.

This thesis proposes to utilize a novel moving computation to data model (MC) to overcome

this synchronization bottleneck in a 1000-cores scale shared memory multicore processor. The

proposed MC model pins shared data to dedicated cores called service cores. The execution of

critical code sections is explicitly requested from worker cores to be performed at the service cores.

In this way, the cache line bouncing between cores is prevented, hence data locality optimization is

enabled. The proposed MC model utilizes auxiliary in-hardware explicit messaging for the critical

section requests to enable efficient fine-grained blocking and non-blocking communication between

communicating cores. To show the effectiveness of the proposed model, workloads with wide range

of synchronization requirements from graph analytics, machine learning and database domains are
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implemented. The proposed model is then prototyped and exhaustively evaluated on a 72 core

machine, Tilera R© Tile–Gx72TM multicore platform, as it incorporates in–hardware core–to–core

messaging as an auxiliary capability to the shared memory cache coherence paradigm. Since the

Tile-Gx72TM machine includes only 72 cores, it is deployed for evaluation at 8 to 64 core count scale.

For further analysis at higher core count, a simulated RISC–V multicore environment is built and

utilized, and the performance and dynamic energy scaling advantages of the MC model is evaluated

against various baseline synchronization models up to 1024 cores.
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Chapter 1

Introduction

With the proliferation of shared memory processors with hundreds of cores on chip [1] [2], both fine

and coarse–grain thread synchronization has emerged as a significant challenge for performance

scaling. Conventionally, thread synchronization is realized using standalone atomic instructions, or

using synchronization primitives such as spin–based locks [3] [4] [5] [6] [7]. At small core counts,

spin-based synchronization primitives are efficient. However, the overheads of such primitives

exponentially aggravate as the core count increases [8] [9]. This primarily happens due to expensive

cache line ping–pong between cores as a result of the increased latency of the on-chip network. It

also incurs instruction retry overhead that results in higher dynamic energy consumption. Perfor-

mance scaling can be improved using atomic instructions (when applicable) since they eliminate the

overheads of lock acquisition, such as instruction retries and lock variable ping-pong. However, the

shared data still ping–pongs between cores, and the expensive coherence traffic leads to performance

scaling challenges at higher core counts. Moreover, the type of atomic operations are limited, hence

they may not be generalized for arbitrary critical code sections. Therefore, this thesis proposes to

utilize a novel moving computation to data (MC) model to overcome the synchronization challenges
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for futuristic 1000–cores scale multicores.

The key idea is to keep shared memory cache coherence and accelerate thread synchronization

using the MC model. In the MC model, shared data is logically pinned to a dedicated thread, called

service thread. The worker threads execute application code and invoke requests to update shared

data at the service thread. By utilizing the MC model, any type of synchronization can be realized

without ping–ponging of shared data, as it is pinned to a dedicated thread. For example, the critical

sections can be offloaded to the service thread to accelerate fine–grained synchronization, and

barrier type of coarse–grained synchronizations can be implemented in a more efficient way. The

MC model can be implemented by utilizing shared memory cache coherence in which a software

based shared buffer is deployed to communicate messages between workers and the service thread.

RCL [10] proposes a similar approach to improve performance of POSIX locks using remote core

locking. Unfortunately, the shared buffer ping-pongs between the worker and service threads,

leading to the same synchronization challenges at higher core counts. Therefore, in this thesis, the

communication between worker and service threads is carried out using auxiliary send and receive

instructions implemented at the hardware-level using a low-latency point–to–point messaging

network. Note that all on-chip and off-chip data accesses are still managed using shared memory

load and store instructions using the hardware cache coherence protocol.

The MC model pins shared data at the service thread, and thus enhances shared data locality.

Moreover, by utilizing hardware based explicit messaging to enable non–blocking communication,

the worker threads overlap the critical code section executions with other useful work. In addition,

as compared to the lock based critical sections, it gets rid of the lock acquisition overheads, such

as instruction retries and the mutex variable ping–ponging, by completely eliminating the locks.

Utilizing a single service thread may become performance bottleneck due to serialization of multiple

requests. Therefore, to exploit concurrency in critical section execution requests, multiple service

cores are assigned as service threads and the shared data is divided among them. The remaining
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worker threads exploit concurrency in the underlying algorithmic code, and direct the requests to

the corresponding service threads. This thesis proposes to utilize distribution of the worker and

service threads among dedicated cores in a spatial setting.

The key challenge of the spatial MC model is the need to load balance the work between cores

executing the worker and service threads to obtain near-optimal performance scaling. One idea

is to temporally map a worker and a service thread in each core, similar to Active Messages [11].

This achieves load balance, but at the cost of doubling the number of threads relative to the core

count. More threads now participate in synchronization, and thus potentially increase the overall

communication stalls on chip. The temporal MC model outperforms the spatial model at lower core

counts, however as the number of cores approaches hundreds to a thousand cores on chip, the spatial

MC model is expected to better utilize the on-chip network resources. However, load balancing

the worker and service core counts can be challenging as it is workload dependent. Therefore, this

thesis explores a novel heuristic to determine load balanced mapping of the worker and service

threads for the spatial MC model. The heuristic relies on the percentage of shared work in an

application to decide the number of service cores. If selected properly, the service cores match the

concurrency needs of shared work, while the worker cores optimally exploit concurrency in the

remaining algorithmic work for a given workload.

The contributions of this thesis are as follows:

1. A spatial moving compute to data (MC) model is proposed utilizing low–latency hard-

ware explicit messages to accelerate synchronization. The MC model mitigates cache line

ping–pong, improves data locality, and hides communication latency with non–blocking

messaging [12] [13]. These key aspects deliver high performance scaling for both fine and

coarse grain synchronization in parallelized workloads from the machine learning, graph

processing and database domains. Moreover, a heuristic based on profiling the percentage of
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shared work is introduced for efficient spatial distribution of worker and service cores in the

MC model.

2. The MC model is prototyped and evaluated extensively on Tilera R© Tile-Gx72TM multicore

machine [14] as it has the largest core count among commercially available processors with

in–hardware explicit messaging. A scaling study up to 64 cores is conducted, and enhanced

performance benefits of the MC model over the traditional shared memory synchronization

are shown as the core count increases.

3. Since Tilera machine contains only 72 cores, to explore 1000-cores scale multicore system,

a RISC-V based multicore simulation environment is built and utilized to characterize the

spatial MC model, and compare performance and energy consumption over both spin-lock

and atomic instruction based synchronization models [15]. In addition, the spatial MC model

is also evaluated against the temporal MC model. Furthermore, a software shared buffer based

moving compute to data model is implemented, and the MC model with in–hardware explicit

messaging is evaluated against it. The spatial MC model with hardware support is shown to

enable superior performance scaling up to 1024 cores.

The rest of the thesis is organized as follows. Chapter 2 talks about the related work. Thread

synchronization in traditional shared memory paradigm and the proposed MC model are discussed

in Chapter 3. Architectural extensions required to enable efficient implementation of the MC model

is described in Chapter 4. Chapter 5 discusses the programming model and how a given shared

memory based workload is implemented using the MC model. The evaluation of the MC model on

Tilera R© Tile-Gx72TM multicore platform is discussed in Chapter 6. The evaluation of the MC model

on 1000-cores scale multicore simulator is presented in Chapter 7. Finally, Chapter 8 concludes the

thesis.
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Chapter 2

Related Work

Parallel architectures that combine shared memory paradigm and explicit messaging have been ex-

plored by researchers. Alewife and ActiveMsg [16, 17] have integrated the idea of message passing

into shared memory multiprocessors to mitigate the bottleneck of inter-processor communication.

More recently, Tesseract [18] utilizes message passing only architecture, and demonstrates

the benefits of such communication style. It utilizes a near memory approach in which a high

number of simple cores are located closer to a 3D stacked memory. However, as it does not support

shared memory paradigm, it differs from the investigated architecture. ADM [19] supports both

shared memory coherence and hardware messaging, and tries to accelerate task scheduling by

employing the core–to–core messaging. However, it falls short on exploring it for general purpose

synchronization.

The commercial Tilera [20] architecture implemented a multicore processor which supports

both cache coherence and hardware messaging using a User Define Network (UDN). However, its

messaging capability is not fully explored with novel communication models. Barrier synchroniza-

tion is investigated using the low–latency hardware messaging by TSHMEM [21] work. However,
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it does not these capabilities for real parallel workloads to accelerate synchronization. Moreover,

Tilera falls short to analyze the benefits of explicit messaging based communication model at higher

core counts.

The idea of MC style critical section execution is investigated in RCL [10]. It utilizes a software

only approach without any hardware support. The critical section requests are placed into a shared

buffer, then server thread executes them as remote procedure calls. They only target 48 cores system

and the investigated applications contain only single lock. As it utilizes a shared buffer for the

critical section requests, it is expected to limit the performance at higher core counts. It is also not

clear how the proposed model would work for the applications with fine–grained critical sections.

In this thesis, a similar implementation of MC termed as MC shmem is presented to illustrate the

shortcomings of such approaches and the default MC model is evaluated against it.

Similar to RCL, ACS [22] explores the critical section migration, however, with hardware

support. Similar to proposed MC model, ACS also ships the critical section block to a dedicated

core. However, its target architecture is a small-scale heterogeneous multicore, where it contains

several small cores and a large core. It ships the critical section execution to the large core. On

the other hand, the proposed MC model is implemented targeting symmetric multicores at 1000–

cores scale. In both approaches, the serialization of the critical section plays a significant role

in performance. ACS tries to solve the serialization problem at the dedicated core by utilizing

two approaches. The first one is to use simultaneous multithreading to enable multiple threads

to execute critical sections concurrently. The second method is to utilize a serialization detection

scheme to determine whether or not to offload the critical section execution to the large core. This

work addresses the serialization problem by assigning multiple cores to concurrently perform the

execution of critical code sections. For this purpose a profiling based heuristic method is proposed

to determine the number of service cores that are dedicated for managing work on shared data.

Moreover, I utilize emerging workload domains from graphs, and machine learning to evaluate the
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proposed spatial MC model.

Active Messages (AM) [11] also explores the usage of hardware message passing on top of a

shared memory architecture. However, it only explores a model similar to the temporal MC model

in which a separate hardware context is used as a message handler. This work investigates both

spatial and temporal approaches and shows better scaling with the spatial MC model as compared

to temporal. In addition, AM has not been evaluated against efficient atomic instruction based

synchronization in real workloads.

HAQu [23] and CAF [24] demonstrate that fine–grain synchronization can be accelerated in

multicores using hardware queues. HAQu accelerates queues in the program’s address space with

the extension of new instructions. On the other hand, CAF utilizes new hardware extensions to the

on-chip network to mitigate queuing bottlenecks. Both approaches investigate similar models to the

proposed MC model using the architectural extensions. However, the application domains differ

between their work and the model presented in this thesis. Moreover, this thesis studies the benefits

of the MC model on 1000-cores scale multicores, and compares to both spin-based shared memory

synchronization as well as efficient atomic instruction based synchronization.
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Chapter 3

Thread Synchronization Models

This chapter first outlines the traditional cache coherence based thread synchronization, and dis-

cusses its shortcomings. The MC model is then explained to solve the challenges of the traditional

synchronization primitives. The chapter concludes with a discussion on the challenges of the MC

model, and the proposed solutions.

3.1 Shared Memory Synchronization

Shared memory cache coherence provides ease of programming, flexibility on sharing data between

threads, and seamless data movement. However, thread synchronization under shared memory

cache coherence at higher core counts becomes a significant performance bottleneck. This is

mainly due to expensive ping–ponging of shared data between private caches of the participating

cores. Traditionally, spin based synchronization primitives such as locks are realized using atomic

instructions (e.g., load–link and store–conditional instructions) to update shared data in a thread

safe fashion. However, in order to realize such synchronization, a separate lock variable needs to
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be acquired before getting into critical code section, which incurs additional overheads. At lower

core counts, and under low contention, these primitives are efficient as they enable concurrent

execution of the critical sections. However, when there is contention on shared data, the threads can

often fail to acquire the lock, therefore they spin over the shared lock variable until it is available.

This process easily boosts the locking overheads due to instruction retries and ping–ponging of the

lock between cores. In addition, as the number of cores in the system increases, the cost of lock

acquisition drastically goes up due to increased network latency.

The locking overheads can be eliminated by directly utilizing atomic instructions. Instead

of acquiring a lock variable to protect a critical code region, standalone atomic instructions are

employed. These instructions are implemented using the hardware coherence protocol where each

atomic instruction performs an exclusive read to lock the cache line in the level-1 cache, performs the

operation, and stores the result before unlocking the cache line. If another core wants to perform an

atomic operation on the same cache line, it needs to acquire exclusive copy to perform the operation

atomically. However, the shared cache lines still bounce between cores when multiple threads access

them temporally. Therefore, as the number of cores increases (1000–cores scale), the bouncing

affect leads to degradation on performance scaling due to elevated network latency. Another key

limitation of atomic instruction based synchronization is the limited number of operations in the

ISA for implementing a diverse set of critical code sections. As a result, as opposed to spin lock

based synchronization, they are not applicable to any arbitrary critical section.

In this work, for more efficient and generic thread synchronization, the MC model is proposed

and evaluated against both spin-based (Spin) and atomic instruction (Atomic) based synchronization.

The MC model and the architectural extensions for efficient implementation of it are discussed in

detail in the subsequent sections.
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<< Spin Lock Implementation >>

Worker Thread Job

spin_mutex_lock(lock);

Critical Code Section 

tmc_spin_mutex_unlock(lock);

<< Atomic Implementation >>

atomic_fetch_add, compare_and_swap etc. 

<< MC Implementation >>

Worker Thread Job

ServiceCore = get_service_core(lock) 

send_x(ServiceCore, data_1,...,data_x)

<< MC Implementation >>

Service Thread Job

data_1, …, data_x = receive() 

Execute Critical Code Section

Figure 3.1.1: Implementation of fine-grain synchronization using spin-lock, atomic, and MC models.

3.2 Moving Compute to Data Model

Moving computation towards data technique has gained tremendous popularity in recent years due

to explosion of computing on massive datasets [25]. Traditionally, distributed computing domain

has deployed computation migration to mitigate performance and energy bottlenecks of moving

large amount of data between server nodes. In this model, a data segment is pinned to a node,

and the executable is moved towards it. As the executable is significantly smaller than the data,

moving overhead is also notably smaller. In a single chip multicore processor, I propose to utilize

this approach to mitigate the bottleneck of shared memory thread synchronization, as the core count

approaches the 1000-cores scale.

In the proposed MC model, the protected shared data is mapped to a dedicated core and

updated only at that specific core by moving computation towards it using explicit messages. In

the context of fine–grained synchronization, as demonstrated in Figure 3.1.1, the locks and atomic

instructions in a traditional shared memory application (the pseudo code in the left two boxes) are

eliminated, and the critical code sections are moved to the dedicated core, termed as service thread

(the pseudo code in the bottom right box). The remaining cores are utilized as worker threads
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<< Atomic Implementation >>

atomic_fetch_add(&barrier, 1);

<< Spin Lock Implementation >>

spin_mutex_lock(lock);

barrier = barrier + 1;

spin_mutex_unlock(lock);

If barrier == num_of_cores:

passed = True;

Else:

While passed != True { }

<< MC Barrier Implementation >>

Barrier Thread

For each core:

receive();

For each core:

send_1(core, continue);

<< MC Barrier Implementation >>

Worker Thread

send_1(BarrierCore, barrier);

receive(); 

Figure 3.1.2: Implementation of barrier synchronization using spin-lock, atomic, and MC models.

(the pseudo code in the upper right box). The workers execute the application work, and when

they need to execute the critical section, they send explicit request messages to invoke fine–grain

synchronization at the service thread. Deploying only a single core as service thread may result

in higher serialization overhead, hence multiple cores are assigned as service thread to exploit

concurrency across independent critical code sections. In this case, the shared data is distributed

among the available service threads, and the workers forward their requests to the corresponding

service thread by utilizing a software lookup function. The amount of data that is sent for the critical

section request depends on the application requirements. While some workloads only require a

single word, others need multiple words of data. The service thread then receives the required

number of words in the order they were sent, and execute the critical code section. An application

may or may not require the service thread to send a reply back to the requesting worker. This

decision may be needed to ensure data consistency in certain scenarios and may impact performance.

Barrier synchronization is an example of coarse–grained synchronization in which blocking

communication is required. Instead of loading and updating the barrier variable atomically by

each core as illustrated in Figure 3.1.2 (the pseudo code in the left boxes), the cores send “barrier”
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messages to a predefined service thread (the pseudo code in the right box). After sending the

“barrier” message they wait for an explicit reply from the service thread that manages the barrier.

When the service thread receives all the messages, it replies with a “continue” message to each

participating core. This way, instead of spinning over a shared variable, and ping-ponging the cache

line between threads, synchronization is done by communicating with a service thread via explicit

messaging. This work employs one of the workers (Core 0) as the service thread to manage the

barrier synchronization. When the Core 0 completes its worker task, it starts handling the barrier

messages.

The proposed MC model can be realized either by employing software shared memory buffer

based inter-core messages, or by introducing in–hardware explicit messaging. Even though the

implementation using software messaging is not expected to be efficient, for completeness, the

discussion and the evaluation is included as one of the baselines in the work.

3.2.1 Moving Compute to Data Model in Shared Memory (MC shmem)

In this approach, similar to the explicit communication in MPI [26], the messaging between worker

and service threads is accomplished using a shared software buffer per service thread. However,

as opposed to MPI programming model, MC shmem utilizes shared memory programming model

(c.f. Section 5.1). MC shmem approach is very similar to RCL [10] work in which the locking

is done in remote cores, and the requests are delivered using a shared request buffer per server

core. Similarly, in MC shmem, a shared buffer per service thread is utilized for the communication

between worker and service threads. Each buffer slot contains a flag and a place holder for the

data to be sent. To be able to send a message to a particular service thread, a worker atomically

increments the write pointer of the corresponding buffer, then places its data into the slot, and sets

the flag. The atomic increment on the pointer makes sure that multiple workers do not write to the
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same slot. The service thread starts from beginning of the buffer and checks the flag of each buffer

entry one by one and reads the data and performs the critical section. If the service thread reaches

to a buffer slot in which the flag is not set yet, it spins over the flag until the data is available. The

shared buffer is implemented in a way that it has enough capacity to hold all the requests. It can also

be implemented with limited capacity as a ring buffer. However, the experimental results for the

workloads of interest suggest that utilizing a regular buffer outperforms the ring buffer. Therefore,

in this thesis, a large shared buffer per service thread is utilized.

This implementation of the MC model pins the shared data block in the service threads and

benefits from non–blocking communication. However, the shared buffer utilized for explicit

communication bounces between worker and service threads. In the case of Spin and Atomic

based synchronization, if there is no contention in the shared data, the ping–ponging affect can

completely vanish. On the other hand, implementing MC approach in shared memory leads to

constant ping–ponging of the shared buffer. The aforementioned non–blocking communication

may ease the cost of ping–ponging by allowing worker threads to hide the communication latency.

However, at higher core counts, the impact of ping–ponging is expected to limit performance. As a

result, in order to enable efficient implementation of the MC model, hardware support for explicit

messaging is introduced as an auxiliary mechanism.

3.2.2 In–hardware Core–to–Core Explicit Messaging

As discussed in the previous section, achieving moving compute to data model using solely cache

coherence has similar limitations with other shared memory synchronization models. Therefore,

architectural support for core–to–core communication is required to efficiently scale to 1000–cores.

In this regard, this work introduces auxiliary support for low-latency core–to–core communication.

Four explicit messaging instructions are introduced in the ISA, and the required micro–architectural
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support is added to each core pipeline (c.f. Section 4).

1. Send instruction does not block the pipeline. It requires the destination core’s address along

with the data to be sent from the sender’s register file to the receiver’s register file.

2. Recv instruction stalls the pipeline if the data is not present at the receive queue of the core

that issued this instruction. Once the data arrives, the recv instruction pulls the data from the

receive queue and places it into the register file.

3. Sendr (send with rendezvous) instruction is a blocking send instruction in which an explicit

reply is expected from the destination core.

4. Resumer (resume rendezvous) instruction is a non-blocking special send instruction which is

used to reply to the sendr messages.

The details of the explicit messaging protocol and the architectural extensions are discussed in

Section 4. By utilizing these low–latency messaging instructions, worker and service cores exchange

messages between their register files without involvement of the cache coherence. In the case of

fine–grained synchronization where non–blocking communication can be used, the worker threads

make use of the send instruction to request critical section executions, and it is paired with recv

instruction on the service thread side. If a blocking communication is needed, then sendr/resumer

instructions are utilized. Thus, the cache line ping–ponging never happens when exchanging

messages between cores.

Once the messaging is implemented with hardware support, the MC model provides two key

advantages. First, it prevents unnecessary ping–pong of shared data by pinning it to service threads.

However, for certain applications, shared data can be read by other threads to enable work efficient

execution of the algorithm. The second advantage is that if non–blocking communication is

utilized in the worker side, the MC model enables to efficiently overlap communication overheads
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with computation. With this approach, worker and service tasks are pipelined, and additional

communication stalls are hidden. In addition, the workers can have multiple back to back in–

flight request messages, and possibly further ease the overheads of worker to service thread

communication. The shared memory based models, on the other hand, suffer from cache line

ping-pong and blocking communication stalls. The benefits of MC with in–hardware explicit

messaging are expected to be more notable at higher core counts as the distance between sharer

cores and the network congestion increases.

3.2.3 Worker and Service Thread Distribution

The main challenge with the MC model is the determination of the right number of worker and

service threads in the spatial setting to exploit application parallelism in a load–balanced way.

This approach requires tuning the ratio of worker and service threads to achieve near-optimal

performance, otherwise the system suffers from the work imbalance. The other approach is to utilize

two context per core and temporally employ the same core for both worker and service threads. In

the following two subsections, both distribution approaches are discussed in more detail.

Spatial Moving Compute to Data Model

In this distribution approach, worker and service threads are spatially assigned to the available

cores as shown in Figure 3.2.1. A naive way to achieve the right thread mapping is to perform

an exhaustive search by varying the number of worker and service threads, and determine the

best performing mapping. This approach may be used at low core counts, however it gets time

consuming as the number of cores increases. In addition, each workload is expected to require

different ratio due to its unique data structure and synchronization requirements. To overcome these

challenges, this work proposes to deploy a profiling based heuristic. The heuristic relies on the
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Figure 3.2.1: Spatial distribution of worker and service threads.

correlation of the number of service threads and the percentage of shared work in a given workload.

In this method, the shared memory version of the application is profiled to obtain the average time

spent in critical code sections (shared work) compared to the total completion time. If the time

spent in critical code sections is high, the required service thread count is also high, and vice versa.

If the shared work percentage results in less than 1 service thread due to very small shared work, it

is assigned a single service thread. Moreover, at most half of the cores are assigned to the service

thread task because the work being done by each worker thread increases as the number of workers

decreases.

Temporal Moving Compute to Data Model

To support the temporal MC model, each core needs to be extended with two register files, an

explicit messaging–aware switching policy logic, and selection logic for register reads/writes to

support hardware multi–threading. Each hardware context in a core is then mapped to a single

service thread and a single worker thread for temporal mapping. Hence, the number of worker and

service threads is always equal to the number of used cores. This approach eliminates the need

to tune the number of worker and service threads. However, it requires an additional context and
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special switching policy that takes explicit messaging into account for fast context switching. In

addition, the number of threads participating in the synchronization becomes 2 times the number of

cores which may incur additional communication stalls at higher core counts. Consequently, the

spatial model is preferred at higher core counts, since (1) the available cores are relatively easier to

load balance, and (2) the number of threads participating in synchronization must be kept in check

to minimize unnecessary communication stalls.
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Chapter 4

Architectural Extensions for Efficient

Implementation of the MC Model

As discussed in the previous chapter, in–hardware explicit messaging is required for efficient

implementation of the proposed moving computation to data model. Hence, this section is dedicated

to discuss the baseline multicore architecture, and the hardware extensions to enable fast core–to–

core direct communication for the MC model. Furthermore, detailed description of the explicit

communication protocol is also provided. The discussed architecture and the messaging protocol

is modeled in a simulator environment to evaluate MC model at 1000–cores scale. In addition,

the proposed model is also prototyped on Tilera Tile-Gx72 multicore system as it offers hardware

support for direct core–to–core messaging on top of shared memory cache coherence. Therefore,

the chapter is concluded with a section on the architectural details of the Tile-Gx72 machine.
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Multicore

F D E M W

L1-D L1-I

STB

L2 Directory
Router

Router

R

Q

MU

Register	File

send

send

recv

recv
recv

send_1 (coreid, data_1)

…

send_n (coreid, data_1, data_2, …, 

data_n)

sender_core = receive_1 (&data1)

…

sender_core = receive_n (&data_1, 

&data_2, … &data_n)

Figure 4.1.1: Overview of a tile and architectural extensions.

4.1 Architectural Overview

The baseline is a tiled multicore architecture. Figure 4.1.1 shows a logical view of a tile within the

proposed multicore processor. The tiles are connected to each other with a 2-D mesh interconnection

network. Each tile includes a single issue RISC-V [27] core, private level-1 instruction and data

caches, a shared last-level cache with an integrated directory for MESI cache coherence protocol,

and a network router for inter-core communication. Memory controllers are attached to some of the

tiles to enable off–chip memory accesses. Four explicit messaging instructions are added into the

RISC-V ISA, namely, send, recv, sendr, and resumer. The tiles are extended and shaded modules

are introduced to support these instructions on top of shared memory. The syntax of the send/receive

operations is shown in the figure. When a send instruction is executed, messaging unit (MU) reads

the CoreID and the data from the specified registers, and creates a packet to be sent to the on-chip

network. The extended on-chip network transmits the message to the receive queue (RQ) at the

destination core, and the messages are buffered in the receive queue until the receive instruction

is executed. Once the instruction is executed, MU pulls the data from the RQ and places it into

the specified registers. The detailed description of the protocol is discussed in Section 4.2. Note
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that shared memory cache coherence is retained in the system, and the explicit messaging support

is added as an auxiliary support to achieve efficient implementation of the proposed MC model.

In addition to explicit messaging capability, per-core 4-way SIMD that can operate on four 16-bit

floating point numbers are added to have state–of–the–art implementations of machine learning

algorithms. Associated instructions, such as fused–multiply–add are also integrated into the ISA.

Furthermore, RISC-V ISA’s standard extension for atomic instructions [27] are implemented. These

instructions such as load–reserved and store–conditional are employed to implement shared memory

synchronization primitives.

In default mode, the cores are single–threaded, and the application threads are spatially dis-

tributed among available cores. In addition to spatial mode, multiple threads per core with hardware

level context switching is also supported to enable temporal thread distribution of threads as dis-

cussed in Section 3.2.3. To support hardware multi–threading, each core is extended with two

register files, an explicit messaging–aware switching policy logic, and selection logic for register

reads/writes. The switching policy interacts with the receive queue to initiate thread switching when

a message arrives. These supports in microarchitecture are utilized to implement the temporal MC

model. In the temporal MC model, it is crucial for service thread to perform its work prudently be-

cause otherwise the receive queue may suffer from contention, and possibly also lead to application

level deadlock. Therefore, the service threads are given a higher priority, and whenever the receive

queue receives a message, the policy switches to the service thread and all messages in the queue

are processed.
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Figure 4.2.1: Explicit messaging protocol.

4.2 Explicit Messaging Protocol

As discussed in Section 3.2, the MC model utilizes both blocking and non–blocking communication

to accelerate fine and coarse–grained synchronization. The introduced explicit messaging support

provides capability to realize both types of communication between worker and service threads.

4.2.1 Non–blocking Communication

This communication type is utilized to implement the MC model to achieve fine–grained non–

blocking synchronization. A send instruction at the worker core is paired with a corresponding recv

instruction at the service core to implement non–blocking core–to–core communication. A send

instruction does not block the pipeline if the messaging network is available to inject the message.

This allows the worker core to continue with other useful work while the message traverses the

network to its destination. Moreover, the worker can have multiple in–flight messages as long as the

network flow–control permits. This type of communication helps overlap communication latency

with other computations.

Figure 4.2.1 illustrates the protocol implementation for core–to–core non–blocking communi-

cation. First, the destination address is calculated using the receiver CoreID, and placed into an

architected register. Then, a message is constructed by the sender core’s pipeline by executing send
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instruction with the address and the data (1). The constructed message consists of a header contain-

ing the destination address and the message size, and the payload. Each send instruction supports

up to 4 words. The message can contain a pointer to a function along with the necessary data to be

executed, or just arbitrary data that the destination core needs to perform some computation. The

programmer needs to make sure that the receiver side knows what type of message, and how many

words are being sent to it. The protocol utilizes a special per–core counter called “capacity counter”

(2), and an implicit ACK message (6) to enable flow–control for messaging. The capacity counter

tracks the number of in–flight messages, and the senders cannot have more in–flight messages

than the set capacity counter value. This counter is essential for supporting thread migration and

virtualization in the proposed architecture. The programmer sets this counter by setting a special

register at the beginning of the program execution. When a message is inserted into the network,

the corresponding core decrements its capacity counter. When the counter value reaches to 0, the

send instruction is stalled in the pipeline. When the message is injected into the network, it is

routed to the destination core using the on-chip network (3). For this protocol to work correctly, it

is assumed that the messages from a same source to a same destination are ordered in the network.

In addition, the routing algorithm is assumed to be deadlock–free. Once a message arrives at the

destination’s receive queue (4), it is pulled by the destination core’s recv instruction (5). The recv

instruction always blocks the pipeline. If the core executes the recv instruction before the message

arrival, it stalls until the data arrives at the receive queue. The programmer is responsible for adding

subsequent code to decode the received message, and initiate execution of the appropriate code

region using the received data. After each message is read from the receive queue, an implicit ACK

message is generated to traverse back to the source core (6&7). The send and ACK messages use

separate networks (in addition to the ones used for cache coherence) to avoid deadlock, as utilizing

the same network for both type of messages may lead to circular dependencies in the network. The

capacity counter is incremented implicitly upon receiving the ACK (8), and the sender core (if
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stalled) is allowed to proceed.

4.2.2 Blocking Communication

In several application scenarios, a strong consistency is required or a piece of data is needed from

the destination core. In this case, the sender waits for an explicit reply from the receiver. It can

be implemented by executing a recv instruction followed by a send instruction in the sender core,

and a send instruction followed by the recv instruction in the receiver core. Unfortunately, the

send – recv instruction pairs may result in a deadlock if the receive queue has finite size, and both

communicating cores use the same network to send their messages. For example, consider a master

core that dispatches work to the worker cores. All the workers send work request messages to

the master, and then wait for their explicit reply by executing a recv instruction. If the number

of messages sent are more than the receive queue size of the master core, the messages block the

network responsible for the send traffic. When the master tries to inject a send message to the

router for replying to one of the workers, it cannot proceed because the send network is filled with

the overflown messages. Moreover, the master core cannot pull any more data from the receive

queue because it is stuck at executing the send instruction. Hence, the deadlock situation occurs.

Therefore, for the blocking communication, special sendr and resumer instructions are implemented.

In this case, the explicit reply messages are always sent using a resumer instruction which flows on

the dedicated reply network with ACK messages.

Unlike send instruction, the sendr blocks the pipeline until the resumer reply message is received

at the sender core. At the receiver core, the recv instruction is utilized to receive the sendr message.

However, the sender address is stored to be utilized by the resumer instruction. This explicit resumer

reply message is routed back to the sender core. This message is directly delivered to the pipeline

without getting into the receive queue. Upon receiving the message the sendr instruction completes.
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The implementation of the MC based barrier as described in Section 3.2 is realized employing

these two instructions. The workers participating in the barrier utilize sendr instruction for barrier

message to the master core. The master core receives all the messages with recv instruction, and

resumes the participating cores with resumer instruction.

4.2.3 Deadlock Freedom

Application Level Requirements

To avoid application level deadlock, the proposed architecture allows messages from different sender

cores to arrive in any order at the destination core. Ordered message arrival can only be enforced if

the architecture enables receive queues for each sender core, which is an unnecessary burden on the

hardware. To keep the overhead of receive queue per core low, the unordered message arrival must

be handled in the application software. The programmer must decode each received message, and

invoke the appropriate software routine(s) to handle the request from the corresponding sender core.

Protocol Level Deadlock Freedom

Limited buffering in receive queues can lead to protocol level deadlocks. In the proposed protocol

that does not impose ordering of message arrivals, the application software ensures forward progress.

However, if threads impose order of arrival restriction, the finite size of receive queues can lead

to protocol level deadlock. This scenario can be resolved by always replying to the sender either

explicitly (through resumer) or implicitly (through an ACK message). This reply message in turn

increments the capacity counter at the sender, which is used to avoid overflowing the finite sized

receive queues.
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Network Level Deadlock Freedom

It is assumed that the network guarantees the message arrival orders from the same source to the

same destination. In addition, the routing algorithm is assumed to be deadlock–free, or it is assumed

to have a deadlock recovery mechanism. Even with these assumptions, the system can deadlock if

the same network is deployed for both request messages and the reply messages. For example, if

the ACK message uses the same network with the send message, it can cause circular dependency

between threads, and lead to deadlock. Hence, a dedicated network is utilized for ACK and resumer

messages to separate them from send and sendr messages to remove possible deadlock scenario.

4.2.4 Message Consistency

Certain application communication patterns may require message consistency, i.e., a sender thread

must ensure the delivery of prior messages to their destination before commencing with other work.

The ISA is extended with a “message fence” instruction, which ensures that all pending messages

are pushed into the network and observed at the receiving side. This is ensured by monitoring the

capacity counter since it tracks all in–flight messages whose ACKs have not been observed yet.

Once the capacity counter reaches its initialized value, all sent messages have been observed at

their respective destination. At this point the message fence instruction commits.

4.2.5 Thread Migration and Multiprocessing Support

Supporting thread migration is a necessity for a general purpose processor. However, the proposed

architecture can deadlock if in–flight explicit messages are not dealt with properly. This can happen

because an in–flight message can be delivered to a core where the thread is not running any more. To

properly handle this situation, a clean–up mechanism is required to ensure all in–flight messages are
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delivered before thread migration can occur. The clean–up mechanism works as follows. The OS

halts all the cores from injecting any more messages into the network. After that, the OS monitors

the capacity counter of each core and waits for them to get back to their initialized values. This

signifies that all the cores have received ACKs for all their in–flight messages and there is no explicit

message in the network. At this point, the OS can perform the thread migration. It also updates the

thread–to–core mapping so that future messages can get to their destination properly. Hardware

virtualization support can also be added based on this mechanism.

4.3 Explicit Messaging Hardware Overhead

The architecture requires a receive queue per core to support the proposed protocol as shown in

Figure 4.1.1. The design space study is presented in [12] to empirically determine the per core

receive queue size using the MC model. In this study, the service thread count is set to the best

performing service core count for the workloads that require fine–grained synchronization. Then,

the per thread sender capacity counter is swept from 2 – 8 with an increment of 2. For each

sender capacity counter setting, the maximum utilization among the receive queues, as well as the

corresponding performance speedup is measured. It is shown in the paper that beyond a sender

capacity of 4, the performance does not improve and results in an increase in the receive queue size.

However, from sender capacity of 2 to 4, the performance speedup is considerable while the receive

queue size only increases slightly. Therefore, in this thesis, the per thread sender capacity is set to 4.

Using this capacity counter value, a study is conducted to determine the required receive queue size.

The workloads of interest in this work are run to completion, and their respective maximum receive

queue utilization is obtained. Then, the required receive queue size is determined by choosing the

largest receive queue utilization among all the workloads. Finally, 2.4KB is determined to be the
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receive queue size per core in this thesis. In addition to the receive queues, cache coherence and

explicit messaging traffic is separated from each other using independent on-chip networks to avoid

deadlock.

4.4 Prototyping Explicit Messaging and Cache Coherence on

TILE-Gx72 Machine

Tilera R©’s Tile-Gx72TM processor is one of the few commercially available machines that enable

similar capabilities to the proposed explicit messaging protocol on top of hardware cache coherence.

It is a tiled multicore architecture with 72 tiles interconnected with 2-D mesh networks-on-chip,

called iMesh Interconnect. Each tile consists of a 64-bit VLIW core, 32 KB private level-1 data

and instruction caches, and a 256 KB shared level-2 (L2) cache. A directory is integrated into the

L2 cache slices to support a directory–based cache coherence protocol. Tile-Gx72TM architecture

also offers various configurations for data placement and caching schemes. By default, a cache

line is homed at an L2 cache using a hardware hashing scheme, and also replicated in the L2 slice

of the requesting core. Experiments with and without replicating cache lines in the local L2 slice

of the requesting core varied performance by an average of 1%. Hence, in the rest of the thesis

the default L2 homing scheme is utilized. In addition, networks-on-chip are included in each tile

to communicate with other tiles, I/Os and the on-chip memory controllers. There are two groups

of networks in the system. One is a set of “Memory Networks”, which are utilized for memory

and coherence traffic. The other one is a set of “Messaging Networks”, which are deployed to

explicitly send messages between tiles (User Dynamic Network (UDN)) and the I/O (I/O Dynamic

Network (IDN)) devices. While User Dynamic Network (UDN) is used to enable tile–to–tile direct

messaging, I/O Dynamic Network (IDN) is used to send messages to the I/O. UDN is leveraged for

moving compute to data model in this work.
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Each tile contains four UDN queues for explicit messaging. These queues are implemented as

small FIFO queues. Each queue is mapped to a special purpose register, which is used to send and

receive data between execution units without any involvement of the cache coherence protocol and

traffic. For example:

move udn0, r0 is a send operation in which data in r0 is moved to special purpose register

udn0. Then, it is injected into the network where it traverses to the destination tile.

move r0, udn0 is a receive operation in which the sent data is received and placed in one of

the queues, and since the queues are mapped to special UDN registers, the data is read from the

corresponding register (udn0 in this case) when it arrives in the specified queue. If the message

does not make it to the queue when the “move” instruction is executed, this operation stalls the core

pipeline.

Tile-Gx72TM supports Tilera Multicore Components (TMC) library [28] to initialize and make

use of the UDNs. Hence, low level instructions are not used for explicit communication. For this

work, the library calls provided by TMC library for tile–to–tile messaging are used (c.f. Section 5.2).

To be able to make use of the UDN networks, threads are pinned to cores based on their thread IDs

in an ascending order. In Tile-Gx72TM, the threads are spatially distributed among available cores.

UDNs in Tile-Gx72TM supports both blocking and non–blocking communications using the

library calls for send/receive operations. However, since it does not utilize separate instructions for

the reply messages of the blocking communication, it may result in deadlock situation as discussed

in Section 4.2. However, the blocking communication is used to implement barrier synchronization

and the database workload in this thesis, and the offered explicit messaging support is sufficient to

realize both database workload and the barrier without deadlocking the system.
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Chapter 5

Programming with Moving Compute to

Data Model

The proposed moving compute to data model and the architectural extensions for efficient im-

plementation of it are discussed in the previous chapters. Since the proposed approach utilizes a

different model to accelerate synchronization, it is also significant to discuss how a given application

is programmed with the MC model. Therefore, this chapter is dedicated to discuss programming

model, the synchronization primitives and the messaging API in Tile-Gx72TM and Simulator, and

the illustration of how a shared memory application is seamlessly translated to the proposed MC

model.

5.1 Programming Model

The proposed MC model utilizes shared memory parallel programming model. Threads are created

within a process using the Pthreads library [29], and all threads are allowed access to shared data

structures. Even though Pthreads is utilized in this work, OpenMP [30] programming model can
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Figure 5.1.1: Thread management with the MC model.

easily be adapted as well. The only difference from traditional thread creation is that two sets of

threads are created as shown in Figure 5.1.1, and distributed by either jumping to worker routine

or service routine. Then, the programming model replaces traditional thread synchronization with

the explicit messaging based MC protocol. The service threads perform critical section execution

with the request of the worker threads, as discussed in Section 3.2. The process of transforming an

application to the MC model can be automated by detecting thread synchronization points in the

code. The identified critical sections can be moved to a separate procedure, then service threads are

to be assigned to these procedures. As similar to RCL [10], Coccinelle [31] or similar refactoring

tools can be easily utilized to transform existing applications. However, this work does not utilize

any tool to implement the moving computation to data model. Manual transformations of the

representative applications are illustrated to show how shared memory synchronization is ported to

the MC model.
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5.2 Synchronization on Tile-Gx72TM

Tile-Gx72TM platform provides Tilera Multicore Components (TMC) library to make use of various

synchronization and communication capabilities of the machine. The provided library contains

various spin–based synchronization primitives such as simple spin–locks (tmc_spin_mutex_t)

and barriers. In addition, it also offers queue based spin–locks (tmc_spin_queued_mutex_t)

which provide better fairness as compared to the simple spin–lock. For the workloads presented in

this thesis, the performance difference between simple and queue based locks is negligibly small,

hence simple locks are utilized. The TMC library also includes atomic memory operations to serial-

ize updates on a shared data. In this work, arch_atomic_val_compare_and_exchange()

and arch_atomic_increment() are used to implement critical sections of graph workloads

as discussed in Section 5.4.1. Similarly, atomic increment is also utilized for barrier implementation.

The MC model is implemented using the UDN capability of the Tile-Gx72TM. The TMC library

provides interfaces to enable and utilize the inter–core communication. First of all, the main process

that creates the threads executes tmc_udn_init() which forms a UDN hardwall with the given

cpu_set_t. The cpu_set_t specifies all the CPUs that are granted access to the messaging

network, and tmc_udn_init() routine creates a rectangle that covers all the specified CPUs.

After the threads are created, based on the given thread id, the threads are pinned to the cores using

tmc cpus set my cpu() routine. Then, each thread calls tmc_udn_activate() to enable

communication using the messaging network within the created UDN hardwall.

Tile-Gx72TM contains 4 UDN demux queues, hence a message can be sent and received using

any of the queues. The programmer needs to make sure that the queue tag provided while sending

the data is matched on the receiver side by calling the proper receive routine. For example, in the

MC implementation, demux queue zero is utilized to send/receive the critical section requests. As

shown in Algorithm 1, tmc_udn_send_n() routine is used to send the request messages to the
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Algorithm 1 Messaging API between worker and service cores on Tile-Gx72TM.

1: << Worker thread sends x words >>

2: tmc_udn_send_n (header, UDN0_DEMUX_TAG, data_1, data_2, ..., data_n)

3:

4: << Service thread receives x words >>

5: data_1 = tmc_udn0_receive()

6: data_2 = tmc_udn0_receive()

7: ...

8: data_n = tmc_udn0_receive()

service thread where the message is being placed into the demux 0. It accepts up to 20 words of data,

meaning that n can vary from 1 to 20. The send operation requires a header which is necessary to

route the data to the receiver core. The header for each core is statically created before getting into

the parallel region by calling tmc_udn_header_from_cpu(coreid), and placed into an

array of headers. Before sending a message, with a simple lookup, the header for the corresponding

core is obtained and the message is sent. Similarly, on the service core side, the data is being

received from demux 0 by calling tmc_udn0_receive() routine n times.

5.3 Synchronization on Simulator

The simulator supports RISC–V’s standard extension of atomic instructions in addition to load–

reserve/store–conditional instructions. The load–reserve/store–conditional instructions are deployed

to implement spin–locks as similar to TMC library of Tilera. The barrier synchronization is

implemented using both spin–lock and the atomic fetch–and–add instruction, amoadd. For the

critical section implementations, amoadd, and amoswap instructions are utilized. Since RISC–

V tool chain supports the GCC builtins for atomic memory operations, in the actual implementation,

such builtins are utilized. For example, for atomic fetch–and–add, __sync_fetch_and_add

() is deployed.
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Algorithm 2 Messaging API between worker and service cores using send/receive instructions on

Simulator.

1: << Worker thread sends x words >>

2: sendmsg_n (coreid, data_1, data_2, ..., data_n)

3:

4: << Service thread receives x words >>

5: src_core = recvmsg_n (&data_1, &data_2, ..., &data_n)

The MC model is implemented using the send, receive instructions added in the ISA. Similar

to Tilera, an API library for messaging is implemented. The syntax of the API is similar to Tile-

Gx72TM with some differences. In the simulator, there is only a single receive queue per core,

hence there is no need to tag the messages. The data is sent and received as shown in Algorithm 2.

Instead of a special header, the send operation receives core id as an argument to determine the

destination. The receive instruction returns the sender core id in case a reply message needs to

be sent. The capacity counter discussed in Section 4.2 for send operation can be initialized using

set_thread_capacity (). If it is not initialized by the programmer, default value of 1 is

used.

Algorithm 3 Messaging API between worker and service cores using sendr/resumer instructions on

Simulator.

1: << Worker thread sends x words >>

2: return_data = sendr_n (coreid, data_1, data_2, ..., data_n)

3:

4: << Service thread receives x words and resumes the worker >>

5: src_core = recvmsg_n (&data_1, &data_2, ..., &data_n)

6: resumer (src_core, reply_data)

As discussed in Section 4.2.2, in order to implement blocking communication, sendr/resumer

instruction pairs are utilized. Various versions of sendr and resumer operations are implemented in

the runtime library. An example is illustrated in Algorithm 3. In the algorithm, the worker sends

n number of words and waits until it receives a single word as a reply. The core id of the sender

is stored in line 5, then used in the resumer operation to send explicit reply. There are possible
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variations in which the sender sends a word of data, then expects multiple words of reply, but these

variations are not used in this thesis.

5.4 Workload Illustrations

5.4.1 Graph Workloads

Six graph workloads are ported from CRONO benchmark suite [8]. Single Source Shortest Path,

Breadth First Search and Triangle Counting involve both fine–grained and coarse–grained synchro-

nization while PageRank, Connected Components and Community Detection contain coarse–grained

synchronization such as barriers and reduction. The workloads with coarse–grained synchronization

are implemented by replacing the shared memory barriers with the MC barriers. PageRank and

Connected Components also involve reduction phases at the end of each iteration. These reductions

are also implemented using the MC based reduction similar to the barrier implementation. The

details of the workloads with coarse–grained synchronization are not discussed further. In the

following subsections, the transformation of the workloads with fine–grained synchronization are

discussed in detail.

Triangle Counting (TC)

TC is a well-known graph algorithm that counts triangles in a graph for various statistical purposes

in an application [32]. Figure 5.4.1 demonstrates the implementation of TC using spin–based

locks, atomic instructions and the MC model. A shared data structure is maintained to count the

connectivity of each node, and it is updated atomically using spin locks (upper left box in the figure).

After counting the connectivity for each node, all the participating threads hit a barrier. Then each
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<< Spin Lock Implementation >>

Worker Thread Job

Divide nodes among threads

For each node v:

For each neighbor u:

spin_mutex_lock(u);

D[u]++; 

spin_mutex_unlock(u);

<< Atomic Implementation >>

Critical Code Section 

with atomic instruction

fetch_and_add(&D[u],1);

<< MC Implementation >>

Worker Thread Job

Divide nodes among threads

For each node v:

For each neighbor u:

coreid = get_service_core(u); 

sendmsg(coreid, u);

<< MC Implementation >>

Service Thread Job

D array is statically divided among service threads 

while !terminate do

u = recvmsg();

D[u]++;

Figure 5.4.1: Pseudo code of triangle counting implementation using Spin, Atomic and MC.

thread calculates their local triangle count using a heuristic. Finally, the total triangle count is

determined by aggregating the local counts. TC does not include any test before the critical section,

which results in acquiring a lock multiple times for each node. Therefore, the contention on shared

data is expected to be high for this algorithm depending on the graph input and the number of cores.

As a result of contention, the lock acquisition overhead is also elevated due to retries and cache line

ping–pong for both shared data and the lock variables. Implementing the algorithm using lock–free

data structure by employing the atomic fetch–and–add (FAA) instruction (lower left box in the

figure) removes the locks. This significantly reduces the overheads of acquiring locks as the atomic

FAA instruction does not fail. However, the shared data itself still ping pongs between cores.

The MC model pins the shared data structures D at dedicated cores and ships the critical section

work to service threads as discussed in Section 3.2. The MC implementation is presented in the

right side of the figure. The code section that needs atomic updates is migrated to service threads

(see Figure 5.4.1). Only the neighbor node id is needed for critical section, hence the workers

send one word of data as message to the corresponding service thread. Similar to Atomic, MC
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<< Spin Lock Implementation >>

Worker Thread Job

Divide nodes among threads

while !terminate do:

For each node v:

if v != visited or v.neighbors == visited:

continued;

For each neighbor u:

if ( Q[u] != visited ) 

spin_mutex_lock(u);

Q[u] = visited;

spin_mutex_unlock(u);

<< Atomic Implementation >>

Critical Code Section with atomic instruction

if (Q[u] != visited )

atomic_swap(&Q[u], visited);

<< MC Implementation >>

Worker Thread Job

Divide nodes among threads

while !terminate do:

For each node v:

if v != visited or v.neighbors == visited:

continued;

For each neighbor u:

if ( Q[u] != visited ) 

coreid = get_service_core(u); 

sendmsg(coreid, u);

<< MC Implementation >>

Service Thread Job

Q array is statically divided  among service threads 

while !terminate do

u = recvmsg();

Q[u] = visited;

Figure 5.4.2: Pseudo code of BFS implementation using Spin, Atomic and MC.

also eliminates the locks and related overheads. In addition, it also pins the shared data to service

threads and prevents cache lines from unnecessarily bouncing between cores. Moreover, by utilizing

non–blocking communication, it overlaps communication overheads with other useful work. For

instance, while one request is being propagated in the network, the workers can load the next

neighbor id, and execute lookup function to determine the service thread id for the next request.

Breadth First Search (BFS)

Breadth First Search (BFS) is quite different algorithm as compare to TC. Figure 5.4.2 illustrates

the pseudo code of BFS algorithm using spin–locks, atomic instructions and the MC model. The

spin–lock implementation is shown in the upper–left box. Each thread goes through its part of

the graph, and visits the nodes iteratively by opening new pareto fronts in each iteration. The

visiting part is protected with fine–grained locks to ensure that no other thread visits the same

node. Unlike TC, the algorithm contains tests which prevent redundant lock acquisitions. It tries
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to guarantee that each node is visited only once in whole program execution. This significantly

reduces the contention on the shared data, and the amount of shared work in this algorithm. Hence,

fine–grained synchronization is not significant part of the workload’s completion time. Similar to

TC, the locks are removed as shown in the lower–left box, and visit operation is done using atomic

compare–and–swap instruction to eliminate the lock overheads.

The MC version is also implemented as shown in the figure (the pseudo code in the right two

boxes). The tests to reduce the redundant visits stay in the worker side to eliminate redundant

critical section requests. Even though this causes shared data to ping-pong between worker and

service threads, it leads to more work efficient execution, hence yields better performance.

As mentioned earlier, due to the tests that filter out redundant critical section executions, fine

grain synchronization does not contribute much work to the total execution time in BFS. However,

barrier synchronization becomes dominant for this workload since worker threads do not perform

in a lockstep fashion due to work efficiency optimizations. Therefore, implementing barrier

synchronization using the MC model is expected to help performance scaling as compared to the

Spin and Atomic versions.

Single Source Shortest Path (SSSP)

SSSP is used to compute the shortest path for a user defined source node in a graph. In this work, the

algorithm is parallelized using an outer loop parallelization strategy in which the nodes are accessed

in a controlled manner. The range of nodes that can be visited are calculated until all the nodes

are accessible. The nodes in each range are divided among cores, and the cores visit and relax the

neighbors of their nodes one at a time. As seen in Figure 5.4.3 (upper left), the node distances are

updated using locks, as threads may update the distances of common neighbors at the same time.

The lock is acquired only when the test before lock acquisition fails to eliminate the unnecessary
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<< Spin Lock Implementation >>

Worker Thread Job

Divide nodes among threads

For each node v:

For each neighbor u:

If (D[v] + W [v, u] < D[u]) 

spin_mutex_lock(u);

If (D[v] + W [v, u] < D[u])

D[u] = D[v] + W [v, u] ;

spin_mutex_unlock(u);

<< Atomic Implementation >>

Critical Code Section with atomic instruction

If (D[v] + W [v, u] < D[u])

atomic_swap(&D[u], D[v] + W [v, u]);

<< MC Implementation >>

Worker Thread Job

Divide nodes among threads

For each node v:

For each neighbor u:

If (D[v] + W [v, u] < D[u]) 

coreid = get_service_core(u); 

sendmsg(coreid, u, v, W[v,u]);

<< MC Implementation >>

Service Thread Job

D array is statically divided  among service threads 

while !terminate do

u, v, w = recvmsg();

If (D[v] + W [v, u] < D[u])

D[u] = D[v] + W [v, u] ;

Figure 5.4.3: Pseudo code of SSSP implementation using Spin, Atomic and MC.

locking. However, since the algorithm may not converge easily depending on the input, the test may

not fail as often. Therefore, it results in multiple lock acquisitions per node, hence the contention on

the shared data also gets higher depending on the input graph and the number of cores. Similar to

TC and BFS, SSSP is also accelerated using an atomic swap instruction by removing the locks and

related overheads.

The MC implementation of SSSP, similar to TC, moves the critical section to service threads

(the left box in Figure 5.4.3). The whole relaxation code is executed by the service thread. Contrary

to TC and BFS, SSSP’s critical section requires three words to operate on. The workers perform the

test as in the case of Spin and Atomic versions, and if the check fails, they send the critical section

execution request with the required data words to the corresponding service thread. The service

threads receive the request messages, and relax the shared distance array. Even though it causes

D array to be read by the workers and results in additional coherence traffic, the test before the

critical section remains there to make sure the algorithm is work efficient. This prevents sending
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unnecessary critical section requests and jamming the service threads with messages. The MC

model enables pipelining the critical section work with the worker tasks by using non–blocking

communication. In addition, as this algorithm requires to load multiple data before sending a request

message, it offers a lot of room to overlap communication overheads with the memory stalls.

5.4.2 Machine Learning Workloads

The recent success of deep neural networks (DNNs) on computer vision [33] [34] [35] and natural

language processing [36] have attracted the attention of both academia and industry. In this context,

many accelerators are proposed for both high performance [37] and low energy applications [38] [39].

Specially, GPUs are shown to be effective in processing of DNNs due to their high FLOP rate,

memory bandwidth, and large concurrency capabilities. In this thesis, two machine learning

workloads, namely AlexNet [35] and SqueezeNet [40] are developed and evaluated to show that if

the proper computation mechanisms and communication models are in place, a general purpose

multicore architecture can be utilized for these workloads. Because the convolutional layers account

for most of the computation for these workloads, only the implementation of the convolutional

layers are discussed. As mentioned in Section 4, the simulator supports 4–way SIMD instructions

with 16–bit floating point to improve the computational power of the system and reduce the pressure

on the memory subsystem. In this way, the machine learning workloads are implemented using

these supports to have state–of–the–art performance.

Convolutional Layer Implementation

Convolutional layers are the computationally expensive part of a neural network [41] [42]. Each

layer comprises multiple kernels to produce multiple output feature maps. Each kernel has multiple

channels corresponding to input channels. Each neuron output is calculated with the accumulation
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of 2D convolution operations using the channels of the corresponding kernel and input. All three

data structures are reused for various purposes. Each kernel is reused for each neuron in an output

feature map, and the input is also reused with each kernel to generate different output feature

maps. Similarly, each output is also reused when accumulating the 2D convolutions. To minimize

performance overheads, reuse of these data structures in the L1 cache must be maximized. Different

parallelization strategies can be utilized based on the filter size of the given neural network.

A coarse–grained parallelization strategy is that all the neurons in a layer are tiled, and tiles are

divided among the available threads. Each thread performs all the computation for the neurons in

its tiles. At the end of each layer, the threads are synchronized with a barrier. This approach enables

reuse of the kernel data. Each kernel channel is brought to L1 data cache one by one, and reused

for all the neurons in each tile. This approach also allows data reuse for the output data structure

if it fits in the level-1 cache with the 2D kernel and the corresponding input. That is to say, when

bringing the next kernel channel for the same tile, the outputs are still in the L1 cache and loaded

without expensive L1 miss. However, this approach creates imbalance when using larger tile size in

some of the cases. For example, layer 3 of AlexNet contains 384 13× 13 neurons. If 13× 13 tiles

is used to have good reuse of filter and output data in L1, when using 256–core system, some of

the cores get more work than others. This causes underutilization of the system. If the tile size is

reduced to have more concurrency, then it hurts the data reuse.

More optimized implementation makes use of fine–grained parallelization strategy. It is achieved

by dispatching multiple threads to work on one neuron. This requires updating the same neuron

by multiple threads. Therefore, this must be implemented using critical code sections. The critical

section work can be realized utilizing shared memory spin locks. However, it does not perform as

well as the naive implementation due to the large overheads of shared memory locks. Therefore, it

is only implemented using the MC model, as depicted in Algorithm 5.4.4. In this approach, as it is

seen in the algorithm, the cores are clustered into small thread groups and each group works on a
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<< Worker Thread Job >>

// Divide the channels among group of threads

start = tid * nChannels/nThreads

stop  = (tid+1) * nChannels/nThreads

AccumCore = get_my_accum_core();

For each ch in range(start,stop) do

For each y in range(0, outH) do

For each x in range(0, outW) do

// Perform convolution for one channel and send

psum = 2dConvolution(filter, input, ch, y, x);

sendmsg(AccumCore, psum, nrnId)

<< Service Thread Job >> 

num msg = 0;

while !neurons.empty() do 

psum, nrnId = recvmsg();

Output[nrnId] += psum;

Figure 5.4.4: Pseudo code for fine–grained parallelization of convolution layers using the MC

model.

tile of neurons. To calculate a neuron output, the kernel channels are divided among the threads

in the group (the most outer loop in the pseudo code), and each thread calculates partial sums for

the neurons in its tile using its kernel channels (see the remaining two loops in the pseudo code).

One of the threads in each group is employed to accumulate the partial sums. The partial sum

of each neuron for each kernel channel is calculated, and sent to the accumulation thread using

non–blocking send operation. The service thread receives the partial sums from other threads,

and accumulates it over the corresponding neuron. Figure 5.4.5 shows the distribution of the data

structures for each thread group. As seen, in this approach, the neuron outputs reside in separate

service cores, and they are reused in their level-1 cache. Similarly, the kernel channels are also reused

for all the neurons in the tile. Because this approach deploys a fine–grain parallelization strategy,

it enables higher concurrency without loosing the data reuse benefits. However, it introduces

additional communication overhead. In order to alleviate the communication overhead, the threads

in each cluster are mapped to close proximity to each other. In addition, utilizing non–blocking

communication hides most of the communication latency. While one partial sum is traversed in the

network and processed by the service thread, the workers start calculating the next partial sums. To
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Figure 5.4.5: Overview of the convolutional layer in fine–grained parallelization using the MC

model.

get the best performance out of this approach, one needs to adjust the number of threads per group.

For this work, the optimal number of threads per group is empirically decided to be 8.

The convolutional layers in AlexNet are implemented using both aforementioned coarse and

fine–grained approaches. In the coarse–grained parallelization, the only synchronization point

is the barrier at the end of each layer. Hence, this configuration is implemented using various

barriers implementations discussed in Section 3.2. In addition, AlexNet is also implemented with

fine–grained parallelization. In the case of SqueezeNet, both the number of channels and the filter

sizes are small with the exception of a few layers out of 26 layers. Therefore, it does not have

opportunity to assign multiple threads to work on a single neuron. Consequently, it is implemented

using only the naive parallelization (coarse–grained) approach. Note that Tile-Gx72TM machine does

not have any special support for floating point SIMD. Therefore, these workloads are implemented

using scalar floating point in that machine. In addition, it only contains 72 cores, hence there is

enough concurrency and data reuse opportunity. Therefore, fine–grained parallelization is omitted

in Tile-Gx72TM.
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<< Worker Thread Job >>

// Divide the transactions among threads

For each txn in myTxns do:

For each request in txn do:

row   = request->row

r_type  = request->type

spin_mutex_lock (row->lock)

rc = access (txn, row, r_type)

spin_mutex_unlock (row->lock)

If rc == ABORT:

break

For each request in txn do:

row   = request->row

r_type = request->type 

If r_type == READ:

spin_mutex_lock (row->lock)

rc = finalize_read (txn, row)

spin_mutex_unlock (row->lock)

If r_type == WRITE:

spin_mutex_lock (row->lock)

rc = finalize_write (txn, row)

spin_mutex_unlock (row->lock)

If rc == ABORT:

break

Figure 5.4.6: Pseudo code of YCSB implementation using shared memory synchronization.

5.4.3 Database Management System, Yahoo! Cloud Serving Benchmark

The database benchmark, Yahoo! Cloud Serving Benchmark (YSCB) [43], is ported from [44].

The paper discusses various concurrency control schemes with two–phase locking and timestamp

ordering. In this thesis, one of the modern concurrency control schemes, Hekaton [45], is employed.

The scheme is a timestamp ordering scheme, which keeps track of write accesses by using per row

write history tables. In the commit time, the database management system checks if the reads of the

current transaction overlaps with the other concurrent writes. If there are overlapping writes, the

transaction is aborted. If there are no overlapping writes, the changes in the transaction are applied

to the database.

43



<< Worker Thread Job >> 

// Divide the transactions among threads

For each txn in myTxns do:

For each request in txn do:

row   = request->row;

r_type = request->r_type; 

coreid = get_service_thread (row);

sendmsg (coreid, mycoreid, ACCESS, type, row, txn);

rc = recvmsg ();

If rc == ABORT:

break;

For each request in txn do:

row   = request->row;

r_type = request->r_type; 

If r_type == READ:

coreid = get_service_thread (row);

sendmsg (coreid, mycoreid, FINALIZE_READ,row, txn);

rc = recvmsg ();

If r_type == WRITE:

coreid = get_service_thread (row);

sendmsg (coreid, mycoreid, FINALIZE_WRITE, row, txn);

rc = recvmsg ();

If rc == ABORT:

break;

<< Service Thread Job >>

While !terminate:

sender, c_type, row, txn = recvmsg ()

If c_type == ACCESS:

rc = access (txn, row, r_type)

sendmsg (sender, rc)

If c_type == FINALIZE_READ;

rc = finalize_read (txn, row)

sendmsg (sender, rc)

If c_type == FINALIZE_WRITE:

rc = finalize_write (txn, row)

sendmsg (sender, rc)

Figure 5.4.7: Pseudo code of YCSB implementation using the MC model.

Figure 5.4.6 shows the high level implementation of the workload with shared memory synchro-

nization primitives. As shown, the shared memory implementation is realized with multiple critical

sections. For a given transaction, the requested row is accessed by acquiring the corresponding lock.

After all the requests of a transaction are served, the transaction is finalized. In the finalize stage,

the database tuples are again locked for both read and write accesses to prevent race conditions.

Contrary to the graph workloads, the critical sections in this benchmark can not be implemented

using a single atomic instruction as they are more complex, hence YCSB is implemented using only

spin–locks.

The MC implementation moves the three critical sections to the service threads, and replaces
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them with request messages in the worker threads as depicted in Figure 5.4.7. The worker threads

send their request types along with the necessary data. Depending on the request type, the service

thread executes the corresponding critical section. Unlike other workloads, YCSB implementation

requires blocking communication between worker and service threads because the workers need a

return condition to determine if the transaction needs to be aborted or not. Hence, the communication

overheads are not hidden in this workload. The performance benefit is expected to come from

pinning the shared data structures to the service threads. In this workload, the actual database entries

are still accessed by the workers, hence they can still ping–pong. However, this sharing does not

affect the performance much because writes to the shared database entry only happens during the

commit time. On the other hand, the history table for each database entry is read and written more

frequently within the critical sections, hence the contention over the history tables is higher. In the

MC implementation, the history tables are hashed among service threads, hence they do not bounce

between private caches of the cores, which is expected to offer superior performance at higher core

counts.

5.4.4 More Complex Critical Sections

The focus of this thesis is to utilize the MC model to accelerate critical sections in a shared memory

application at 1000–cores scale. Therefore, the most common critical sections on regular data

structures are the focus of the thesis. As seen in the examples in previous sections, the process of

converting an application to utilize MC involves moving the critical sections to dedicated service

threads, and dividing the shared data between the dedicated threads to maintain the atomicity of

the operation. This idea can be generalized to any data structure and critical sections. For example,

the nodes in a linked–list can be mapped to service threads based on their memory addresses.

However, the critical sections may become more complex. Traditionally, a concurrent linked–list is
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implemented using hand–over–hand locking [46]. To be able to perform an operation on a certain

node, the lock for the current node is acquired before releasing the lock of the previous node. The

implementation of MC in this case requires communication between service threads as a result of

sequential nature of the linked–list. Similar to any other previously discussed workload, the workers

initiate critical section requests by sending a message to the service thread mapped to the head of

the list. Then the service thread directs the message to the service thread where the next node is

mapped to, and is blocked until it gets a reply back from that service thread. Two service threads

are blocked at a time similar to hand–over–hand locking. This type of data structures are contended

and hard to scale, hence by pinning the nodes to prevent ping–ponging and utilizing non–blocking

communication on the worker side, it is expected to get benefit from the MC model. However, since

the purpose of this work is to focus on the most common critical sections on regular data structures,

further discussions and analysis are not included in the work.
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Chapter 6

Evaluation on Tile-Gx72TM

As mentioned in Section 4.4, Tile-Gx72TM is one of the fewest multicore systems with both shared

memory cache coherence and hardware explicit messaging. Hence, in this chapter, the MC model is

evaluated using Tilera Tile-Gx72TM upto 64 cores. This study is important to show the applicability

of the proposed model in a real machine setup. The first section talks about the methodology

of the study. Then, an extensive study that evaluates the MC model against the shared memory

synchronization primitives is discussed. A core scaling study is presented to demonstrate the

enhanced performance of MC model as the number of cores are increased.

6.1 Methodology

Tile-Gx72TM multicore processor is deployed for evaluation. It runs at 1 GHz and is equipped with

16 GB of DDR3 main memory. It runs a linux version that is modified for Tilera architecture. A

modified version of GCC 4.4.7 that supports Tilera specific features is utilized for the compilation

of the benchmarks.
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Three thread synchronization models are evaluated in this work. The Spin model is implemented

using Tilera’s spin–based primitives. The Atomic model implements the critical section using a

single atomic instruction. Finally, the moving compute to data (MC) model implements each critical

section work by serializing it at a dedicated core. All synchronization models are discussed in

Section 5.1.

6.1.1 Performance Metrics

Up to 64 cores in the system are utilized for performance evaluation. While running experiments,

no other program interferes with the active application. Following are the evaluation metrics used in

the work.

• Completion Time: Completion time is measured by running all the workloads to completion,

and only the parallel region is measured in each application. Memory allocations, initialization

of data, and thread spawning overheads are not taken into account. Every run is repeated ten

times and the average number is reported.

• Load Imbalance: Load imbalance is determined by calculating the variability in the in-

struction counts of the cores. Number of instructions for each core is determined using the

hardware event counters in Tilera. The variability across instruction counts of the cores is

calculated using the following formula:

V ariability =
Max(Instructions)−Min(Instructions)

Max(Instructions)

• Shared Work: The percentage time spent in the critical section is determined by measuring

the time between lock–acquire and lock–release in the Spin model. A specific counter per
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thread keeps track of this time, and determines the total time spent in the shared work.

Then the amount of work done in critical section compared to the total completion time is

determined as a percentage number, and reported as the Shared Work. This metric is used to

determine the number of service cores for MC in the proposed heuristic.

Table 6.1.1: Input graphs and their respective statistics.

Inputs Nodes Edges Degree

Mouse Brain [47] 562 0.57M 1027

CA Road Network [48] 1.9M 5.5M 2.8

Facebook [49] 2.9M 41.9M 14.3

LiveJournal [49] 4.8M 85.7M 17.6

6.1.2 Benchmarks and Inputs

Six graph benchmarks from the CRONO [8] suite are adopted for this work, namely SSSP, TC, BFS,

PAGERANK, CC, and COMM. In addition, a database workload (YCSB) from [44] is deployed. These

benchmarks are ported to Tile-Gx72TM using Spin, Atomic and MC synchronization models. For all

models, pthreads library is used to spawn threads, and each thread is pinned to a physical core based

on the thread ID. For evaluation, four real world graphs are chosen to explore input diversity for the

graph workloads, as summarized in Table 6.1.1. The inputs to the database workload is synthetically

generated. The access to the database entries is controlled by using Zipfian distribution. It includes a

parameter called theta to control the contention level [50]. Setting theta to 0.6 means that 10% of the

database is accessed by the 40% of all the transactions. Similarly, using theta of 0.8 means that 10%

of the database is accessed by the 60% of all the transactions. In this work, the theta value is varied

from 0.6 to 0.85 with the increment of 0.5, then the average completion time is calculated using

these theta values for performance comparison. Since Tile-Gx72TM does not have hardware support
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Figure 6.2.1: Average per-benchmark performance scaling results using the Spin model.

for floating point SIMD execution, the machine cannot provide state–of–the–art performance for

machine learning workloads (AlexNet and SqueezeNet). However, for completeness, the scalar

implementations of these benchmarks are evaluated in this study.

6.2 Tile-Gx72TM Evaluation

6.2.1 Performance Scaling of the Benchmarks

A performance scaling study is conducted to illustrate that the spin–lock based shared memory

baseline implementations scale to 64 cores on Tile-Gx72TM platform. Each benchmark is executed

by varying the core count from 1 to 64. The average speedup for each core count is plotted relative

to the sequential execution of the benchmark. The sequential implementation spawns a single thread

of execution that exploits all on-chip shared cache and memory controller resources. Figure 6.2.1

shows the performance scaling results for the six evaluated graph benchmarks, two machine learning

benchmarks, and the database workload. As seen, all benchmarks improve performance up to 64

cores. The benchmarks with coarse–grain communication (such as PAGERANK and ALEXNET)
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Figure 6.2.2: Completion time results under Spin, Atomic and MC models. All results are normal-

ized to Spin.

scale better than the ones with fine–grain communication (such as TC and YCSB). Specially, the

machine learning workloads scale well and provide over 50× speedup as compared to the sequential.

Hence, it is not expected to get any benefit by improving thread synchronization in these workloads.

In the case of the workloads with fine–grained synchronization, degradation in scaling speedup

is expected as contended shared data in several graph benchmarks and the database workload

leads to synchronization bottleneck. Overall, the Spin model achieves 26× to 54× performance

improvement at 64 cores over sequential.

6.2.2 Performance of MC and Atomic over Spin

Figure 6.2.2 shows the normalized completion time results of Atomic and MC models over the

Spin model. Atomic and MC both follow the same trends over the Spin model. There is almost

no performance difference between all three synchronization models for the benchmarks with

coarse–grain synchronization (PAGERANK, CC, COM, ALEXNET and SQUEEZENET) . Even though

both MC and Atomic based barriers are more efficient than Spin, these benchmarks do not show

any performance change since each core has a considerable amount of work between barriers. The
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only exception is CC with Mouse-Brain graph because it is a relatively small graph, and CC does

not involve much computation between barriers. In this case, the barrier implementation with the

MC model provides the best performance.

Unlike the workloads with coarse–grain synchronization, the graph and database workloads

with fine–grain synchronization (SSSP, TC, BFS, and YCSB) show some variability across different

synchronization models. Here, the contention is an important metric to indicate the cases where

performance can be improved using better synchronization primitives. As it is seen from Figure 6.2.2,

while MC provides better execution for TC and SSSP, the completion time does not change at all in

BFS. This is due to the fact that SSSP and TC involve more contended locks than BFS. Figure 6.2.3

illustrates the contention of each fine–grain graph workload with respect to their performance over

Spin. Contention is the average number of lock–acquisitions per node in a graph, determined using

per-node counters in the critical section. As observed, when contention increases, the performance

obtained from MC and Atomic also escalates. Since BFS algorithm guarantees that each lock

variable is acquired only once in the whole program execution, the locks are not contended, and the

shared work done by each thread is very small compared to the private work. As a result, there is

not much to improve with a more efficient synchronization model.

On the other hand, the Spin implementation of TC requires locking of each edge without

any condition, as explained in Section 5.4.1. Therefore, the contention is higher as illustrated
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Figure 6.2.4: Contention vs. performance of MC and Spin models for YCSB workload.

in Figure 6.2.3. Consequently, the MC model significantly improves performance for all input

graphs. This performance achievement mainly comes from removing the lock acquisition overheads

by pinning shared data at dedicated service cores, and using low latency non–blocking explicit

messages. TC is an ideal showcase of MC as the shared data is neither read nor written by any other

core. It totally eliminates sharing of shared data with any other thread, and basically makes it private

data to the service cores. As a result, it provides an average of 76% performance benefit over Spin.

SSSP is a benchmark where lock acquisition per node (contention) is greater than BFS, but less

than TC. It has a test before getting into critical section to make sure no redundant lock acquisition is

performed. However, due to its iterative nature, each lock is acquired multiple times in the program

execution. Therefore, similar to TC, removing these locks with MC, and shipping critical sections

to service cores with non–blocking messages help improve performance. On average, it yields 34%

efficient program execution compared to Spin.

As discussed in Section 5.4.3, YCSB is distinctive than the graph workloads in a two ways. First

of all, as discussed in Section 5.4.3, its critical sections are very complex, hence it does not have

a version which is implemented using just standalone atomic instructions. The critical sections

are protected using spin–locks. In addition, it involves blocking communication because each

worker core expects a return condition from the service thread. Therefore, as seen in Figure 6.2.2,
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25% performance benefits of MC stem from the shared data pinning, hence better data locality.

Figure 6.2.4 demonstrates the performance of MC over Spin as the contention of the workload

increases. As illustrated, when the contention is low meaning that less database entries are accessed

by multiple threads, Spin version outperforms the MC approach. When the contention is low, the

threads access to different parts of the database, hence the Spin version provides higher concurrency

in both algorithmic work and the critical section work. On the other hand, the MC model needs to

spare some of the cores as service thread, thus the concurrency in both service and worker thread

tasks are limited. As a result, the Spin version provides superior performance. However, as the

contention parameter increases, the speedup of MC over Spin reaches to 2.5× at 64 cores. This

is because at higher contention, the shared data structures inside the critical sections ping–pong

between cores in the Spin version. Pinning the shared data structures to service threads eschews the

unnecessary data bouncing, hence provides better performance.

6.2.3 Performance of MC over Atomic

In this section, the MC model is evaluated against Atomic, which is a more efficient implementation

of synchronization as compared to Spin. Since the benchmarks with coarse–grain synchronization

do not show much performance differences, they are not discussed further. Similarly, YCSB does not

have a version with single atomic instructions. Therefore, the Atomic version is same as the Spin

version. Figure 6.2.2 shows that on average the MC model accomplishes 15% better performance

as compared to Atomic.

As discussed earlier, the contention in BFS is negligibly small, hence MC does not offer

any additional performance. Almost all of the performance benefits stem from TC and SSSP.

Both algorithms under MC show similar behavior against Atomic, except TC executing with

the California road network graph, where Atomic slightly outperforms MC. The main benefits
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Atomic model.

come from overlapping communication stalls with other computation. The MC model utilizes

asynchronous messaging for critical section requests. Each worker core sends its request to the

corresponding service core and continues to do other useful work, including subsequent requests

for critical section executions. This implicitly pipelines the critical section executions and reduces

the overhead of synchronization. To verify the performance advantage of non–blocking messaging

aspects of the MC model, a study is performed where each worker core waits for an explicit reply

message from the corresponding service core to ensure the critical section work completed before

proceeding. Figure 6.2.5 illustrates the performance comparison for the default MC model without

reply, and the MC model with reply. When the MC model waits for the reply, performance gets

worse than the Atomic model when contention is high in the benchmark. This illustrates that

fine–grain synchronization stalls benefit significantly when they are overlapped with other useful

work in the worker cores.

For both TC and SSSP, MC yields higher speedup over Atomic with the mouse brain graph as

compared to other graphs. Mouse brain is a dense graph in which almost all nodes are connected

to each other, thus more sharing occurs between cores, and MC exploits performance since it

eliminates sharing by pinning shared data at service cores.
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Figure 6.2.6: Normalized performance of MC versus MC shmem against the Atomic model.

6.2.4 MC versus MC shmem

This section discusses the results of the shared memory version of the MC model. As discussed

in Section 3.2.1, the spatial MC model is implemented using the shared memory cache coherence

(MC shmem) without in–hardware explicit messaging support. Figure 6.2.6 shows the normalized

completion time of default MC and MC shmem for SSSP, TC and BFS over Atomic at 64 cores.

As shown in the figure, both MC and MC shmem provide similar performance for BFS. As

discussed earlier, this workload is not contended, hence the implementation of the critical section

does not make any difference in performance at this core count. In the case of SSSP, MC shmem’s

performance is almost the same with Atomic but worse than the default MC implementation. The

reason for this is that the index to the shared buffer is protected with an atomic instruction, and the

buffer entries bounce between the communicating cores. Therefore, it cannot perform as well as the

MC model with hardware messaging, even though it also enables non–blocking communication.

Contrary to the other two workloads, MC shmem performs even worse than the Atomic model

for all the inputs in TC. As discussed in Section 5.4.1, the worker threads send critical section

requests for every edge of the graph in TC. Therefore, there is constant communication between

worker and service threads. Even though the shared data array is pinned to the service threads and
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Figure 6.2.7: Performance of SSSP under MC model with and without test before sending critical

section invocations.

non–blocking communication is enabled in MC shmem, the communication via shared buffer leads

to continuous cache line bouncing between worker and service threads. This leads to performance

degradation when using the MC shmem approach. Even if there is no contention on shared data,

the shared buffer still ping–pongs. In addition, the concurrency on critical sections is also limited

to the dedicated service threads. On the other hand, the Atomic model enjoys better concurrency

when there is no contention on shared data. Thus, the Atomic model provides better performance

than the shared memory version of the MC model. This study shows that low–latency hardware

messaging is necessary for efficient implementation of the MC model. Consequently, it leads to

superior performance as compared to the Atomic model.

6.2.5 Moving Compute and Cache Coherence

Even though the MC model accelerates synchronization on shared data, it relies on the hardware

cache coherence protocol for efficient movement of cache lines between cores. This is specifically

important for efficient parallel implementation of work efficient algorithms. For example, SSSP

contains a test to ensure that redundant critical section executions are not performed. To implement

this test, a worker core reads some shared data that is pinned on the service core. This data

sharing adds coherence traffic overheads, however it prevents unnecessary work. Figure 6.2.7
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shows the implementation of SSSP with and without the test under the MC model. As observed, the

performance of MC without the test decreases significantly since it incurs overheads of redundant

critical section invocations. The savings from eliminating coherence traffic cannot compensate for

the overheads of redundant critical section invocations, and hence the performance of MC without

the test decreases significantly as compared to the MC with test. Moreover, as the size of the input

graph increases, the performance penalty of not using the test also goes up. This is observed for

LiveJournal and Facebook graphs that filter significant critical section requests when the test is

utilized.

6.2.6 Heuristic to Determine Service Core Count

As discussed in Section 3.2.3, tuning the number of worker and service cores plays a significant

role for the MC model to deliver near-optimal performance. So far this tuning is done performing

an exhaustive search by varying the number of service cores. Due to algorithmic differences, each

benchmark requires separate search, which results in expensive sweep studies. A profiling based

heuristic is discussed in Section 7.2.4 to reduce the time required for the right mapping of the cores.

As the MC model ships the critical section execution to dedicated service cores, it is expected that
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the time spent in critical section shows correlation with the optimal number of service cores. A

study is conducted to show the effectiveness of the proposed heuristic. For this study, only the

graph workloads with fine–grained synchronization are employed as example benchmarks. The

spin–lock version of each workload–input combination is profiled and the shared work as discussed

in Section 6.1.1 is obtained. For the same benchmark–input combinations, a service thread sweep

study is performed by running the MC implementations, and the best performing service thread

counts are determined. Figure 6.2.8 shows the shared work versus the best performing service

thread count for each benchmark–input combination. As seen, it demonstrates strong correlation

between the profiled shared work (see Section 6.1.1) and the ideal service core counts. As it is

observed that BFS has a very small amount of shared work (less than 1%) for all four input graphs,

which results in only one service core allocation. On the other hand, TC involves notable shared

work (grater than 50%), which results in a higher number of service cores (16 cores). SSSP’s shared

work varies depending on the input graph as the convergence of the algorithm depends on the graph

itself. Therefore, it requires 1–4 service cores. The correlation between shared work and service

core count is captured with a simple linear model, as demonstrated in the figure. A linear equation

serves as a heuristic to determine the service core count for a given shared work. The heuristic is

employed to find the number of service cores for all the benchmark-input combinations, and the

result is compared to a service core count determined using an exhaustive search. It is observed that

the performance of the heuristic is within 3% of the exhaustive method of determining the right

service core count.

6.2.7 Implications of Cores Scaling

The MC model is expected to improve synchronization bottleneck in the on-chip network as the core

count increases. Therefore, a core scaling study for all three synchronization models is conducted
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Figure 6.2.9: Average performance scaling results of MC compared to Spin and Atomic models.
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Figure 6.2.10: Average per-benchmark performance scaling results of MC over the Atomic model.

to investigate the impact of core count on performance. All benchmark–input combinations are

executed to completion using 8, 16, 32, and 64 cores. Since YCSB does not have an Atomic version,

the Spin implementation results are used to calculate the average speedup over Atomic. Figure 6.2.9

shows the average speedup of MC over Spin and Atomic models as the core count is increased. The

speedup of MC over both models gets higher with the increase in core count. While MC performs

more efficient than Spin (even at 8 cores), the performance over Atomic model diminishes when

using less than 32 cores. Figure 6.2.10 demonstrates more detailed view of the core scaling study to

investigate the reason behind this performance drop. The performance degradation mainly stems
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from benchmarks with fine–grain synchronization. As SSSP, TC, BFS, and YCSB require service

core(s) for critical section work, it is hard to load balance the worker and service cores as the

total core count goes down. To demonstrate load imbalance differences between Atomic and MC

models, a study is conducted and load imbalance is measured as explained in Section 6.1.1. Only

graph workloads are utilized as example benchmarks in this study. Figure 6.2.11 demonstrates

the load imbalance for both MC and Atomic models at different core counts. The Atomic model

observes less than 20% variability in instruction count, whereas the MC model incurs a much higher

variability. This stems mainly from the fact that service cores execute much fewer instructions than

the worker cores, specially in SSSP and BFS. SSSP generally requires one or two service cores, while

BFS only needs a single service core. However, these cores have much less executed instructions

than worker cores. Sparing 1 or 2 cores out of 64 cores does not hurt performance, even if there

is load imbalance between worker and service cores. However, at lower total core counts, this

imbalance shows up in performance degradation. Consequently, performance declines as the core

count goes down for benchmarks with fine–grain synchronization.
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6.2.8 Summary of Tile-Gx72 Evaluation

In this chapter, the novel moving compute to data MC model is evaluated against state-of-the-art

shared memory synchronization models using graph, machine learning, and database workloads

on the commercial Tilera TILE-Gx72 multicore machine. By pinning shared data to dedicated

cores, the MC model improves data locality. In addition, it is shown that it overlaps communication

with computation by utilizing non–blocking messages. The in-hardware messages also enable fast

communication without bouncing cache lines between the communicating cores. The results show

that MC model improves performance of the evaluated benchmarks by an average of 34% over

Spin, and 15% over the Atomic model. Since the Tilera machine contains only 72 cores, further

evaluation of the MC model at 1000–cores scale is conducted using a state–of–the–art multicore

simulator in the next chapter.
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Chapter 7

Evaluation on Simulator at 1000–cores

The study presented in the previous chapter illustrates that as the core count increases, the perfor-

mance of the proposed model improves over the traditional synchronization primitives. However,

the number of cores in Tilera machine is only 72, hence further analysis is required to study the

performance scaling of the MC model up to 1000–cores. Since the overheads of shared memory

based synchronization primitives gets expensive as the network becomes larger, higher core count

study reveals the limits of the proposed model. Therefore,the Tile-Gx72TM is supplemented with a

multicore simulation environment, and the proposed MC model is evaluated up to 1000–cores.
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Architectural Parameter Simulator

Number of Cores up to 1024 @ 1 GHz

Compute Pipeline per Core In–Order, Single–Issue

Memorgy Subsystem

L1–I Cache per core 8-32 KB, 4–way Assoc., 1 cycle

L1–D Cache per core 8-32 KB, 4–way Assoc., 1 cycle

L2 Inclusive Cache per core 16-256 KB, 8–way Assoc.

Directory Protocol Invalidation–based MESI

ACKwise4 [51]

Num. of Memory Controllers 4 to 16

DRAM Bandwidth per Controller 10 GBps

Electrical 2–D Mesh with XY Routing

Hop Latency 2 cycles (1–router, 1–link)

Contention Model Only link contention

(Infinite input buffers)

Flit Width 64 bits

Explicit Communication

Receive queue per core 2.4KB

Table 7.1.1: Architectural parameters for evaluation.

7.1 Evaluation Methodology

7.1.1 Multicore Simulator

Simulator Setup

The proposed architecture (cf. Section 4) is implemented using an in–house industry–class simulator

and the associated RISC–V tool chains. The simulator utilizes an Architecture Description Language

(ADL) [52] for functional model implementation, which in turn drives the performance models.

Table 7.1.1 summarizes the architectural parameters of the simulated system. Similar to Tile-

Gx72TM, a futuristic tiled multicore processor with a private L1 and shared L2 cache hierarchy per

core is evaluated. The number of simulated cores are varied from 64 to 1024. When increasing
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the core count, the cache size is kept similar to Tile-Gx72TM’s total on-chip cache capacity of

21MB by adjusting the per tile cache sizes. The number of memory controllers are increased

when increasing the core count. While 4 memory controllers (40 Gbps) are utilized at 64 cores, 16

memory controllers (160 Gbps) are utilized at 1024 cores. Single threaded cores are utilized in the

default mode for spatial MC, as well as spin and atomic instruction based synchronization models.

However, two threads per core are evaluated for the temporal MC model implementation.

Compiler Support

RISC-V tool chain is used for compiling benchmark applications. Since ISA extensions are not

recognized by the compiler, the wrapper functions that contain explicit messaging instructions using

gcc extended asm blocks are used to direct the compiler to use specific registers. The programs

are then compiled using the RISC-V compiler and the assembly code is obtained. The assembler

created using the ADL is employed to generate the object files using the assembly code. Finally, the

simulator linker generates the binary file to be executed by the simulator.

Performance Models

The performance models used in the simulator are ported from the Graphite multicore simulator [53].

The simulator implements the following models; core pipeline, cache hierarchy, cache coherence

protocol, and on–chip network. The XY routing is utilized for the mesh interconnection network.

The per hop delay is set to 2–cycle, and the network model accounts for the pipeline latencies related

to loading and unloading the packets to the network routers [54] [55]. It also includes the contention

delays. In addition, the explicit messaging instructions, and the related protocol overheads are

integrated into the performance models.

McPat [56] is utilized to acquire per event dynamic energy numbers for both the core energy
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and memory system energy using 22nm technology. Then, the numbers are scaled down to 11nm

by using the scaling constant from [57]. The send and receive queues are also modeled in addition

to other components of the core energy. Moreover, DSENT [58] toolchain is deployed to obtain the

network-on-chip per event energy numbers.

Evaluation Metrics

Each benchmark is run to completion, and the completion time and energy consumption is measured

in the same regions as described for the Tile-Gx72TM setup. The measured completion time is

broken down into the following categories: (1) Compute Stalls is the time spent retiring instructions,

waiting for functional unit (ALU, FPU, Multiplier, etc.), and the stall time due to mis-predicted

branch instructions. (2) Memory Stalls is the stall time due to load/store queue capacity limits,

fences, and waiting for load completion and L1 instruction cache misses. (3) Communication Stalls

is the stall time due to explicit messaging instructions.

Dynamic energy is also measured and broken down into the following components: Core energy,

L1 and L2 cache energy, Network energy, and DRAM energy.

7.1.2 Benchmarks and Inputs

Table 7.1.2 shows the six graph benchmarks from the CRONO [8] suite, and two machine learning

workloads, AlexNet and SqueezeNet. Note that both machine learning benchmarks are realized

using 4-way SIMD with 16-bit floating point to ensure state–of–the–art implementations. These

benchmarks are ported using Spin, Atomic and MC models. For all models, Pthreads library is

used to spawn threads, and each thread is pinned to a physical core based on the thread ID. For

the temporal implementation of MC, two threads are utilized, and the threads are again pinned to

their respective hardware contexts. For evaluation, two real world graphs with uniform weights are
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Benchmark Input Dataset

Graph Analytics (CRONO [8])

PAGERANK, TRIANGLE COUNTING California Road Network [59]

COMMUNITY DETECTION, BFS Facebook [49]

CONNECTED–COMP, SSSP

Machine Learning

CNN-ALEXNET [35] ImageNet [60]

CNN-SQUEEZENET [40]

Table 7.1.2: Problem sizes for parallel benchmarks.

chosen to explore input diversity in graph workloads, as summarized in Table 7.1.2. For machine

learning workloads an image from ImageNet dataset is classified.

7.1.3 Configurations

1. Spin: This is the baseline system which relies on spin locks to implement both fine and

coarse–grained synchronization.

2. Atomic: This model utilizes standalone atomic instructions for both fine and coarse–grained

synchronization.

3. MC: The default moving computation to data model with spatial distribution of worker

and services threads implemented using in–hardware explicit messaging support (cf. Sec-

tion 3.2.2).

4. MC shmem: Moving computation to data model with spatial distribution of worker and

services threads implemented using shared memory cache coherence support. This version is

utilized only for fine–grained synchronization (cf. Section 3.2.1).

5. MC tmp: Moving computation to data model with temporal distribution of worker and
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services threads. This configuration is utilized only for fine–grained synchronization (cf.

Sec 3.2.3).

7.2 Simulator Evaluation at 1000-cores Scale

The core scaling results for the spatial MC model are first compared to Spin, Atomic, and

MC shmem models using the Tile-Gx72TM machine and the simulator. The detailed higher core

count evaluations (> 64 cores) are presented using the simulation environment. After the core

scaling study, the performance and dynamic energy evaluations of MC with respect to Spin and

Atomic are conducted at 512–cores. Furthermore, detailed scaling study of Spin, Atomic and MC

models are presented.

7.2.1 Core Scaling on TILE-Gx72 and the Simulator

Figure 7.2.1 shows the average speedup of the spatial MC model over the Spin, Atomic and

MC shmem models across all the benchmark–input combinations as the core count increases.

While the core count is varied from 8 to 64 in Tile-Gx72TM, it is scaled up from 8 to 1024 in the

simulation environment. There are some noteworthy differences between simulated architecture

and the Tilera Tile-Gx72TM. First, each tile in Tilera utilizes a VLIW core which contains three

parallel pipelines that do not have support for explicit floating point units. On the other hand, the

simulator deploys in-order single-issue RISC–V pipelined cores with support for 16-bit 4-way

SIMD instructions. Second, Tile-Gx72TM uses data replication in L2 cache slices, whereas the cache

lines are not replicated in the L2 cache slices of the simulated multicore. Third, Tilera utilizes

atomic compare–and–swap for spin locks, whereas the simulation environment utilizes load–link

and store–conditional instructions for spin–based synchronization. Overall, the performance trends
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Figure 7.2.1: Average speedup of spatial MC over Spin and Atomic models as the core counts

increase.

are very similar between Tile-Gx72TM and the simulated machine at 8 – 64 core counts.

The relative performance of spatial MC with respect to Spin, Atomic, and MC shmem models

improves as the core count goes up in both TILE-Gx72 and in the simulation environment. The

MC model outperforms Spin at all core counts since it does not suffer from instruction retries

and cache line ping-pongs. Similarly, MC is also constantly more efficient than MC shmem

at all the core counts. As discussed in Section 3.2.1, the communication between worker and

service threads are realized using a shared buffer per service thread. The cache lines of the shared

buffer constantly bounce between worker and service threads whenever a message is being sent.

Hence, even at smaller core counts the performance is worse than MC. Atomic model fares well

as it provides more efficient execution of critical code sections. At smaller core counts, Atomic

outperforms MC by more than 10%. MC closes the gap with the increase in core count, and provides

comparable performance at 64 cores in both TILE-Gx72 and the simulator. This is mainly as a

result of increased traffic in the on-chip network due to cache line ping-pongs in the Atomic model.

However, MC eschews unnecessary ping-pongs but it suffers from the challenge to load balance

work between the worker and service threads at lower core counts. The relative performance of MC

significantly improves beyond 256 cores, and delivers significant advantages at both 512 and 1024

cores. Although not shown here, the Atomic model delivers performance scaling for all benchmark–
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Figure 7.2.2: Completion time results for Spin, Atomic, and MC at 512 cores; all normalized to

Spin.

input combinations at 512 cores, but not at 1024 cores. However, the spatial MC model consistently

delivers performance scaling at both 512 and 1024 cores. The remaining evaluation discusses

the performance and energy results of Spin, Atomic and MC models for 512 cores followed by

a detailed sensitivity analysis of all synchronization models for various cores counts. Since the

MC shmem is only utilized for fine–grained synchronization, the detailed study of MC against

MC shmem is discussed separately in Section 7.2.6.

7.2.2 Evaluation of 512–cores Multicore

Performance Evaluation

Figures 7.2.2 illustrates the performance results of Spin, Atomic, and spatial MC implementations

of graph and machine learning benchmarks at 512–cores setup. For graph workloads, results of

both California Road Network (CA) and Facebook (FB) graphs are presented separately. Each data

point is normalized to its Spin model completion time. The geometric mean shows that the MC

model outperforms Spin by 60%, and Atomic by 27%.

Graph Workloads with Fine–grained Synchronization: SSSP, TC and BFS significantly benefit
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from Atomic as it removes the locks and uses a single atomic instruction to implement critical

sections. As a result, instruction counts and memory stalls are drastically alleviated in these

benchmarks. However, Atomic does not remove cache line ping–pong, hence it is still limited in

performance compared to the MC model. TC with Facebook graph is the only data point where

Atomic slightly surpasses the MC model. There are two reasons that contribute to this performance

loss for MC. TC does not involve any test to eliminate redundant critical section executions as

discussed in Section 5.4. So it requires atomic update for each neighbor. Therefore, it requires

higher concurrency in the execution of the critical code section. In addition, Facebook is a sequential

graph which does not have many common neighbors between the graph chunks, hence the shared

data bouncing is very limited. Therefore, TC with Facebook graph is expected to benefit from higher

concurrency. As Atomic provides higher concurrency for the critical code sections, and MC limits

parallelism for the service threads, Atomic yields slightly better completion time. CA graph, on

the other hand, contains more random connections, which leads to shared data bouncing in the

Atomic model. Therefore, MC enhances the execution time as a result of pinning the shared data,

and overlapping the communication latency using non–blocking send instructions. In addition, the

MC barrier eschews instruction retries and thus improve instruction stalls. However, it incurs the

communication stalls due to the explicit messaging instructions.

On the contrary to TC, BFS algorithm guarantees that each critical section is executed at most

once in the whole program execution. Therefore, higher concurrency in the execution of critical

code sections is not as helpful for BFS. However, barrier synchronization becomes dominant at 512

cores. BFS is an iterative algorithm and it involves multiple thread barriers in each iteration. Hence,

most of the communication stalls in completion time distribution are due to barriers. Consequently,

employing an efficient MC barrier leads to the observed performance gain by reducing instruction

count and preventing the barrier variable ping–pong between cores.

The SSSP benchmark is in between BFS and TC in terms of concurrency requirement. It involves
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Figure 7.2.3: Performance comparison of MC-reply with default MC and Atomic at 512 cores; all

normalized to Atomic.

a test to prevent the redundant critical section executions, which reduces the number of critical

sections in each iteration, as similar to BFS. As the algorithm converges, the number of active

nodes goes down. However, unlike BFS, it does not guarantee only one critical section per node.

Hence, the parallelism needed to execute critical sections is not as small as BFS, but also not as

much as TC. As a result, better performance is observed for both graphs under the MC model.

The MC model also does not prevent shared data bouncing in SSSP as discussed in Section 5.4.1.

Hence, the main advantage of MC over atomic instructions for this workload is latency hiding

using the non–blocking explicit message requests. In addition, similar to BFS, SSSP also involves

multiple barriers per iteration. Therefore, using MC barrier helps improve performance by removing

instruction retries, and expensive shared variable bouncing between cores.

As previously discussed, the MC model takes advantage of latency hiding using the non–

blocking send instructions for the critical section requests. To better understand this performance

enhancement, the MC model is also implemented with blocking sendr instruction (MC-reply) to
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prevent more than one in-flight request per core. This averts overlapping communication stalls with

other useful work in the worker threads. Figure 7.2.3 shows the performance comparison of the

default non-blocking MC with Atomic and MC-reply. As seen, when implemented with MC-reply,

both SSSP and TC lose their performance gains. The outcome is more severe in TC as most of its

work is shared work. The performance gets worse because the concurrency is limited with MC as

compared to Atomic. On the other hand, BFS does not show any change in the completion time.

This suggests that BFS does not benefit from non–blocking send messages because the workers

temporally send requests after significant local computations.

Graph Workloads with Coarse–grained Synchronization: For PAGERANK, CC and COMM,

Atomic reduces the instruction count by replacing the lock in the barrier implementation with an

atomic fetch–and–add instruction. The decrease in the instruction count depends on whether the

barrier variable is contended or not. If there is load imbalance and the threads reach the barrier

at different timestamps, utilizing atomic instruction does not help much in the performance. It

makes updating the barrier variable more efficient, however, it still requires spinning until all the

threads arrive at the barrier. On the other hand, if the threads participate in the barrier at similar

timestamps, the shared variable gets contended at 512 cores, which leads to more costly barrier

implementation with Spin. Atomic eliminates this costly lock acquisition but the shared variable

still bounces between cores. Hence, the penalty of contention on barrier becomes a noticeable

portion of the completion time even though these benchmarks are highly parallel and the input

graphs are sufficiently large in size. On the other hand, MC eliminates instruction retries and

expensive shared barrier variable ping–pongs. The spinning cost is replaced with more efficient

explicit communication which leads to enhanced performance compared to both Spin and Atomic.

COMM is the only workload that MC does not have noteworthy improvement over Atomic. This

is due to the fact that it has more load imbalance than other two workloads. Even though MC

reduces the instruction count as a result of more efficient barrier, the load imbalance between the
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Figure 7.2.4: Performance comparison of SSSP under MC with and without test before critical

section request at 512 cores; all normalized to MC.

participating threads lead to compensating communication stalls.

Machine Learning Workloads: The MC models yields significant performance improvements

for the two machine learning workloads. For ALEXNET, it utilizes the fine–grain parallelization

as explained in Section 5.4.2, while SQUEEZENET is realized using coarse–grain parallelization

similar to the Spin and Atomic models. As load imbalance is very small in both workloads, the

threads reach barrier synchronizations at similar timestamps. Therefore, the barriers are contended.

Consequently, as a result of more efficient barrier implementation, the Atomic model improves the

performance over the Spin model. However, Atomic also suffers from bouncing the shared barrier

variable between cores as it is very expensive when the core count is high. The MC model further

improves performance by removing the cache line ping-pongs. SQUEEZENET contains less work

between barriers, and the number of barriers are also more than ALEXNET. Therefore, it benefits

more from explicit messaging based barrier.

The Role of Hardware Cache Coherence: The above discussions show that core–to–core

direct communication is an effective approach to mitigate bottlenecks of the shared memory based

synchronization. However, hardware cache coherence is still needed to effectively move data at fine
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Figure 7.2.5: Dynamic energy results for Spin, Atomic, and MC at 512 cores; all normalized to

Spin.

(cache line) granularity between cores. For example, SSSP contains a test before sending critical

section invocations. The test ensures that no redundant messages are being sent, hence this results

in a work efficient parallel implementation. The workers read the shared distance array to perform a

test to determine if critical code section execution should be invoked or not. As the cache coherence

protocol thrives on exploiting the locality in read data sharing, the overhead of performing the test

is more work efficient even though it results in some coherency traffic. Under all synchronization

models, the redundant critical code section invocations are eliminated, which results in superior

performance. To evaluate this hypothesis, the SSSP benchmark is also implemented without the test,

and its performance is compared against the default MC implementation with test. Figure 7.2.4

illustrates this result. By eliminating the test, memory stalls slightly go down due to reduced

cache coherence traffic. However, the communication stalls drastically increase due to the elevated

serialization at service threads since the workers send a lot more critical section requests.

Dynamic Energy Evaluation

Figure 7.2.5 illustrates the dynamic energy results at 512 cores. As seen, the spatial MC model

provides a geometric mean of 60% and 39% better dynamic energy consumption as compared to
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the Spin and Atomic models, respectively.

The dynamic energy trends for SSSP, TC and BFS are similar to their respective completion time

results. In general, reductions in instruction and memory stalls also show up in the dynamic energy.

The Atomic model reduces core and L1 cache energy by removing synchronization overheads due

to instruction retries. Furthermore, the MC model notably reduces both components due to reasons

discussed in Section 7.2.2. Moreover, the network energy drastically reduces from the Spin to

Atomic model since lock acquisition related network messages are removed. However, the MC

model increases network energy compared to Atomic for SSSP and TC. This is due to the fact

that the MC model adds critical section request messages, whereas Atomic only involves network

activities related to the atomic operation. Other notable observation is that dynamic energy benefit

for BFS is way more than its performance gain. This is due to the fact that the biggest portion of the

completion time breakdown is communication stalls and the communication stalls in MC do not

contribute to the dynamic energy as the core stays idle during this stall time.

The figure also shows the results for graph workloads with coarse–grain synchronization. As

seen, the dynamic energy again follows very similar trend with the performance results. As

mentioned previously, one important advantage of the MC model is that since it just utilizes

blocking sendr instruction to implement barrier synchronization, the communication stall seen

in the completion time does not show up in the dynamic energy (as also mentioned in BFS case).

On the other hand, both Spin and Atomic models need to execute some instructions and perform

memory accesses while waiting on the barrier. This can be clearly observed in the COMM. Due

to load imbalance, both Atomic and Spin barriers need to execute many instructions to wait for

the other threads, which increases both memory and core energy. On the other hand, the MC

model stalls the pipeline and does not execute any instructions or make memory accesses. Similar

discussions are also applicable to the two machine learning benchmarks.
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Figure 7.2.6: Core scaling results for Spin, Atomic, and MC implementations of PAGERANK, CC

and COMM.

7.2.3 Performance Scaling as On-Chip Core Counts Varied from 64 to 1024

Figures 7.2.6, 7.2.7 and 7.2.8 show the performance scaling results of all benchmarks as the number

of cores per multicore chip are increased from 64 to 1024. The total on-chip cache capacity is kept

nearly constant at ∼22MB, that is to say that per tile cache sizes are scaled down as more core

are integrated on-chip. The results of all benchmarks are average of California Road Network and

Facebook graphs and reported as raw completion times in each figure.

Figure 7.2.6 shows that graph workloads with coarse–grain synchronization scale up to 512 cores

for all three communication models. The main reason is that the communication is not the bottleneck

since much computation is performed locally in parallel. However, barrier synchronization overhead

shows up in completion time beyond 512 cores, and prevents the Spin model to scale. The Atomic

model scales better than the Spin model since it utilizes atomic fetch–and–add instruction for

its barrier variable update. However, even the Atomic drastically slows down in its performance

scaling as core counts are increased from 512 to 1024. On the other hand, the spatial MC model

achieves superior scaling compared to both Spin and Atomic models as a result of its efficient

barrier implementation. Even though it does not improve performance at 1024 cores compared

to 512 cores for PAGERANK and COMM, the completion time does not get worse. The reason for
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Figure 7.2.7: Core scaling results for Spin, Atomic, and MC implementations of SSSP, TC and BFS.

not scaling beyond 512 is mainly due to the fact that the memory stalls do not scale for these two

benchmarks. There are two factors that contribute to the memory bottleneck. The first one is that as

the network gets larger, the data access latency increases. The second reason is that PAGERANK and

COMM make more memory accesses as compared to CC. As a result, the memory stalls become

bottleneck beyond 512 cores for these two workloads.

Figure 7.2.7 shows the core scaling results for the benchmarks with fine–grain synchronization.

When the core count rises, the overheads boost exponentially for the Spin model after 256 cores

for SSSP. Both the number of instructions and memory stalls blow up due to instruction retries

and expensive cache line ping–pongs. Better completion time is accomplished with the Atomic

model by employing more efficient barrier and lock–free data structures. However, its performance

also slows down after 512 cores due to the increased sharing and enlarged network size, which

make atomic updates more costly. The MC model helps SSSP scale to 1024 cores, and provides

2.2× better performance than the Atomic model. BFS also follows similar trends as observed for

SSSP. The Spin version stops scaling beyond 256 cores, and Atomic achieves performance scaling

up to 512 cores. On the other hand, the MC model provides superior performance up to 1024

cores, and offers 2.4× speedup over the best performing Atomic model implementation. Unlike

SSSP, barrier synchronization is the biggest bottleneck in BFS since the locks are not contended,
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Figure 7.2.8: Core scaling results for Spin, Atomic, and MC implementations of ALEXNET and

SQUEEZENET.

as discussed in Section 7.2.2. Subsequently, providing faster barrier with the MC model pushes

scaling to thousand cores. Contrary to other two workloads, the Spin version of TC scales to 512

cores. However, due to overheads of per node lock acquisition, its performance is worse than both

Atomic and MC models. The reason for better scaling compared to SSSP and BFS is that the Spin

model benefits from concurrency when the shared data is not contended. Since these graphs are

sparse, there is not much contention, and thus the Spin model scales. The Atomic model surpasses

the Spin model consistently, and provides more efficient completion time but it also does not scale

beyond 512 cores. Even though the MC model looses to Atomic at 64 cores for SSSP and TC as a

result of better concurrency, it yields more effective completion times at 512 and 1024 cores. At

higher core count, as the network latency boosts, the overlapping of communication stalls becomes

even more important. Hence, the MC model leads to better scaling than Atomic, even though the

Atomic model provides superior concurrency.

Figure 7.2.8 shows the scaling of both machine learning workloads, ALEXNET and SQUEEZENET.

The Spin model does not even scale to 256 cores. As both these workloads are implemented using

4–way SIMD with 16–bit floating point capabilities per core, it significantly reduces both instruction

counts and the memory stalls between barriers. Hence, synchronization at the end of each layer
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becomes important. As SQUEEZENET contains more layers, and thus more barriers, it experiences

more performance degradation with the increase in core counts for the Spin model. The Atomic

model achieves performance scaling up to 256 cores, however beyond that performance starts

declining for both benchmarks. The MC model, on the other hand, scales to 1024 cores for

SQUEEZENET with more efficient barrier synchronization. Similarly, the MC model also helps

achieve superior performance for ALEXNET up to 1024 core. However, as discussed in Section 5.4.2,

it has two implementations for the spatial MC model. One is naive implementation which only

replaces the barrier, which is called coarse–grain MC (MC–coarse). This implementation of

ALEXNET does not scale to 1024 cores as it suffers from load imbalance due to limited concurrency.

By using the fine–grain strategy discussed in Section 5.4.2, both imbalance and concurrency

challenges are solved without sacrificing data reuse. Hence, fine–grain MC (MC–fine) provides

performance improvements up to 1024 cores, and offer 3.5× speedup over the best scaling Atomic

implementation.

7.2.4 Determining Service Thread Count in the Spatial MC Model

Despite its notable performance achievements, the spatial MC model has a challenge to tune the right

number of worker and service threads for fine–grain synchronization. This is important because

it changes from workload to workload, and using the same service thread count for two different

workloads may result in significant performance loss. For example, sweep study for SSSP at 64

cores reveals that it requires only 2 service threads. If the same service thread count is deployed

for TC, it results in 3× worse performance as compared to Spin. Therefore, TC also requires a

separate search. As the number of cores goes up, the search space for the best performing ratio also

increases. Hence, it gets more time consuming. Therefore, a profiling driven heuristic is proposed

to determine the near-optimal service thread count.
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Figure 7.2.9: Correlation of service core count with shared work for SSSP, TC and BFS at different

core counts.

As discussed in Section 3.2.3, the number of service threads are expected to correlate with the

average amount of time spent in the critical code sections. The Spin version of benchmarks with

fine–grain synchronization are profiled to obtain the percentage shared work each thread performs

at 64, 128, 256, 512 and 1024 cores. Also, for each core count, a sweep study is conducted to

obtain the best performing service thread count. Figure 7.2.9 shows the shared work against the

best performing number of service threads. As seen, there is a linear correlation between the best

performing service thread count and the shared work for all the benchmarks. This suggests that

by profiling the Spin version, one can easily determine the required number of service threads.

For example, at 512 cores, SSSP has 7% of shared work, which results in 35 service threads. This

number is very close to the optimal number of 32 acquired from the sweep study. As discussed

in Section 3.2.3, the worker to service thread ratio is limited to at most 50%. Therefore, in some

cases such as TC, the shared work is more than 50% of the total completion time. Hence, more

than half of the cores are not assigned as service threads. At 512 cores, picking the right number of

service threads with this heuristic on average causes only 5% performance loss compared to the

near optimal performance obtained with exhaustive sweep study.

81



M
C

M
C
_
tm

p

M
C

M
C
_
tm

p

M
C

M
C
_
tm

p

M
C

M
C
_
tm

p

M
C

M
C
_
tm

p

0

0.2

0.4

0.6

0.8

1

1.2
M
C

M
C
_
tm

p

M
C

M
C
_
tm

p

M
C

M
C
_
tm

p

M
C

M
C
_
tm

p

M
C

M
C
_
tm

p

N
o
rm

a
li
ze
d
	C
o
m
p
le
ti
o
n
	

T
im

e

M
C

M
C
_
tm

p

M
C

M
C
_
tm

p

M
C

M
C
_
tm

p

M
C

M
C
_
tm

p

M
C

M
C
_
tm

p

SSSP

64	

Cores

128

Cores

256

Cores

512

Cores

1024

Cores

TC

64	

Cores

128

Cores

256

Cores

512

Cores

1024

Cores

64	

Cores

128

Cores

256

Cores

512

Cores

1024

Cores

BFS

Instructions Memory	Stalls Communication	Stalls

Figure 7.2.10: Normalized core scaling results of MC, and MC tmp; all normalized to MC at 64

cores.

7.2.5 Spatial versus Temporal MC Model

This section evaluates the spatial MC model against the MC tmp model which eliminates the

need for tuning the service thread count by utilizing temporal mapping of service and worker

threads in the same core, as explained in Section 3.2.3. Figure 7.2.10 demonstrates the results

of spatial (default) MC and temporal MC (MC tmp) for three graph benchmarks with fine–grain

communication. The presented results are the average of California road network and the Facebook

graphs, and the results are normalized to the spatial MC model at 64 cores.

The temporal implementation improves performance compared to spatial MC at lower core

counts (see 64 cores in the figure). At lower core counts, finding the optimal service thread count

is easier, however load balancing the service and worker threads is difficult. If the thread count

assigned for critical section execution is higher, then it hurts performance by taking away parallelism

from the worker threads. However, if it is smaller, it may create serialization at the service threads.

The temporal approach makes load balancing easier as each core is both a worker and a service

thread. Using same number of service and worker threads with the MC tmp model helps improve

concurrency on both algorithm work, as well as the critical section execution. Therefore, it slightly

improves performance over the spatial implementation. However, as the number of cores increases,
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Figure 7.2.11: Normalized core scaling results of MC, and MC shmem; all normalized to MC at 64

cores.

the benefits of temporal implementation diminish. At higher core counts, the number of cores are

abundant, hence the work per thread is smaller. Therefore, it is easier to spare some of the cores

as service thread with spatial approach. In addition, 2× more threads participate in the barrier

with MC tmp, and this enlarges the barrier overheads specially at higher core counts where the

barrier performance is important. Moreover, assigning two different tasks in the same core stress the

private cache capacity, which results in higher memory stalls as suggested by the data in the figure.

Consequently, employing MC tmp at 512 cores and beyond leads to degradation in performance.

Overall, these results suggest that even though MC tmp does not require tuning the service thread

count, it does not scale as well as the spatial implementation of the MC model. In addition, it

also requires two hardware contexts per core, and context switching policy logic that takes explicit

messaging into account. On the other hand, the spatial MC model is lightweight and flexible in

managing the various worker and service threads in the system.
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7.2.6 Evaluation of MC against MC shmem

This section discusses the results of the shared memory version of moving computation to data

model. As discussed in Section 3.2.1, the spatial MC model is implemented using the shared memory

cache coherence (MC shmem) without in–hardware explicit messaging support. Figure 7.2.11

shows the normalized completion time of default MC and MC shmem for SSSP, TC and BFS at

different core counts. The presented results are the average of California road network and the

Facebook graphs, and the results are normalized to MC at 64 cores.

The figure shows that the performance scaling of BFS follows almost the same trend with Atomic

in Figure 7.2.7. As discussed in Section 7.2.2, BFS is not contended, hence the implementation of

the critical section does not make any difference in the performance. The most of the performance

benefit comes from the explicit messaging based barrier implementation. Therefore, at higher

core counts, the performance of MC shmem degrades due to the ping–pongs of the shared barrier

variable. In the case of SSSP, MC shmem provides similar performance with MC up to 256 cores.

At 512 cores, the performance of MC shmem is 1.22× worse than the MC with explicit messaging.

This is better than the completion time of Atomic at the same core count (1.35× worse than MC)

because MC shmem benefits from non–blocking critical section requests. However, due to ping–

ponging of the shared buffer between worker and service threads, the performance benefit is still

limited. In addition, similar to Atomic, the barriers are also becoming a limiting factor at these core

counts. At 1024 cores, the ping–ponging affect becomes worse, hence more than 2× performance

difference is observed. TC is the only workload in which MC shmem is always worse than MC at

all core counts. Unlike other two workloads, MC version of TC prevents ping–ponging of the shared

data because the shared data is not accessed anywhere outside the service thread task. MC shmem

also pins the shared data in the service thread and enables non–blocking communication, however

it adds constant ping–ponging of the shared buffer to enable communication between worker and
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service threads. This happens even when there is no contention on the actual shared data. In the case

of Atomic, if there is no contention on the shared data, there is no bouncing, hence it can benefit

from elevated concurrency on the critical section. As a result, it can provide better performance.

On the other hand, as a result of constant ping–ponging of the shared buffer, the performance of

MC shmem is always worse than both Atomic and MC. The results show that on average the MC

model with explicit messaging is 2.3× faster than the equivalent shared memory implementation,

MC shmem. Therefore, it suggests that in–hardware explicit messaging support is required to

enable efficient implementation of the MC model.
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Chapter 8

Conclusion

This thesis proposes a novel moving compute to data model for accelerating synchronization on a

1000–cores scale single-chip multicore processor. The proposed model accelerates synchronization

by executing critical code sections at dedicated cores using low–latency and non–blocking core–

to–core explicit messaging hardware. This enables to efficiently pin shared data to dedicated

cores, and eschews unnecessary cache line ping–ponging. In addition, by allowing non–blocking

communication for workloads that do not have strict consistency requirements, the proposed model

hides communication latency by overlapping it with computation and other stalls. The applicability

of the proposed model is shown by implementing various workloads with different synchronization

requirements from graph analytics, machine learning and database domains.

This thesis includes two sets of evaluations for the proposed synchronization model. First,

Tilera R© Tile-Gx72TM multicore platform is employed to implement MC model using its core–to–

core messaging network, and evaluate the proposed model up to 64 cores. The results show that the

proposed model provides on average 16% and 34% performance benefit over atomic instruction

and spin–lock based synchronizations, respectively. The evaluations at 64 cores suggest that for
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the graph workloads, the most notable performance improvement of the MC approach stems from

the workloads with fine–grained synchronization, and utilizing non–blocking communication for

the critical section requests is the most significant contributor to the superior performance. For the

database workload, on the other hand, pinning the shared data to service cores is shown to prevent

expensive cache line ping–pongs under high contention, and provide enhanced performance as the

core count increases.

Since the Tilera machine only contains 72 cores, a RISC-V based multicore simulation en-

vironment is deployed for further analysis at 1000–cores scale. The proposed synchronization

model is evaluated against atomic instructions and the traditional spin-lock based synchronization

primitives for the graph analytics and machine learning benchmarks. The experimental results show

that the spatial MC model scales performance up to 1000 cores while traditional shared memory

approaches do not scale beyond 512 cores. It offers an average of 60% improvement over the lock

based synchronization, and 27% better performance over atomic instruction based synchronization

at 512 cores. The proposed profiling based heuristic is also evaluated up to 1000 cores and shown

to be effective regardless of the core count. Furthermore, the MC model achieves an average of

39% efficiency on dynamic energy as compared to the atomic instruction based synchronization.

Moreover, the proposed spatial MC model is realized using shared memory cache coherence without

in–hardware explicit messaging, and a comparative study is conducted to show that in–hardware

explicit messaging is required for efficient implementation of the MC model. Finally, a temporal

implementation of the MC model is implemented, and a scaling study is conducted. The study

shows that while at lower core counts the temporal implementation provides better performance,

the spatial MC model outperforms the temporal as the core count approaches to 1000–cores.

Tilera evaluations up to 64 cores, and the higher core count evaluations using the RISC-V

multicore simulator show that the proposed moving computation to data approach is a promising

synchronization model for future multicores at the 1000–cores scale.
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