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SUMMARY

The pressure variations during the production of petroleum reservoir induce stress changes in and around
the reservoir. Such changes of the stress state can induce marked deformation of geological structures for
stress sensitive reservoirs as chalk or unconsolidated sand reservoirs. The compaction of those reservoirs
during depletion affects the pressure field and so the reservoir productivity. Therefore, the evaluation of the
geomechanical effects requires to solve in a coupling way the geomechanical problem and the reservoir
multiphase fluid flow problem. In this paper, we formulate the coupled geomechanical-reservoir problem as
a non-linear fixed point problem and improve the resolution of the coupling problem by comparing in
terms of robustness and convergence different algorithms. We study two accelerated algorithms which are
much more robust and faster than the conventional staggered algorithm and we conclude that they should
be used for the iterative resolution of coupled reservoir-geomechanical problem. Copyright # 2006 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The oil industry has to face several geomechanical problems such as borehole stability,
hydraulic fracturing, reservoir compaction, integrity of bounding seal for acid gas sequestration.
Most of the time, these problems involve interactions between fluid flow, heat transfer and
mechanics. This is particularly true for production-induced compaction where the interactions
between fluid flow and reservoir deformation can be extremely marked. The reservoir
compaction is induced by the oil production that lowers the fluid pressure in the reservoir
and increases the effective stress on the reservoir rock. The reservoir compaction will be more or
less marked depending on the reservoir constitutive law, the pressure change in the reservoir,
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reservoir geometry and boundary conditions. Reservoir compaction is a major concern for the
oil companies because the stress redistribution associated with the reservoir compaction can
trigger well problems like casing collapse or shear failure in the presence of pre-existing faults or
weak bedding planes (e.g. Wilmington oil field in California). Surface subsidence (see [1]) is also
one of the most visible consequences of the reservoir compaction. Surface subsidence can
damage the surface installations (e.g. the Ekofisk oil field) and can also create environmental
problem (e.g. the Bachaquero Heavy oil field and Groningen gas field). On the other hand,
compaction is a drive mechanism for oil recovery because it reduces the porous volume
accessible to the fluids and therefore increases the reservoir production (e.g. the Zuata heavy Oil
field in Venezuela).

The stress variations induced by production does not always affect the fluid flows in the
reservoir. Nevertheless, for stress-dependent reservoirs, the reservoir compaction significantly
modifies the reservoir porosity or permeability so that the fluid flow model cannot be used
alone to predict the reservoir production. Therefore, the hydrocarbon production of
stress-dependent reservoir requires to couple the fluid flow model with a mechanical model.
Such a coupled model has firstly being developed by Biot [2] who proposed a coupled set of
equations for describing soil settlement under load. Afterwards, the Biot theory has been
extended to multiphase flow in porous media (see e.g. [3]) that can be used to model the
production of stress-dependent reservoirs. Two different approaches (see [4]) can be used to
solve the coupled set of equations:

* The fully coupled approach uses a single simulator that simultaneously solves the fluid flow
and mechanical problems. Consequently, at each time step, the coupled set of equations is
solved using a Newton-type method. The fully coupled approach allows full access to the
fluid flow and mechanical unknowns so that the coupling between fluid flow and mechanics
can be easily operated. However, this approach requires numerous developments to reach
the same level of capability as usually encountered in conventional reservoir simulator and
conventional stress simulator. For that reason, fully coupled simulators do generally not
offer the same level of features as conventional reservoir or stress simulators. In addition,
the domain considered in the mechanical problem is larger than the reservoir domain
because it includes the reservoir overburden, base and sides. Therefore, the solution cost of
the mechanical problem at each reservoir simulator time step can be particularly high in
terms of CPU time especially if the fluid flow problem is extended over the reservoir
domain.

* The simulator coupling approach relies on an iterative scheme between a fluid flow
simulator and a stress simulator. The coupled problem can be solved using iterative
algorithms that require the resolution of a fluid flow sub-problem (i.e. a reservoir
simulation) and a mechanical sub-problem (i.e. a stress simulation). The iterative algorithm
is based on data exchange between the two simulators. If the full convergence of the
iterative algorithm is reached, the solution of the simulator coupling approach is the same
as the solution of the fully coupled approach using one simulator. However, unlike the
fully coupled approach, the simulator coupling approach is more flexible because it benefits
from the pre-existing developments of the fluid flow simulator and stress simulator.
Furthermore, the simulator coupling approach can be used to reduce the number of
mechanical simulation if the coupling algorithm is implemented over time periods that
includes several fluid flow time steps.
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Thanks to its flexibility, the coupling approach is being increasingly used by oil and gas
companies for analysing the behaviour of stress-dependent reservoirs. Most of the time the
coupling is operated through a staggered algorithm between a reservoir simulator and a stress
simulator, information being exchanged between the two simulators. First the reservoir
simulator provides the pressure changes to the stress simulator. The pressure change is
converted into load in the stress simulator that computes in turn the resulting stress and strain
changes. Then the stress simulator provides the porosity changes to consider in the reservoir
simulation at the next iteration. This process must be iterated until convergence is achieved. The
porosity changes assigned to the reservoir simulator can be computed as a function of pressure
and geomechanical unknowns (e.g. volumetric strain or mean total stress [5–7]). In the case of
single phase linear flow and linear elasticity, the staggered algorithm can be seen as a block
Gauss–Seidel iterative method for solving the coupled system [8]. However, it is well known that
Gauss–Seidel-type algorithms converge slowly so that the convergence could require a large
number of reservoir and geomechanical simulations. Therefore, the staggered coupling
algorithm can be extremely computing time consuming, especially for industrial applications
and for non-linear reservoir constitutive laws.

Therefore, there is an important need for new coupling algorithms that can significantly
improve the convergence rate of the simulator coupling approach. To this aim, this paper
presents two algorithms that can be used to solve the coupled fluid flow and deformation
problem with two different simulators. The first algorithm is a non-linear gradient conjugate
algorithm preconditioned with the stiffness matrix and firstly proposed by Daı̈m et al. [8]. The
second algorithm is a non-linear generalized minimum residual method (noted gmres). The
paper highlights the differences between these algorithms and the Gauss–Seidel-type algorithm
usually used in the simulator coupling approach and explains how these algorithms could be
implemented with a reservoir simulator and a stress simulator. Last, the performance of the
different algorithms is evaluated on 1D and 3D tests and some recommendations for the choice
of the coupling algorithm are proposed.

The content of the paper is as follows: the second section describes mechanical and fluid flow
models and examines the coupling between the two models. The next section presents the
different algorithms that can be used to iteratively solve the coupled geomechanics-reservoir
problem. The first algorithm is the Gauss–Seidel one, commonly applied to couple reservoir-
geomechanics simulations. The two other algorithms are the non-linear gradient conjugate
method and the non-linear gmres. The last section presents the numerical tests used to compare
the iterative algorithms. The comparison is performed in terms of convergence and robustness
on a 1D case and on a synthetic reservoir study.

2. GEOMECHANICAL-RESERVOIR COUPLING

2.1. Coupled geomechanics and fluid flow

Let us note that o is the reservoir domain of the fluid flow model and O is the geomechanical
domain considered in the mechanical problem. The reservoir domain is embedded in the larger
domain O that is composed of the reservoir domain with its surrounding formations (reservoir
base, sides and overburden). Fluid flow problem only arises in the reservoir domain. The
geomechanical domain is large enough so that the boundary conditions for the mechanical
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unknowns are set sufficiently far away from the boundary of the reservoir domain to mimic the
in situ boundary conditions.

The momentum balance is governed by the mechanical equilibrium equation in both the
reservoir and the surrounding formations

div s ¼ f in O ð1Þ

where s is the total stress tensor and f represents the gravity forces. The strain tensor is the
symmetric part of the displacement gradient and is defined by

eðuÞ ¼ 1
2
ðruþtruÞ in O ð2Þ

where u is the displacement vector. Strain and stress tensors are related through a constitutive
law. Assuming a poroelastic behaviour of the reservoir rock and using the continuum mechanics
sign convention (compressive stresses are negative), the constitutive law takes the form

s ¼ �%C : eðuÞ � aP in o ð3Þ

where �%C is the tensor of the elastic drained coefficients and a is the Biot’s coefficient resulting
from the definition of the effective stress in porous media and P is the fluid pressure. Assuming
an isotropic reservoir rock the elastic tensor is expressed as

Cijkl ¼
En

ð1þ nÞð1� 2nÞ
dijdkl þ

E

2ð1þ nÞ
ðdikdjl þ dildjkÞ ð4Þ

where E and n are the Young’s modulus and the Poisson ratio. In the reservoir surrounding
formations, the total stress s is related to the strain tensor with

s ¼ �%C : eðuÞ in O\o ð5Þ

where �%C is the tensor of the elastic coefficients of the surrounding formations. Introducing
Equation (3) in Equation (1) and taking into account expression (2) of the strain tensor, the
mechanical problem can be formulated as a displacement problem that has to be solved with
additional initial and boundary conditions.

The fluid flow problem considers two phase fluid flow in the reservoir (oil and water). To
simplify, capillary effects are neglected so that the fluid pressure denoted as P of the constitutive
law (3) corresponds in the paper to either the oil pressure or the water pressure. The fluid flow in
the reservoir domain obeys the generalized Darcy’s law in each phase. For compressible fluids,
the governing reservoir equations are the mass balance equations of each phase. Assuming no
capillary effects, these mass balance equations are given by

@

@t
ðrwSwfÞ � div rw

kr;w

mw
kðrP� rwgÞ

� �
¼ qwdðx ¼ xwellÞ

@

@t
ðroSofÞ � div ro

kr;o

mo
kðrP� rogÞ

� �
¼ qodðx ¼ xwellÞ

8>>><
>>>:

in o ð6Þ

where subscript o refers to the oil phase and subscript w to the water phase. In Equation (6),
x and t refer to the space and time variables, respectively, and f and k denote the reservoir
porosity and permeability, respectively. Still in Equation (6) and for i ¼ w and o, Si is the
saturation of phase i; kr;iðSwÞ is the relative permeability of phase i; mi is the dynamic viscosity of
phase i; riðPÞ is the density of phase i and qi is the volumetric rate of source term in phase i at the
location x ¼ xwell:
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The coupling between the fluid flow model and the mechanical model can be highlighted using
the pressure and porosity variables. According to Equations (1) and (3), the pressure changes in
the reservoir lead to a stress redistribution and strain changes in the geomechanical domain. The
strains localized in the reservoir domain can modify the reservoir porosity, appearing in
Equation (6). Using the second constitutive law of poroelasticity [9], the porosity change for a
single phase flow can be related to the volumetric strain and the pressure change according to
this following equation:

@f
@t
¼ a

@

@t
ðdiv uÞ þ

1

Z
@P

@t
in o ð7Þ

where Z is a reservoir rock property independent of the fluid properties and that can be
expressed as a function of the Biot’s coefficient, the porosity and Ks is the bulk modulus of the
solid phase of the porous rock

1

Z
¼
ða� fÞ

Ks
ð8Þ

Moreover, the following identities are verified [9]:

a ¼ 1�
Kd

Ks
and Kd ¼

E

3ð1� 2nÞ

where kd the rock-drained bulk modulus.
For a reservoir rock composed of incompressible grains ðks ¼ 1Þ; the biot’s coefficient equals

one and the right hand side of Equation (8) vanishes so that Equation (7) reduces to

@f
@t
¼
@

@t
ðdiv uÞ in o ð9Þ

This last equation shows that, for an incompressible solid phase, the porosity change is equal
to the volumetric strain rate. In this case, the mass change of fluid per unit of volume writes

@rf
@t
¼ r

@

@t
ðdiv uÞ þ fcf lrref ;f l

@P

@t

� �

with r ¼ rref ;f lð1þ fcf lðP� Pref ÞÞ

where rref ;f l is the fluid density at reference pressure pref and cf l is the fluid compressibility.
In the case of two phase flow (with i ¼ w and o), the mass change per unit of volume per

phase writes

@Sirif
@t

¼ riSi
@

@t
ðdiv uÞ þ fcf lirref ;f li Si

@P

@t
þ rif

@Si

@t

� �

where ri ¼ rref ;f li ð1þ fcf li ðP� Pref ;iÞÞ with rref ;f li is the density of fluid i at reference pressure
Pref ;i and cf li the fluid compressibility of fluid i.

Note that the following coupling algorithms and numerical examples are presented under the
assumption of a reservoir rock composed of incompressible grains and for which Equation (9)
holds. However, the coupling algorithms can be easily extended to the case of compressible
grains by considering that the first term is the right hand side of (7) can be handled as in the case
of an incompressible solid matrix and that the second term in the right hand side of (7) can be
managed as a compressibility in the reservoir simulator.
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2.2. Time and space discretizations

Finite volume schemes are generally used for the reservoir spatial discretization to ensure mass
conservation in each cell and an efficient discretization of the hyperbolic and parabolic terms in
the flow equations. The finite volume scheme is obtained by integrating the mass balance
equations of each phase (i.e. Equations (6)) on each cell of the finite volume mesh as prescribed
by finite volume techniques. An upwind scheme has been used to evaluate the hyperbolic terms
of the equations (see [10]). Concerning the time integration, a semi-implicit method named
implicit pressure explicit saturation (IMPES) has been implemented.

The displacement problem is an elliptic one for the displacement vector u and is solved using
the finite element method. The stress equilibrium equation is discretized using a weak form of
the equilibrium equations and quadratic functions as basis functions (see e.g. [11]). The choice of
quadratic functions for the displacement vector and of constant functions for the pressure and
saturation on each cell ensures the compatibility conditions that are necessary and sufficient for
the convergence of the scheme [12, 13].

The discretized forms of the fluid flow and mechanical equations are given by Daı̈m et al. [8]
and lead to a system of equations [4,5] given by

C B0

�B A

 !
Pnþ1

unþ1

 !
¼

G

F

 !
ð10Þ

where Pnþ1 is a vector of size N that contains the pressure unknowns at time tnþ1 for all cells of
the finite volume mesh and unþ1 is a vector of size M that contains the displacement unknowns
of the finite element methods at time tnþ1: Note that, for a sake of clarity, the saturation
unknown vector does not appear in the system (10) because the saturation does not directly act
on the stress equilibrium. In system (10), A is the stiffness matrix of dimension M �M that
accounts for linear elasticity of the displacement problem, whereas C is the reservoir non-linear
operator ðRN ! RNÞ associated to the fluid flow problem. B and B0 are, respectively, an N �M
and an M �N rectangular matrices that account for the coupling between displacement and
fluid flow unknowns. In the framework of poroelasticity, we have B0 ¼tB: The matrix B allows
to compute the variation of pore volume for each finite volume cell K (with volume mðKÞÞ using

tB½unþ1l � unl �l¼1;...;M ¼ ½mðKÞDfK �K¼1;...;N ¼
Z
K

ðdiv unþ1 � div unÞ dx
� �

K¼1;...;N
ð11Þ

The right hand side of system (10) is composed of the gravity loading term F and the reservoir
source term G: These terms depend on the pressure and displacement unknowns computed at
the previous step (i.e. Pn and unÞ:

3. ALGORITHMS FOR SIMULATOR COUPLING

This section presents three algorithms that can be used to solve the coupled set of equations (10)
with a reservoir simulator in conjunction with a stress simulator. The first algorithm is a
staggered coupling algorithm that consists of iterative resolutions of reservoir and stress
simulations over a time increment. This algorithm is the one generally used for coupled
reservoir-geomechanics simulations [4, 5, 14].The second algorithm is a non-linear gradient
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conjugate algorithm preconditioned with the stiffness matrix and firstly proposed by
Daı̈m et al. [8]. The third algorithm is a non-linear gmres.

3.1. Staggered sequential algorithm

In the staggered sequential algorithm, the coupled set of equations (10) is solved using a
sequence of one reservoir simulation followed by one stress simulation. To illustrate the
algorithm principle, let us assume that the pressure and displacement vectors have been
computed at time tn and that we want to compute the pressure and displacement vectors at the
next time tnþ1: The staggered algorithm starts with a reservoir simulation that provides the
pressure change P1;nþ1 � Pn at the first iteration between times tn and tnþ1: This pressure change
affects the stress equilibrium through the term BðP1;nþ1 � PnÞ: Using this term as a load in the
displacement problem, the stress simulator computes the new displacement vector u1;nþ1 that
results from the pressure change in the reservoir computed at the first iteration. The
displacement increment u1;nþ1 � un leads to porosity changes that affect the fluid flow. The
porosity change computed by the stress simulator is taken into account in the fluid flow model
by using the term tBðu1;nþ1 � unÞ as a load in the next reservoir simulation at iteration 2. This
process is iterated until full convergence of the pressure and displacement unknowns and the
staggered coupling algorithm is provided by:

Staggered coupling algorithm:

Initialization of Df1

For l ¼ 1; 2 . . . until convergence Do
Calculate Pl;nþ1 taking into account Dfl Reservoir Simulation
Calculate ul;nþ1 using Pl;nþ1 as a load Stress Simulation
Calculate Dflþ1 using (11)

End do

Reservoir simulators generally use a rock compressibility parameter in the porosity–pressure
law. The linear porosity–pressure law of the reservoir simulator takes the form

f ¼ f0ð1þ crðp� p0ÞÞ ð12Þ

where p0 and f0 are references values of the pressure and porosity and cr is the rock
compressibility parameter of the reservoir simulator. This rock compressibility takes into
account the pore volume change due to the reservoir compaction in the reservoir simulator.
However, it is recognized that such a parameter cannot provide a full representation of the stress
change induced by the reservoir compaction (see e.g. [15]). Actually, the rock compressibility
parameter used in conventional reservoir simulator provides a simplified geomechanical
approach that remains valid under limiting assumptions and specific reservoir stress paths (see
[5]). The staggered algorithm given above holds for a null reservoir rock compressibility but can
be extended for strictly positive reservoir rock compressibility. In that case, the porosity
correction to be used in the algorithm must be corrected from the porosity change already
accounted for in the reservoir simulator due to the reservoir compressibility such that (11)
becomes

mðKÞðDfK þ fn
Kcrðp

nþ1
K � pnK ÞÞ ¼

Z
K

ðdiv unþ1 � div unÞ dx ð13Þ
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Bévillon and Masson [16] have shown that the reservoir rock compressibility cr is useful to
ensure the unconditional stability of the staggered algorithm and that the smallest
compressibility ensuring stability is the best parameter. In the case of a linear reservoir
problem, system (10) is a linear system of equations and the staggered algorithm can be
interpreted as a Gauss–Seidel algorithm with a relaxation parameter equal to ð1þ cr=cf Þ

�1

where cf is the fluid compressibility [8]. Therefore, the rock compressibility parameter cr
introduced in the reservoir simulator can be considered as a numerical parameter that has to be
chosen to improve the convergence rate of the staggered algorithm.

The staggered algorithm has been implemented using reservoir and stress simulators. As
described in Section 2.2, a reservoir finite volume simulator is used in conjunction with a finite
element stress simulator. The convergence criterion is based on the L2 norm of normalized
pressure and displacement fields. Note that this algorithm requires, at each iteration, one
reservoir simulation followed by one mechanical simulation. This algorithm can be easily
extended to the case of a reservoir rock composed of compressible grains (i.e. cs > 0) and for
which the Biot’s coefficient is lower than one (i.e. a51). In that case, an alpha factor appears in
the coupling operator B and the reservoir rock matrix compressibility cs is handled in the
reservoir simulator using an additional compressibility equal to 1=ðf0ZÞ: As the Gauss–Seidel-
type algorithms converge slowly, two other algorithms based on more advanced techniques for
the resolution of the coupled system (10), are proposed.

3.2. Non-linear preconditioned conjugate gradient algorithm

The conjugate gradient algorithm is an efficient algorithm for solving linear system of equations
with symmetric positive definite matrix. Daı̈m et al. [8] propose to apply this algorithm
to the second equation of system (10) in which the pressure is seen as a function of the
displacement according to the first equation of system (10). Therefore, the pressure unknown
Pnþ1 is expressed as a function of the displacement unknown unþ1 using a non-linear
operator R depending on the reservoir operator C; the reservoir source term G and the coupling
matrix B

Pnþ1 ¼ RðtBunþ1Þ ð14Þ

This last equation is introduced into the first equation of system (10) to give a non-linear system
of equations for which the main unknown is unþ1: Let us note that L is the non-linear operator
associated to this system, the displacement problem takes the form

Aunþ1 � BðRðtBunþ1ÞÞ ¼ Lðunþ1Þ ¼ F ð15Þ

In the case of single phase flow, R is a linear operator so that Equation (15) turns
to be a linear system of equations with L a symmetric positive definite matrix. This linear
system (15) can be solved using the conjugate gradient method. The natural preconditioner
matrix for Equation (15) is the inverse of the stiffness matrix (i.e. A�1). Conjugate gradient
method has been developed for symmetric positive definite linear system but can be
extended to non-linear systems with symmetric positive definite Jacobian matrices.
However, in the case of multiphase flows, Equation (15) does not derive from a potential
and the Jacobian matrix associated to the non-linear operator L is a priori non-symmetric
and non-positive definite. However, lack of robustness of the conjugate gradient algorithm
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due to non-symmetry and non-positivity of the Jacobian matrix has not been observed on
numerical tests.

Using the inverse of the stiffness matrix as preconditioner, the non-linear preconditioned
conjugate gradient algorithm used for the resolution of Equation (15) is described below [8]

Preconditioned conjugate gradient algorithm:

Choose u0
Compute r0 ¼ F � Lðu0Þ; z0 ¼ A�1r0; and d0 ¼ z0
For l ¼ 0; 1 . . . until convergence Do

P0 ¼ RðtBðul þ edlÞÞ Reservoir simulation
yl ¼ Adl � BðP0 � PlÞ=e Stress residual computation
al ¼ ðrl ; zlÞ=ðyl ; dlÞ
ulþ1 ¼ ul þ aldl
Plþ1 ¼ RðtBðulþ1ÞÞ Reservoir simulation
rlþ1 ¼ F � Aulþ1 þ BPlþ1 Stress residual computation
zlþ1 ¼ A�1rlþ1 Stress simulation
bl ¼ ðrlþ1; zlþ1Þ=ðrl ; zlÞ
dlþ1 ¼ zlþ1 þ bldl

End Do

At each iteration, the computation cost of the non-linear preconditioned conjugate
gradient algorithm is given by two reservoir simulations, one mechanical simulation and two
stress residual computations. The evaluation of the mechanical residual is always negligible
compared to the inversion of the mechanical operator (sress simulation). It is important to note
that the previous form of the preconditioned conjugate gradient algorithm requires that
matrices A and B can be extracted from the mechanical or reservoir simulator to compute the
stress residue. However, this is not always the case with industrial simulators so that one could
prefer to apply the gradient conjugate method without preconditioning to the following fixed
point problem:

unþ1 � A�1ðBðRðtBunþ1ÞÞ � FÞ ¼ unþ1 �Hðunþ1Þ ¼ 0 ð16Þ

operator H formally corresponds to a reservoir simulation followed by a mechanical simulation.
when the gradient conjugate method is directly applied to Equation (16) instead of Equation
(15), two reservoir simulations and two stress simulations (one for the Jacobian matrix
evaluation and one for the residual evaluation) are needed per iteration.

3.3. Non-linear gmres algorithm

The non-linear gmres algorithm (see [17]) is a robust method adapted to the resolution of non-
linear fixed point problems. Like conjugate gradient algorithm, the gmres algorithm is based on
projection on affine Krylov subspace (the subspace of Krylov of index k associated to the initial
residue r0 of the linear system Ax ¼ b is generated by ðr0;Ar0;A2r0; . . . ;Akr0Þ). However, in
contrast with the conjugate gradient algorithm, the non-linear gmres algorithm does not
suppose that the Jacobian matrix is symmetric positive definite. Therefore, this method appears
to be more adapted than the conjugate gradient method to the resolution of systems (15) or (16)
that can lead to non-symmetric and non-positive definite Jacobian matrix in practical situations.
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The gmres algorithm is applied to the non-linear fixed point problem given by Equation (16).
The most important steps of the algorithm are

Non-linear gmres algorithm:

Choose u0
Calculate Hðu0Þ Stress & reservoir simulations
For l ¼ 0; 1 . . . until convergence Do

Computation of the residue rl ¼ ul �HðulÞ
v1 ¼ rl=jjrl jj
bl ¼ jjrl jj
Step 1: Building an orthonormal base ðviÞi¼1...j of the Krylov space Kl of dimension j using
Arnoldi algorithm
j ¼ 0
Do

j ¼ j þ 1
wj ¼ nj � ½Hðul þ enjÞ �HðulÞ�=e Stress & reservoir simulations
Do i ¼ 1; 2 . . . j

hij ¼ ðwj ; viÞ
End Do
vjþ1 ¼ wj � Si¼1;...j hijvi
vjþ1 ¼ vjþ1=jjvjþ1jj
Compute r ¼ jjul �HðulÞ þ dujl �H 0ðulÞdu

j
l jj without evaluating dujl

while r > e0

Step 2: Computation of the approached solution
Define the matrix Vj ¼ ½v1; v2 . . . vj�
Define Hj the upper matrix of dimension ðj þ 1� jÞ of coefficients ðhijÞ computed at step 1
Find yj that minimizes jjble1 �Hjyjj2 with ðe1 ¼ ð1; 0 . . . 0Þ of dimension j þ 1)
dujl ¼ Vjyj
ulþ1 ¼ ul þ dujl
Compute Hðulþ1Þ Stress & reservoir simulations
if jjulþ1 �Hðulþ1Þjj5e00

convergence
else
l ¼ l þ 1

End Do

As previously mentioned for the conjugate gradient algorithm, the non-linear operatorH requires
one reservoir simulation followed by one stress simulation. Because the size of the Krylov space used
at each iteration is variable, the number of reservoir and stress simulations per iteration is a priori
not known. However, the number of reservoir and stress simulations remains equal in any cases.

4. ALGORITHM COMPARISON

The three coupling algorithms described in the previous section have been implemented using a
reservoir finite volume simulator in conjunction with a finite element stress simulator. The
coupling between the reservoir and stress simulators is not operated at each time step of the fluid
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flow model but on time periods that contain several time steps. This makes possible to keep
small time steps in the reservoir simulation (this is necessary to ensure an accurate
approximation of reservoir unknowns) and to reduce the number of stress simulations on one
coupling period. Indeed, the computing cost of a stress simulation is usually larger than the
computing cost of a reservoir simulation. Therefore, the displacement is computed at time
T0;T1; . . . ;Tf where the time period (or the coupling period) between two stress simulations
(i.e. Tkþ1 � Tk) is composed of several reservoir time steps.

This section compares the staggered algorithm, the preconditioned conjugate gradient
algorithm and the non-linear gmres algorithm on 1D and 3D tests. The first test models 1D
water flooding in rock, whereas the second test simulates a more realistic reservoir production.
The first test also analyses the role of the pore compressibility factor used in the reservoir
simulator.

4.1. 1D water flooding

In that first test, the reservoir and geomechanical domains are superimposed and correspond to
a column of 40m high with a square cross-section of 1m per 1m.

For the reservoir simulation approach, the reservoir domain is initially saturated with oil. At
time t ¼ 0; water is injected at constant flow rate at the basis of the reservoir domain, whereas
oil is produced at constant pressure at the top of the reservoir domain. The relative permeability
of the fluid flow model follows quadratic laws given by

krwðSwÞ ¼ S2
w; kroðSwÞ ¼ ð1� SwÞ

2 ð17Þ

and oil and water are supposed to be compressible according to the equation of state defined in
Section 2.1. The petrophysical properties of the fluid flow model together with the initial and
boundary conditions are given in Table I.

For the geomechanical modelling approach, the geomechanical domain is the same as the
reservoir domain and is assumed to behave as an isotropic poroelastic medium. Uniaxial strain

Table I. Fluid flow and mechanical parameters.

Fluid flow
Initial porosity 0.1
Reservoir permeability 5� 10�13 m2

Oil viscosity 5� 10�3 Pa s
Water viscosity 1� 10�3 Pa s
Oil compressibility 4� 10�10 Pa�1

Water compressibility 4� 10�10 Pa�1

Initial oil density 1
Initial water density 1
Initial pressure 0.1MPa
Pressure at the production well 10MPa
Water flow rate 8:64 m3 days�1

Stress
Young’s modulus 5:333� 10þ2 MPa
Poisson ratio 0.333
Biot’s coefficient 1
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conditions are imposed without any displacement in the x and y-directions and the strain only
occurs in the z-direction. According to these assumptions, the vertical stress sz is related to the
fluid pressure and to the vertical strain ez; by (initial pressure and vertical stress are null)

sz ¼ Kuniez � aP ð18Þ

where Kuni is the bulk modulus in uniaxial conditions and can be related to the Young’s
modulus E and Poisson ratio n using

Kuni ¼
Eð1� nÞ

ð1� 2nÞð1þ nÞ
ð19Þ

Table I gives the values of the mechanical parameters used for the present test. Next, the
coupling algorithms are compared using two boundary conditions for the mechanical problem

* The first boundary condition (case 1) assumes that the vertical load is constant (i.e.
oedometric condition). In that case, the volumetric strain equals the vertical strain and is
proportional to the pressure change according to Equation (18). As a consequence, the
poroelastic system of equations can be decoupled and the porosity change given by
Equation (7) is proportional to the pressure change

@

@t
f ¼

a2

Kuni
þ

1

Z

� �
@

@t
P ð20Þ

Therefore, with that particular boundary condition, it is possible to compute an equivalent
reservoir compressibility from (20) that can be used in the reservoir simulator to solve the
reservoir problem without running the stress simulation. The reservoir compressibility
deduced from (20) is the oedometric compressibility expressed by

cr ¼ coedo ¼
1

f
a2

Kuni
þ

1

Z

� �
ð21Þ

* The second boundary condition (case 2) supposes that the vertical displacement is imposed
at the top and at the bottom of the geomechanical domain. Therefore, in that case, the
porosity change depends not only on the pore pressure change but also on the vertical
stress variation (using Equations (7) and (19))

@f
@t
¼

a2

Kuni

@sz
@t
þ

a2

Kuni
þ

1

Z

� �
@P

@t
ð22Þ

Therefore, this case requires the computation of the vertical stress. Assuming no body
forces, the stress equilibrium shows that the vertical stress does not depend on the vertical
co-ordinate. Therefore, Equation (18) is integrated along z to express the vertical stress of
the form:

Lsz ¼ Kuniðuzðz ¼ LÞ � uzðz ¼ 0ÞÞ � a
Z L

z¼0
pðzÞ dz ð23Þ

This last equation shows that the vertical stress depends on the boundary conditions and on the
whole pressure change in the reservoir domain. As a result, the vertical stress is not proportional
to the local pressure change so that the porosity change cannot be deduced from the pressure
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change using an equivalent reservoir compressibility. Therefore, in that case it is necessary to
couple the fluid flow model with the mechanical model to correctly solve the problem. In what
follows, the total vertical displacement variation along the geomechanical domain is assumed to
be null (i.e. uzðz ¼ LÞ � uzðz ¼ 0Þ ¼ 0).

Reservoir and geomechanical domains are discretized using 40 cells of 1m high. The
geomechanical simulations are performed over ten periods of 103 s; each period been divided
into five reservoir time steps. The convergence criterion of the three iterative algorithms assumes
that the relative variation of the pressure and displacement between two consecutive iterations is
less than 5� 10�5 (using the quadratic norm). The epsilon parameter of the non-linear gmres
and preconditioned conjugate gradient algorithm allowing the evaluation the Jacobian matrix
was adjusted, after some tests, to 10�4:Moreover, we verify the accuracy of the results obtained
with the different algorithms. The normalized L1 norm of the relative difference of the pressure
and displacement solution fields obtained for the three different algorithms was lower than 10�4:

Table II compares the iteration numbers of the three algorithms on the 1D test for constant
vertical load (i.e. case 1) and constant vertical displacement (i.e. case 2). For both cases, the
staggered algorithm has been tested using no reservoir compressibility in the reservoir
simulation (i.e. cr ¼ 0) and using a reservoir compressibility equal to the oedometric
compressibility in the reservoir simulation (i.e. cr ¼ coedo given by Equation (21)). Because
the gmres algorithm requires a variable number of stress (and reservoir) simulations per
iteration, the comparison is performed in terms of number of stress simulations for each period
of coupling (i.e. Tkþ1 � Tk). Table II gives the mean value of the number of stress simulations
per period of coupling for all algorithm and boundary conditions. The mean number of
reservoir simulations per coupling period is given between parentheses in the same table after
the mean number of stress simulations. According to the algorithms presented in Section 3, the
number of reservoir simulations is equal to:

* the number of stress simulations for the staggered algorithm;
* twice the number of stress simulations for the preconditioned conjugate gradient

algorithm;
* the number of stress simulations for the gmres algorithm.

The test performed with the staggered algorithm first underlines the role of the reservoir
compressibility to allow the convergence of this algorithm. Actually, the ratio of the rock
compressibility and the fluid compressibility is particularly critical (due to the low value of
young’s modulus we have chosen}see [16]) so that the staggered algorithm with no relaxation
parameter does not converge for both boundary conditions (i.e. cases 1 and 2). On the contrary,
when the oedometric compressibility is used as a relaxation parameter in the reservoir simulator,
the staggered algorithm converges. In case 1, where the rock compressibility represents exactly

Table II. Comparison of the mean number of stress simulations per period of coupling.

Staggered algorithm
with no reservoir
compressibility

Staggered algorithm
with oedometric
compressibility

Preconditioned
conjugate gradient

Non-linear
gmres

Case 1 No convergence 2 (2) 7 (14) 10.6 (10.6)
Case 2 No convergence 28.5 (28.5) 5.6 (11.2) 7.2 (7.2)
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the porosity change due to rock strain, the Gauss–Seidel converges in two iterations.
Convergence also occurs in case 2, but the benefit of the reservoir compressibility remains weak
because the number of stress simulations is high. Furthermore, the rate of convergence appears
to be extremely sensitive to the choice of the reservoir compressibility. For example, the mean
number of stress simulations increases from 2 to 9 when the reservoir compressibility increases
to one and half of the oedometric compressibility, for case 1.

Table II also shows that the conjugate gradient algorithm and the gmres algorithm are robust
algorithms that converge for both cases. The interesting case is the second one for which a real
coupling exists between the fluid flow and displacement models. For that case, the
preconditioned conjugate gradient algorithm converges 5 times faster than the staggered
algorithm, whereas the gmres algorithm converges 4 times faster than the staggered algorithm.
Therefore, the preconditioned conjugate gradient algorithm appears to be the most interesting
algorithm. However, as previously mentioned, the preconditioned conjugate gradient algorithm
requires a full access to the stiffness and coupling matrix in the stress simulator. Because this is
not always possible with commercial finite element stress simulator, the other formulation of the
conjugate gradient algorithm without preconditioning has also been tested. Using such an
algorithm, the mean number of stress simulations per coupling period increases:

* from 7 (with 14 reservoir simulations) to approximately 15 (with the same number of
reservoir simulations) for case 1;

* from 5.6 (with 11.2 reservoir simulations) to 11.2 (with the same number of reservoir
simulations) for case 2.

Therefore, if the stiffness and coupling matrix are not available in the stress simulator, the
performance of the gmres algorithm becomes better than the conjugate gradient algorithm
applied to the fixed point problem (16) with no preconditioner.

4.2. 3D reservoir production case

To study a more realistic 3D case, we perform coupled simulations with two industrial
simulators. We compare in this section the performance of Gauss–Seidel algorithm and gmres
algorithm.

A 3D case is presented where the reservoir, sideburden, overburden and underburden are
gridded. Table III gives the dimensions of the reservoir and geomechanical domains and
Figure 1 displays the mesh used to discretize the reservoir and the surrounding formations. The
reservoir mesh (Figure 2) is composed of 21� 21� 3 cells (1323 cells finite volume active cells),
whereas the geomechanical mesh is made of a Cartesian grid of 27� 27� 14 cells (10 206 finite
element active cells) embedding the reservoir grid.

Table III. Dimension of the reservoir case.

Reservoir surrounding Overburden thickness 2500m
formations Underburden thickness 750m

Lateral extension 4570m

Reservoir Areal extension 1525 m� 1525 m
Thickness 50m
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The mechanical properties of the surrounding formations are given in Table IV.
Reservoir properties used for the stress simulation are given in Table V.
As the lateral boundaries of the geomechanical domain are set far from the reservoir zone, the

normal displacements applied to the lateral boundaries are fixed at zero. The displacement
vector at the bottom of the geomechanical model is also equal to zero. The initial stress state
before reservoir production is obtained by computing the mechanical equilibrium of the model
submitted to regional stress. Total vertical stress ðsvÞ is determined by rock densities. The
horizontal stresses (sH and sh) are given by an estimated stress ratio ðsh=sv ¼ sH=sv ¼ 0:7Þ:
Accounting for the initial pore pressure issued from the reservoir simulation, the effective
stresses are computed as the difference between total stresses and pore pressure. A computed

Figure 1. The mechanical mesh.

Figure 2. The reservoir mesh (dark grey cells) with sideburden.
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initialization was performed to reach a mechanical equilibrium between the applied boundary
conditions and the initial state of stress in the structure.

Continuity of displacement vector and the traction is imposed at the boundary between the
reservoir and the surrounding formations.

The initial saturation in the reservoir is equal to the irreducible water saturation Swi ¼ 0:1 and
the initial pressure is 48.3MPa.

Reservoir production is achieved by a set of producer wells located at the centre of the finite
volume reservoir mesh producing in the three reservoir layers. The total rate of production is
1600 m3 days�1:

This production period is divided into four periods of three months. Each period of coupling
is divided into a variable number of reservoir time steps.

The convergence criteria of the two iterative algorithms are now set to 10�4 for the relative
variation in displacement between two consecutive iterations. We verified the accuracy of the
results; the normalized L1 norm of the relative difference of the pressure and displacement
solution fields obtained by the two algorithms was lower than 10�3 at the end of the simulation.
Table VI compares the mean number of stress simulations for the four coupling periods.

Although a relaxation parameter allows the staggered algorithm to converge, the rate of
convergence remains slow compared to the non-linear gmres algorithm when a precision of 10�4

Table IV. Mechanical properties of the surroundings formation.

Rock density 2600 kgm�3

Surrounding formations Young’s modulus of the sideburden and underburden 1:4� 104 MPa
Poisson ratio of the sideburden and underburden 0.25
Young’s modulus of the overburden 2� 103 MPa
Poisson ratio of the overburden 0.35

Table V. Properties of the reservoir (permeability curves are given in Appendix A).

Oil density 850 kg m�3

Fluid properties Oil compressibility 7:25� 10�10 Pa�1

Water density 1000 kgm�3

Water compressibility 5� 10�10 Pa�1

Oil viscosity 1� 10�3 Pa s
Water viscosity 1� 10�3 Pa s

Petrophysical properties Porosity 0.36
Permeability 10�13 m2

Rock density 2700 kgm�3

Capillary pressure Neglected

Mechanical properties Rock density 2640 kgm�3

Drained Young’s modulus 2:4� 10þ3 MPa
Poisson ratio 0.30
Biot’s coefficient 1
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is chosen. for a lower precision of 10�2; the performance of the algorithms are similar to this test
case.

However, for some critical values of physical data, the performance of the Gauss–Seidel
algorithm is really bad:

* if we increase the overburden stiffness (using a young’s modulus of 1:4� 10þ4 MPa), the
number of iterations of the staggered algorithm is 1.8 times the gmres number of iterations
for a precision of 10�4: in this case the loading can no more be approximated by an
oedometric path and both the relaxed staggered and the staggered algorithm converge
slower than the gmres algorithm.

* if we consider a young’s modulus as low as 2:4� 10þ3 MPa in the reservoir (such weak
value can mimic plastic behaviour [18]), the relaxed staggered algorithm does not converge,
ever with a precision of 10�2; whereas the gmres algorithm converges.

The two tests we consider in this section concern rocks with linear elastic behaviour. these
algorithms are fully adapted in practical situations for which the geomechanical behaviour is
non-linear, see e.g. [19, 20]; the problem remains a non-linear fixed point problem. the use of the
Gauss–Seidel algorithm and gmres algorithm remains straightforward also with industrial
simulators.

5. CONCLUSION

Different algorithms have been developed to solve the coupled fluid flow–elastic deformation
problem with iterative methods. These methods consider the coupled problem as a non-linear
fixed point problem and solve it using alternate resolution of a reservoir fluid flow problem and
a mechanical problem. For linear reservoir simulation, the conventional staggered algorithm
used in reservoir engineering can be interpreted as a Gauss–Seidel algorithm and can be highly
improved when using a relaxation technique (the performance is however highly sensitive to the
choice of the relaxation parameter). We study in this paper two other algorithms, the non-linear
gmres and non-linear conjugate gradient, for the resolution of the coupled problem.

Several numerical tests were carried out on 1D and 3D structures, including performance
comparisons. The non-linear gmres algorithm and the preconditioned gradient conjugate
method are more robust than the relaxed staggered algorithm. The preconditioned conjugate
gradient algorithm seems attractive: in spite of lack of robustness due to possible non-symmetry
and positivity of the Jacobian matrix, this algorithm requires only one geomechanical
simulation for two reservoir simulations. However, a drawback of this approach when using
industrial simulators remains that the stiffness matrix A and the coupling matrix B have to be

Table VI. Mean number of stress simulations of coupling periods for different algorithms.

Staggered algorithm with
oedometric compressibility

Non-linear gmres
algorithm

Number of reservoir and geomechanical
simulations per period of coupling 19-20-20-19 8-15-15-15
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extracted from geomechanical and reservoir simulators. The non-linear gmres algorithm is a
robust algorithm with interesting performance, particularly adapted to the resolution of non-
linear coupling problem. Moreover, it can be used, as it is, for coupling problems with non-
linear poro-mechanical constitutive law.

APPENDIX A

Water and oil relative permeabilities for the 3D reservoir production case are given in the
following table:
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Sciences et Techniques de Lille, 1996.

19. Chin LY, Nagel NB. Modelling of subsidence and reservoir compaction under waterflood operations. International
Journal of Geomechanics 2004; 4-1:28–34.

20. Schrefler BA, Gens A, Simoni L. New data about surface subsidence above gas reservoirs, Revue européenne de Génie
Civil 2005; 9:817–825.

COUPLED GEOMECHANICAL-RESERVOIR SIMULATIONS 1181

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2007; 31:1163–1181

DOI: 10.1002/nag


