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Abstract

In this paper we propose an accelerated version of the cubic regularization of Newton’s
method [6]. The original version, used for minimizing a convex function with Lipschitz-
continuous Hessian, guarantees a global rate of convergence of order O( 1

k2 ), where k is the
iteration counter. Our modified version converges for the same problem class with order
O( 1

k3 ), keeping the complexity of each iteration unchanged. We study the complexity of
both schemes on different classes of convex problems. In particular, we argue that for the
second-order schemes, the class of non-degenerate problems is different from the standard
class.
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1 Introduction

Motivation. Newton’s method is one of the oldest schemes in Numerical Analysis [1].
The first theoretical study of its local performance was carried out in [4]. During many
years, numerous useful suggestions were developed for stabilizing its local behavior (a de-
tailed description of the results and references can be found in the comprehensive mono-
graphs [2, 3] ). However, the global worst-case complexity analysis for the second-order
schemes was only given recently.

In [6] a cubic regularization of the Newton’s method (CNM), which can be applied to a
general smooth unconstrained minimization problem, was proposed. The main advantage
of this scheme consists in its natural geometrical interpretation: At each iteration we
minimize a cubic model, which appears to be a global upper estimate for the objective
function. This key feature ensures predictable global behavior of the process.

In [6], attention was mainly paid to different classes of nonconvex problems. For convex
problems, some of the statements of [6] can be strengthened. Moreover, we can employ
convex optimization techniques for accelerating the local scheme.

In this paper we assume that the objective function of a convex unconstrained mini-
mization problem has Lipschitz-continuous Hessian (that is the basic problem class under
consideration). As was shown in [6], the global rate of convergence of CNM on this prob-
lem class is of the order O( 1

k2 ), where k is the iteration counter. However, note that CNM
is a local one-step second-order method. From the complexity theory of smooth convex
optimization (see, for example, Chapter 2 in [5]), it is known that the rate of convergence
of the local one-step first-order method (that is just a gradient method) can be improved
from O( 1

k ) to O( 1
k2 ) by passing to a multi-step strategy. In this paper we show that a

similar trick works with CNM also. As a result, we get a new method, which converges
on the specified class of problems as O( 1

k3 ).

Contents. Section 2 contains all necessary results related to regular functions. Namely,
we present the main properties of uniformly convex functions and functions with Lipschitz-
continuous derivatives of a certain degree. In Section 3 we introduce a cubic regularization
of the Newton step and prove several useful inequalities. At the end of this section we
show that CNM, as applied to a convex function from the basic problem class, converges
globally as O( 1

k2 ). The majority of the results of this section can be found in [6], but in
a slightly weaker form.

In Section 4 we derive an accelerated multi-step version of CNM. We prove that on the
basic problem class it converges as O( 1

k3 ). This acceleration is achieved by a modification
of the technique of estimate sequences described in Section 2.2.1 [5].

In Section 5 we introduce a new class of problems, which can be seen as non-degenerate
problems for the second-order methods. This class is composed of the functions from the
basic problem class, which are uniformly convex of degree three. On these problems both
CNM and its accelerated version exhibit a global linear rate of convergence, which is
proportional to the product of a certain power of the second-order condition number and
the logarithm of the required accuracy. We show that the accelerated scheme with an
appropriately chosen restarting strategy works better than the pure CNM. The results of
this section suggest that the notion of non-degeneracy is method-dependent. The standard
classification of non-degenerate problems based on the usual condition number works
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properly only for the first-order schemes.
In Section 6 we analyze the performance of the proposed schemes on strongly convex

functions from the basic problem class. We show that the main computational effort is
spent at the first stage of the process, aiming to enter the region of quadratic convergence.
In some sense, the complexity of such problems is almost independent on the required
accuracy. This situation can lead to erroneous conclusions on the efficiency of some
numerical schemes. In Section 7 we give an example of a method which, when applied to
strongly convex functions, formally converges as O( 1

k8 ). However, its actual performance
appears to be worse than that of accelerated CNM.

Finally, in the last Section 8 we discuss the results.

Notation. In what follows E denotes a finite-dimensional real vector space, and E∗ the
dual space, which is formed by all linear functions on E. The value of function s ∈ E∗ at
x ∈ E is denoted by 〈s, x〉.

Let us fix a positive definite self-adjoint operator B : E → E∗. Define the following
norms:

‖h‖ = 〈Bh, h〉1/2, h ∈ E,

‖s‖∗ = 〈s,B−1s〉1/2, s ∈ E∗,

‖A‖ = max
‖h‖≤1

‖Ah‖∗, A : E → E∗.

For a self-adjoint operator A = A∗, the same norm can be defined as

‖A‖ = max
‖h‖≤1

|〈Ah, h〉|. (1.1)

Any s ∈ E∗ generates a rank-one self-adjoint operator ss∗ : E → E∗ acting as follows

ss∗ · x = 〈s, x〉 · s, x ∈ E.

We extend operator A(s) = ss∗
‖s‖∗ onto the origin in a continuous way: A(0) = 0.

Further, for function f(x), x ∈ E, we denote by ∇f(x) its gradient at x:

f(x + h) = f(x) + 〈∇f(x), h〉+ o(‖h‖), h ∈ E.

Clearly ∇f(x) ∈ E∗. Similarly, we denote by ∇2f(x) the Hessian of f at x:

∇f(x + h) = ∇f(x) +∇2f(x)h + o(‖h‖), h ∈ E.

Of course, ∇2f(x) is a self-adjoint linear operator from E to E∗.

Acknowledgements. The author would like to thank Laurence Wolsey for very useful
comments on the content of the paper.

2 Regular functions

In this section, for the sake of completeness, we include all necessary results on convex
functions possessing a certain type of regularity. We start from well known properties of
uniformly convex functions (see, for example, [8]).
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Let a function f(x) be differentiable on E. We call it uniformly convex on E of degree
p ≥ 2 if there exists a constant σp = σp(f) > 0 such that

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ 1
pσp‖y − x‖p, ∀x, y ∈ E. (2.1)

The pair (p, σp) is called the pair of parameters of the uniformly convex function. Adding
such a function to an arbitrary convex function gives a uniformly convex function with
the same pair of parameters. Recall that the degree p = 2 corresponds to strongly convex
functions.

Lemma 1 Assume that for some p ≥ 2, σ > 0, and all x, y ∈ E the following inequality
holds:

〈∇f(x)−∇f(y), x− y〉 ≥ σ‖x− y‖p, x, y ∈ E. (2.2)

Then the function f is uniformly convex on E with parameters p and σ.

Proof:
Indeed,

f(y)− f(x)− 〈∇f(x), y − x〉 =
1∫
0
〈f(x + τ(y − x))−∇f(x), y − x〉dτ

=
1∫
0

1
τ 〈f(x + τ(y − x))−∇f(x), τ(y − x)〉dτ

(2.2)

≥
1∫
0

στp−1‖y − x‖pdτ = 1
pσ‖y − x‖p.

2

In our analysis we often use the following inequality.

Lemma 2 For any h ∈ E, and s ∈ E∗ we have

〈s, h〉+ 1
pσ‖h‖p ≥ −p−1

p

(
1
σ

) 1
p−1 ‖s‖

p
p−1∗ . (2.3)

Proof:
Denote by h the minimum of the left-hand side in (2.3). It satisfies the first-order opti-
mality condition

s + σ‖h‖p−2Bh = 0.

Hence, 〈s, h〉 = −σ‖h‖p and ‖s‖∗ = σ‖h‖p−1. Therefore

〈s, h〉+ 1
pσ‖h‖p = −p−1

p σ‖h‖p = −p−1
p σ

(
1
σ‖s‖∗

) p
p−1 ,

and (2.3) follows. 2
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Lemma 3 Let f be uniformly convex on E of degree p ≥ 2. Then

f(y)− f(x)− 〈∇f(x), y − x〉 ≤ p−1
p

(
1
σp

) 1
p−1 ‖∇f(y)−∇f(x)‖

p
p−1∗ . (2.4)

Proof:
Assume that f attains its global minimum at some point x∗. Then

f(x∗) = min
y

f(y)
(2.1)

≥ min
x∈E

[
f(x) + 〈∇f(x), y − x〉+ 1

pσp‖y − x‖p
]

(2.3)
= f(x)− p−1

p

(
1
σ

) 1
p−1 ‖∇f(x)‖

p
p−1∗ .

Let us fix x and consider the convex function φ(y) = f(y) − 〈∇f(x), y〉. Note that it is
uniformly convex with parameters p and σp. Moreover, it attains its minimum at y = x.
Hence, applying the above inequality to φ(y), we get (2.4). 2

Note that for p = 2 conditions (2.2) and (2.4) are necessary and sufficient for a function
f to be strongly convex with parameter σ2 = σ. Twice differentiable strongly convex
functions admit also the following convenient characterization:

〈∇2f(x)h, h〉 ≥ σ2‖h‖2, ∀x, h ∈ E. (2.5)

Finally, let us give an important example of a uniformly convex function. Let us fix
an arbitrary x0 ∈ E. Define the function dp(x) = 1

p‖x− x0‖p. Then

∇dp(x) = ‖x− x0‖p−2 ·B(x− x0), x ∈ E.

Lemma 4 For any x and y from E we have

〈∇dp(x)−∇dp(y), x− y〉 ≥
(

1
2

)p−2 ‖x− y‖p, (2.6)

dp(x)− dp(y)− 〈∇dp(y), x− y〉 ≥ 1
p

(
1
2

)p−2 ‖x− y‖p. (2.7)

Proof:
Without loss of generality assume x0 = 0. Then

〈∇dp(x)−∇dp(y), x− y〉 = 〈‖x‖p−2 ·Bx− ‖y‖p−2 ·By, x− y〉

= ‖x‖p + ‖y‖p − 〈Bx, y〉(‖x‖p−2 + ‖y‖p−2).

For proving (2.6), we need to show that the right-hand side of the latter equality is greater
or equal than

(
1
2

)p−2 ‖x− y‖p =
(

1
2

)p−2 [
‖x‖2 + ‖y‖2 − 2〈Bx, y〉

]p/2
.

Without loss of generality we can assume that x 6= 0 and y 6= 0. Then, denoting by

τ = ‖y‖
‖x‖ , α = 〈Bx,y〉

‖x‖·‖y‖ ∈ [−1, 1],
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we get the statement required to be proved:

1 + τp ≥ ατ(1 + τp−2) +
(

1
2

)p−2
[1 + τ2 − 2ατ ]p/2, τ ≥ 0, |α| ≤ 1. (2.8)

Since the right-hand side of this inequality is convex in α, we need to justify two marginal
inequalities:

α = 1 : 1 + τp ≥ τ(1 + τp−2) +
(

1
2

)p−2 |1− τ |p,

α = −1 : 1 + τp ≥ −τ(1 + τp−2) +
(

1
2

)p−2
(1 + τ)p

(2.9)

for all τ ≥ 0.
The second inequality in (2.9) can be derived from the lower bound for the ratio

1 + τp + τ(1 + τp−2)
(1 + τ)p

=
1 + τp−1

(1 + τ)p−1
, τ ≥ 0.

Indeed, its minimum is attained at τ = 1, and that proves the second line in (2.9). For
proving the first line, note that it is valid for τ = 1. If τ ≥ 0 and τ 6= 1, then we need to
estimate from below the ratio

1 + τp − τ(1 + τp−2)
|1− τ |p =

(1− τ)(1− τp−1)
|1− τ |p =

1 + τ + . . . + τp−2

|1− τ |p−2

Since the absolute value of any coefficient of the polynomial (1 − τ)p−2 does not exceed
2p−2, the first line in inequality (2.9) is also justified. This proves (2.6), and, for proving
(2.7), we can use now Lemma 1. 2

Another type of regularity that we are interested concerns the smoothness conditions
(see, for example, [7]). Usually they are stated in terms of Lipschitz conditions for deriva-
tives of a certain order:

‖∇kf(x)−∇kf(y)‖ ≤ Lk+1(f)‖x− y‖, x, y ∈ E, k ≥ 0.

In this paper we mainly consider functions with Lipschitz-continuous Hessian:

‖∇2f(x)−∇2f(y)‖ ≤ L3‖x− y‖, x, y ∈ E, (2.10)

where L3
def= L3(f). Consequently, for all x and y from E we have

‖∇f(y)−∇f(x)−∇2f(x)(y − x)‖∗ ≤ 1
2L3‖y − x‖2. (2.11)

Moreover, for the quadratic model

f2(x; y) def= f(x) + 〈∇f(x), y − x〉+ 1
2〈∇2f(x)(y − x), y − x〉

we can bound the residual:

|f(y)− f2(x; y)| ≤ L3
6 ‖y − x‖3, x, y ∈ E. (2.12)

The simplest functions satisfying condition (2.10) are, of course, the quadratic func-
tions. However, sometimes another function d3(x) is quite useful.
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Lemma 5 For any x, y ∈ E we have

‖∇2d3(x)−∇2d3(y)‖ ≤ 2 ‖x− y‖. (2.13)

Proof:
Without loss of generality, assume x0 = 0. Then d3(x) = 1

3‖x‖3, and for any x ∈ E we
have

∇2d3(x) = ‖x‖B + 1
‖x‖Bxx∗B.

Let us fix two points x, y ∈ E and arbitrary direction h ∈ E. Define x(τ) = x + τ(y − x)
and

φ(τ) = 〈∇2d3(x(τ))h, h〉 = ‖x(τ)‖ · ‖h‖2 + 1
‖x(τ)‖〈Bx(τ), h〉2, τ ∈ [0, 1].

Assume first that 0 6∈ [x, y]. Then φ(τ) is continuously differentiable on [0, 1] and

φ′(τ) = 〈Bx(τ),y−x〉
‖x(τ)‖ · ‖h‖2 + 2〈Bx(τ),h〉

‖x(τ)‖ 〈Bh, y − x〉 − 〈Bx(τ),h〉2
‖x(τ)‖3 〈Bx(τ), y − x〉

= 〈Bx(τ),y−x〉
‖x(τ)‖ ·

(
‖h‖2 − 〈Bx(τ), h〉2

‖x(τ)‖2

)

︸ ︷︷ ︸
≥0

+2〈Bx(τ),h〉
‖x(τ)‖ 〈Bh, y − x〉.

Denote α = 〈Bx(τ),h〉
‖x(τ)‖·‖h‖ ∈ [−1, 1]. Then

|φ′(τ)| ≤ ‖y − x‖ · ‖h‖2 · (1− α2 + 2|α|) ≤ 2 ‖y − x‖ · ‖h‖2.

Hence,
|〈(∇2d3(y)−∇2d3(x))h, h〉| = |φ(1)− φ(0)| ≤ 2 ‖y − x‖ · ‖h‖2,

and we get (2.13) from (1.1).
The remaining case 0 ∈ [x, y] is trivial since ∇2d3(0) = 0. 2

In the sequel we often establish the complexity of different problem classes in terms of
condition numbers of certain degree:

γp(f) def= σp(f)
Lp(f) , p ≥ 2. (2.14)

It is clear, for example, that γ2(d2) = 1. On the other hand, from (2.7) and (2.13) we
conclude that γ3(d3) = 1

4 .

3 Cubic regularization of Newton iteration

In this section we present the most important properties of cubic regularization of the
Newton’s method. As compared with [6], here we take into account the convexity of the
objective function.

The main problem of interest is as follows:

min
x∈E

f(x), (3.1)
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where f is a twice differentiable convex function with Lipschitz-continuous Hessian. As
suggested in [6], we introduce the following mapping:

TM (x) def= Argmin
y∈E

[
f̂M (x; y) def= f2(x; y) + M

6 ‖y − x‖3
]
. (3.2)

Note that T = TM (x) is the unique solution of the following system:

∇f(x) +∇2f(x)(T − x) + 1
2M · ‖T − x‖ ·B(T − x) = 0. (3.3)

Denote rM (x) = ‖x− TM (x)‖. Then,

‖∇f(T )‖∗ (3.3)
= ‖∇f(T )−∇f(x)−∇2f(x)(T − x)− M

2 rM (x)B(T − x)‖∗
(2.11)

≤ L3+M
2 r2

M (x).

(3.4)

Further, multiplying (3.3) by T − x, we obtain

〈∇f(x), x− T 〉 = 〈∇2f(x)(T − x), T − x〉+ 1
2Mr3

M (x). (3.5)

Let us assume M ≥ L3. Then, in view of (2.12), we have

f(x)− f(T ) ≥ f(x)− f̂M (x; T )

= 〈∇f(x), x− T 〉 − 1
2〈∇2f(x)(T − x), T − x〉 − M

6 r3
M (x)

= 1
2〈∇2f(x)(T − x), T − x〉+ M

3 r3
M (x).

(3.6)

In particular, since f is convex,

f(x)− f(T )
(3.6)

≥ M
3 r3

M (x)
(3.4)

≥ M
3

(
2

L3+M ‖∇f(T )‖∗
)3/2

. (3.7)

Sometimes we need to interpret this step from a global perspective:

f(T )
(M≥L3)

≤ min
y

[
f2(x; y) + M

6 ‖y − x‖3
] (2.12)

≤ min
y

[
f(y) + L3+M

6 ‖y − x‖3
]
. (3.8)

Finally, let us prove the following result.

Lemma 6 If M ≥ 2L3, then

〈∇f(T ), x− T 〉 ≥
√

2
L3+M · ‖∇f(T )‖3/2

∗ . (3.9)

Proof:
Denote T = TM (x) and r = rM (x). Then

1
4L2

3r
4 =

(
L3
2 ‖T − x‖2

)2 (2.11)

≥ ‖∇f(T )−∇f(x)−∇2f(x)(T − x)‖2∗

(3.3)
= ‖∇f(T ) + 1

2M · r ·B(T − x)‖2∗

= ‖∇f(T )‖2∗ + Mr〈∇f(T ), T − x〉+ 1
4M2r4.
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Hence,
〈∇f(T ), x− T 〉 ≥ 1

Mr‖∇f(T )‖2∗ + 1
4M (M2 − L2

3)r
3. (3.10)

In view of the conditions of the lemma, we can estimate the derivative in r of the right-
hand side of the latter inequality:

− 1
Mr2 ‖∇f(T )‖2∗ + 3r2

4M (M2 − L2
3) ≥ − 1

Mr2 ‖∇f(T )‖2∗ +
(

L3+M
2

)2
r2

M

(3.4)

≥ 0.

Thus, its minimum is attained at the boundary point r =
[

2
L3+M ‖∇f(T )‖∗

]1/2
of the

feasible ray (3.4). Substituting this value in (3.10), we obtain (3.9). 2

To conclude this section, let us estimate the rate of convergence of the CNM method
as applied to our basic problem (3.1). We assume that a solution of this problem x∗ exists,
and the Lipschitz constant L3 for the Hessian of the objective function is known. Thus,
we just iterate

xk+1 = TL3(xk), k = 0, 1, . . . . (3.11)

Using the same arguments as in [6], we can prove the following statement.

Theorem 1 Assume that the level sets of the problem (3.1) are bounded:

‖x− x∗‖ ≤ D ∀x : f(x) ≤ f(x0). (3.12)

If the sequence {xk}∞k=1 is generated by (3.11), then

f(xk)− f(x∗) ≤ 9L3D3

(k+4)2
, k ≥ 1. (3.13)

Proof:
In view of (3.6), f(xk+1) ≤ f(xk), k ≥ 0. Thus, ‖xk − x∗‖ ≤ D for all k ≥ 0. Further, in
view of (3.8), we have

f(x1) ≤ f(x∗) + L3
3 D3. (3.14)

Consider now an arbitrary k ≥ 1. Denote xk(τ) = x∗ + (1− τ)(xk − x∗). In view of (3.8),
for any τ ∈ [0, 1] we have

f(xk+1) ≤ f(xk(τ)) + τ3 L3
3 ‖xk − x∗‖3 ≤ f(xk)− τ(f(xk)− f(x∗)) + τ3 L3D3

3

The minimum of the right-hand side is attained for

τ =
√

f(xk)−f(x∗)
L3D3 ≤

√
f(x1)−f(x∗)

L3D3

(3.14)
< 1.

Thus, for any k ≥ 1 we have

f(xk+1) ≤ f(xk(τ))− 2
3 · (f(xk)−f(x∗))3/2√

L3D3
. (3.15)

Denote δk = f(xk)− f(x∗). Then

1√
δk+1

− 1√
δk

= δk−δk+1√
δkδk+1(

√
δk+
√

δk+1)

(3.15)

≥ 2

3
√

L3D3
· δk√

δk+1(
√

δk+
√

δk+1)
≥ 1

3
√

L3D3
.
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Thus, for any k ≥ 1, we have

1√
δk

≥ 1√
δ1

+ k−1

3
√

L3D3

(3.14)

≥ 1√
L3D3

·
(√

3 + k−1
3

)
≥ k+4

3
√

L3D3
.

2

4 Accelerated scheme

In order to accelerate method (3.11), we apply a variant of the technique of estimate
sequences, which was described in Section 2.2.1 [5] as a tool for accelerating the usual
gradient method. In our situation, this idea can be applied to CNM in different ways. We
mention only two of them.

1. Linear estimate functions. For solving the optimization problem (3.1), we
recursively update the following sequences.

• Sequence of estimate functions

ψk(x) = lk(x) + N
6 ‖x− x0‖3, k = 1, 2, . . . ,

where lk(x) are linear functions in x ∈ E, and N is a positive real parameter.

• A minimizing sequence {xk}∞k=1.

• A sequence of scaling parameters {Ak}∞k=1:

Ak+1
def= Ak + ak, k = 1, 2, . . . .

For these objects, we are going to maintain the following relations:

R1
k : Akf(xk) ≤ ψ∗k ≡ min

x
ψk(x),

R2
k : ψk(x) ≤ Akf(x) + 2L3+N

6 ‖x− x0‖3, ∀x ∈ E.





, k ≥ 1. (4.1)

Let us ensure that relations (4.1) hold for k = 1. We choose

x1 = TL3(x0), l1(x) ≡ f(x1), x ∈ E, A1 = 1. (4.2)

Then ψ∗1 = f(x1), so R1
1 holds. On the other hand, in view of , we get

ψ1(x) = f(x1) + N
6 ‖x− x0‖3

(3.8)

≤ min
y

[
f(y) + 2L3

6 ‖y − x0‖3
]
+ N

6 ‖x− x0‖3,

and R2
1 follows.

Assume now that relations (4.1) hold for some k ≥ 1. Denote

vk = arg min
x

ψk(x).

10



Let us choose some ak > 0 and M ≥ 2L3. Define

αk = ak
Ak+ak

,

yk = (1− αk)xk + αkvk,

xk+1 = TM (yk),

ψk+1(x) = ψk(x) + ak[f(xk+1) + 〈∇f(xk+1), x− xk+1〉].

(4.3)

In view of R2
k, for any x ∈ E we have

ψk+1(x) ≤ Akf(x) + 2L3+N
6 ‖x− x0‖3 + ak[f(xk+1) + 〈∇f(xk+1), x− xk+1〉]

≤ (Ak + ak)f(x) + 2L3+N
6 ‖x− x0‖3,

and this is R2
k+1. Let us show now that, for an appropriate choice of ak, N and M ,

relation R1
k+1 is also valid.

Indeed, in view of R1
k and by Lemma 4 with p = 3, for any x ∈ E, we have

ψk(x) ≡ lk(x) + N
2 d3(x) ≥ ψ∗k + N

2 · 1
6‖x− vk‖3

≥ Akf(xk) + N
2 · 1

6‖x− vk‖3.

(4.4)

Therefore

ψ∗k+1 = min
x

{ψk(x) + ak[f(xk+1) + 〈∇f(xk+1), x− xk+1〉]}

(4.4)

≥ min
x

{
Akf(xk) + N

12‖x− vk‖3 + ak[f(xk+1) + 〈∇f(xk+1), x− xk+1〉]
}

≥ min
x

{(Ak + ak)f(xk+1) + Ak〈∇f(xk+1), xk − xk+1〉

+ak〈∇f(xk+1), x− xk+1〉+ N
12‖x− vk‖3]}

(4.3)
= min

x
{Ak+1f(xk+1) + 〈∇f(xk+1), Ak+1yk − akvk −Akxk+1〉

+ak〈∇f(xk+1), x− xk+1〉+ N
12‖x− vk‖3]}

= min
x

{Ak+1f(xk+1) + Ak+1〈∇f(xk+1), yk − xk+1〉

+ak〈∇f(xk+1), x− vk〉+ N
12‖x− vk‖3]}.

Further, if we choose M ≥ 2L3, then by (3.9) we have

〈∇f(xk+1), yk − xk+1〉 ≥
√

2
L3+M · ‖∇f(xk+1)‖3/2

∗ .

11



Hence, our choice of parameters must ensure the following inequality:

Ak+1

√
2

L3+M · ‖∇f(xk+1)‖3/2
∗ + ak〈∇f(xk+1), x− vk〉+ N

12‖x− vk‖3 ≥ 0,

for all x ∈ E. Using inequality (2.3) with p = 3, s = ak∇f(xk+1), and σ = 1
4N , we come

to the following condition:

Ak+1

√
2

L3+M ≥ 2
3

√
4
N a

3/2
k . (4.5)

For k ≥ 1, let us choose

Ak = k(k+1)(k+2)
6 ,

ak = Ak+1 −Ak = (k+1)(k+2)(k+3)
6 − k(k+1)(k+2)

6

= (k+1)(k+2)
2 .

(4.6)

Since
a
−3/2
k Ak+1 = 23/2(k+1)(k+2)(k+3)

6[(k+1)(k+2)]3/2 = 21/2(k+3)

3[(k+1)(k+2)]1/2 ≥ 1
3

√
2,

inequality (4.5) leads to the following condition on the parameters:
1√

L3+M
≥ 2√

N
.

Hence, we can choose

M = 2L3, N = 4(L3 + M) = 12L3. (4.7)

In this case 2L3 + N = 14L3.
Now we are ready to put all the pieces together.

Accelerated cubic regularization of Newton’s method

Initialization: Choose x0 ∈ E. Set M = 2L3 and N = 12L3.

Compute x1 = TL3(x0) and define ψ1(x) = f(x1) + N
6 ‖x− x0‖3.

Iteration k, (k ≥ 1):

1. Compute vk = arg min
x∈E

ψk(x) and choose yk = k
k+3xk + 3

k+3vk.

2. Compute xk+1 = TM (yk) and update

ψk+1(x) = ψk(x) + (k+1)(k+2)
2 · [f(xk+1) + 〈∇f(xk+1), x− xk+1〉].

(4.8)

The above discussion proves the following theorem.
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Theorem 2 If sequence {xk}∞k=1 is generated by method (4.8) as applied to the prob-
lem (3.1), then for any k ≥ 1 we have:

f(xk)− f(x∗) ≤ 14 L3 ‖x0 − x∗‖3

k(k + 1)(k + 2)
, (4.9)

where x∗ is an optimal solution to the problem.

Proof:
Indeed, we have shown that

Akf(xk)
R1

k≤ ψ∗k
R2

k≤ Akf(x∗) + 2L3+N
6 ‖x0 − x∗‖3.

Thus, (4.9) follows from (4.6) and (4.7). 2

Note that the point vk can be found in (4.8) by an explicit formula. Consider

sk = ∇lk(x).

This vector does not depend on x since the function lk(x) is linear. Then

vk = x0 −
√

2
N · B−1sk

‖sk‖1/2
∗

.

2. Quadratic estimate functions. Similar analysis can be applied to a variant of
scheme (4.8) based on quadratic estimate functions. Indeed, let us define

ψk(x) = qk(x) + N
6 ‖x− x0‖3, k = 1, 2, . . . ,

where qk(x) are some quadratic functions. If we choose

x1 = TL3(x0), q1(x) = f2(x0; x), A1 = 1, (4.10)

then, for any N ≥ L3 we can guarantee that the conditions

Akf(xk)
(3.8)

≤ ψ∗k,

ψk(x)
(2.12)

≤ f(x) + L3+N
6 ‖x− x0‖3, ∀x ∈ E,

hold for k = 1. Then, by the same arguments as above, we can see that the rules (4.3)
maintain (4.10) for all k ≥ 1 provided that N ≥ 4(L3 + M). Thus, the new version of
(4.8) has a slightly better constant in the estimate of the rate of convergence:

f(xk)− f(x∗) ≤ 13 L3 ‖x0 − x∗‖3

k(k + 1)(k + 2)
.

However, the rules for computing vk become more complicated.
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5 Global non-degeneracy for second order

schemes

Traditionally, in numerical analysis the term non-degenerate is applied to certain classes
of efficiently solvable problems. For unconstrained optimization, non-degeneracy of the
objective function is usually characterized by a lower bound on the angle between the
gradient at point x and the direction pointing to the optimal solution:

α(x) def= 〈∇f(x),x−x∗〉
‖∇f(x)‖∗·‖x−x∗‖ ≥ µ(f) > 0, x ∈ E. (5.1)

This condition has a nice geometric interpretation. Moreover, there exists a large class of
smooth convex functions, possessing the required property. This is the class of strongly
convex functions with Lipschitz-continuous gradient.

Lemma 7 µ(f) ≥ 2
√

γ2(f)

1+γ2(f) >
√

γ2(f).

Indeed, in view of inequality (2.1.24) in [5], we have

〈∇f(x), x− x∗〉 ≥ 1
σ2+L2

‖∇f(x)‖2∗ + σ2L2
σ2+L2

‖x− x∗‖2

≥ 2
√

σ2L2
σ2+L2

· ‖∇f(x)‖∗ · ‖x− x∗‖,

and this proves the required inequality. 2

Note that the complexity of the first-order schemes for the class of smooth strongly
convex function can be completely characterized in terms of the condition number γ2.
Indeed, on the one hand, the lower complexity bound for finding an ε-solution of any
problem from this problem class is proven to be

O
(

1√
γ2

ln L2D2

ε

)
(5.2)

calls of oracle, where the constant D bounds the distance between the initial point and
the optimal solution. On the other hand, there exist simple numerical schemes, which
exhibit the required rate of convergence (see Chapter 2 in [5] for details).

What can be said about the complexity of the above problem class for the second order
schemes? Surprisingly enough, in this situation it is quite difficult to find any advantages
of the condition (5.1). We will discuss the complexity of this class in detail later in
Section 6. Now let us present a new non-degeneracy condition, which replaces (5.1) for
the second-order methods.

Assume that γ3(f) = σ3(f)
L3(f) > 0. In this case,

f(x)− f(x∗)
(2.4)

≤ 2
3
√

σ3
· ‖∇f(x)‖3/2

∗ (5.3)

Therefore, for method (3.11) we have

f(xk)− f(xk+1)
(3.7)

≥ 1
3
√

L3
‖∇f(xk+1)‖3/2

∗
(5.3)

≥ 1
2

√
γ3(f) · (f(xk+1)− f(x∗)). (5.4)
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Hence, for any k ≥ 1 we have

f(xk)− f(x∗)
(5.4)

≤ f(x1)−f∗(
1+

1
2

√
γ3(f)

)k−1

(3.8)

≤ e
−
√

γ3(f)·(k−1)

2+
√

γ3(f) · L3
3 ‖x0 − x∗‖3 (5.5)

Thus, the complexity of minimizing a function with positive third condition number γ3(f)
by method (3.11) is of the order

O

(
1√

γ3(f)
ln L3D3

ε

)
(5.6)

calls of oracle. The structure of this estimate is similar to that of (5.2). Therefore, we
will say that such functions possessing the global second-order non-degeneracy property.

Let us demonstrate that the accelerated variant of the Newton’s method (4.8) can be
used to improve the complexity estimate (5.6). Denote by Ak(x0), k ≥ 1, the point xk

generated by method (4.8) with starting point x0. Consider the following process.

1. Define m = 5
⌊

1
γ3(f)

⌋1/3
, and set y0 = x0.

2. For k ≥ 0, iterate yk+1 = Am(yk).

(5.7)

The performance of this scheme can be derived from the following lemma.

Lemma 8 For any k ≥ 0 we have ‖yk+1 − x∗‖3 ≤ 1
e‖yk − x∗‖3.

Proof:
Indeed, since m ≥

(
42e

γ3(f)

)1/3
, we have

1
3σ3‖yk+1 − x∗‖3

(2.1)

≤ f(yk+1)− f(x∗)
(4.9)

≤ 14L3‖yk−x∗‖3
m(m+1)(m+2) ≤ 1

3eσ3‖yk − x∗‖3.

2

Thus,

f(TL3(yk))− f(x∗)
(3.8)

≤ L3
3 ‖yk − x∗‖3

(3.8)

≤ L3
3 ‖y0 − x∗‖3 · e−k,

and we conclude that an ε-solution to our problem can be found by (5.7) in

O
(

1
[γ3(f)]1/3 ln

[
L3
ε ‖x0 − x∗‖3

])
(5.8)

iterations. Unfortunately, since the complexity theory for this problem class is not devel-
oped yet, we cannot say how far our results are from the best possible ones.
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6 Minimizing strongly convex functions

Let us look now at the complexity of problem (3.1) with

σ2(f) > 0, L3(f) < ∞. (6.1)

The main advantage of such functions consists in possibility for the Newton’s method
(3.11) to converge quadratically in a certain neighborhood of the solution. Indeed, for
T = TL3(x) we have

f(x)− f(T )
(3.6)

≥ 1
2〈∇2f(T )(T − x), T − x〉

(2.5)

≥ σ2
2 · r2

L3
(x)

(3.4)

≥ σ2
2L3

· ‖∇f(T )‖∗
(2.4)

≥ σ2
2L3

· [2σ2(f(T )− f(x∗))]1/2 .

(6.2)

Hence,

f(T )− f(x∗)
(6.2)

≤ 2L2
3

σ3
2

(f(x)− f(T ))2 ≤ 2L2
3

σ3
2

(f(x)− f(x∗))2, (6.3)

and the region of quadratic convergence of method (3.11) can be defined as

Qf =
{
x ∈ E : f(x)− f(x∗) ≤ σ3

2

2L2
3

}
. (6.4)

Alternatively, the region of quadratic convergence can be described by the norm of the
gradients. Indeed,

σ2
2 · r2

L3
(x)

(2.5)

≤ 1
2〈∇2f(T )(T − x), T − x〉

(3.6)

≤ f(x)− f(T ) ≤ ‖∇f(x)‖∗ · rL3(x).

Thus,

‖∇f(x)‖∗ ≥ σ2
2 · rL3(x)

(3.4)

≥ σ2
2

[
1

L3
‖∇f(T )‖∗

]1/2
.

Consequently,
‖∇f(T )‖∗ ≤ 4L3

σ2
2
‖∇f(x)‖2∗, (6.5)

and the required region of quadratic convergence can be defined as

Qg =
{
x ∈ E : ‖∇f(x)‖∗ ≤ σ2

2
4L3

}
. (6.6)

Thus, the global complexity of problem (3.1), (6.1) is mainly related to the number
of iterations, that is required to get from x0 to the region Qf (or, to Qg). For method
(3.11), this value can be estimated from above by

O

(√
L3(f)D
σ2(f)

)
, (6.7)

where D is defined by (3.12) (see Section 6 in [6]). Let us show that, using the accelerated
scheme (4.8), it is possible to improve this complexity bound.

Assume that we know an upper bound for the distance to the solution:

‖x0 − x∗‖ ≤ R (≤ D).
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Consider the following process.

1. Set y0 = TL3(x0), and define m0 = 5
[

L3(f)R
σ2(f)

]1/3
.

2. while ‖∇f(TL3(yk))‖∗ ≥ σ2
2

4L3
do {yk+1 = Amk

(yk), mk+1 = 1
21/3 mk}.

(6.8)

Theorem 3 The process (6.8) terminates at most after

1
ln 4 ln

[
8
3 ·

(
L3(f)R
σ2(f)

)3
]

(6.9)

stages. The total number of Newton steps in all stages does not exceed 4m0.

Proof:
Denote Rk = R ·

(
1
2

)k
. It is clear that

mk ≥ 5
[

L3(f)Rk

σ2(f)

]1/3
, k ≥ 0. (6.10)

For k ≥ 0, let us prove by induction that

‖yk − x∗‖ ≤ Rk. (6.11)

Assume that for some k ≥ 0 this statement is valid (it is true for k = 0). Then,

σ2
2 ‖yk+1 − x∗‖2

(2.1)

≤ f(yk+1)− f(x∗)
(4.9)

≤ 14L3R3
k

mk(mk+1)(mk+2)

(6.10)

≤ 14
125σ2R

2
k ≤ 1

8σ2R
2
k = 1

2σ2R
2
k+1.

Thus, (6.11) is valid for all k ≥ 0. On the other hand,

f(yk+1)− f(x∗)
(4.9)

≤ 14L3‖yk−x∗‖3
mk(mk+1)(mk+2)

(6.11)

≤ 14L3‖yk−x∗‖2Rk

mk(mk+1)(mk+2)

(6.10)

≤ 1
8σ2‖yk − x∗‖2

(2.1)

≤ 1
4(f(yk)− f(x∗)).

Hence
σ2
2L3

‖∇f(TL3(yk))‖∗
(6.2)

≤ f(yk)− f(TL3(yk)) ≤ f(yk)− f(x∗)

≤
(

1
4

)k
(f(y0)− f(x∗))

(3.8)

≤
(

1
4

)k
L3
3 R3,

and (6.9) follows form (6.6). Finally, the total number of Newton steps does not exceed

∞∑
k=0

mk = m0

∞∑
k=0

1
2k/3 = m0

21/3−1
< 4m0.

2
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7 Fake acceleration

Note that the properties of the class of smooth strongly convex functions (6.1) leave some
space for erroneous conclusions related to the rate of convergence of the optimization
methods in the first stage of the process, aiming to enter the region of quadratic conver-
gence of the Newton’s method. Let us demonstrate a possible mistake on a particular
example.

Consider a modified version M′ of the method (4.8). The only modification is introdu-
ced in Step 2. Now it looks as follows:

2’. Compute ŷk = TM (yk) and update

ψk+1(x) = ψk(x) + (k+1)(k+2)
2 · [f(ŷk) + 〈∇f(ŷk), x− ŷk〉].

Choose x̂k : f(x̂k) = min{f(xk), f(ŷk)}. Set xk+1 = TM (x̂k).

(7.1)

Note that forM′ the statement of Theorem 2 is valid. Moreover, the process now becomes
monotone, and, using the same reasoning as in (6.2) and M = 2L3, we obtain

f(xk)− f(xk+1) ≥ f(x̂k)− f(xk+1) ≥
√

2 σ
3/2
2

3L3
· [f(xk+1)− f(x∗)]1/2. (7.2)

Further, let us fix the number of steps N . Define k̂ = 2
3N . Then, in view of (4.9), we

can guarantee that
f(xk̂)− f(x∗) ≤ 33·7·L3R3

22N3 . (7.3)

On the other hand

f(xk̂)− f(x∗) ≥ f(xk̂)− f(xN+1)
(7.2)

≥ 1
3N ·

√
2 σ

3/2
2

3L3
· [f(xN+1)− f(x∗)]1/2. (7.4)

Combining (7.3) and (7.4) we obtain

f(xN+1)− f(x∗) ≤ 310·72·L4
3·R6

25·σ3
2

·N−8. (7.5)

As compared with (4.9), the proposed modification looks amazingly efficient. However,
that is just an illusion. Indeed, in view of (6.4), in order to enter the region of quadratic
convergence of the Newton’s method, we need to make the right-hand-side of inequality
(7.5) smaller than σ3

2

2L2
3
. For that we need

O

([
L3R
σ2

]3/4
)

(7.6)

iterations of M′. This is much worse than the complexity estimate (6.7) of the basic
scheme (3.11) even without acceleration (4.8).

Another test could be an estimate for the number of steps, which is necessary for M′

to halve the distance to the minimum. From (7.5) we see that it needs O

([
L3R
σ2

]1/2
)

iterations, which is worse than the corresponding estimate for the method (4.8).
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8 Discussion

1. From the complexity results presented in the previous sections we can derive a class
of problems, which are easy for the second order schemes:

σ2(f) > 0, σ3(f) > 0, L3(f) < ∞. (8.1)

For such functions, the second-order methods exhibit a global linear rate of convergence
and a local quadratic convergence. In accordance with (5.8) and (6.4), we need

O

([
L3(f)
σ3(f)

]1/3
ln

[
L3(f)
σ2(f) ‖x0 − x∗‖

])
(8.2)

iterations of (4.8) to enter the region of quadratic convergence.
Note that the class (8.1) is non-trivial. It contains, for example, all functions

ξα,β(x) = αd2(x) + βd3(x), α, β > 0,

with parameters

σ2(ξα,β) = α, σ3(ξα,β) = 1
2β, L3(ξα,β) = 2β.

Moreover, any convex function with Lipschitz-continuous Hessian can be regularized by
adding an auxiliary function ξα,β.

2. For one important class of convex problems, that is

σ2(f) > 0, L2(f) < ∞, L3(f) < ∞, (8.3)

we have actually failed to clarify the situation. The standard theory of the optimal first-
order methods (see, for example, Section 2.2 in [5])) can bound the number of iterations,
that are required to enter the region of quadratic convergence (6.4), as follows:

O

([
L2(f)
σ2(f)

]1/2
ln

[
L2(f)L2

3(f)

σ3
2(f)

‖x0 − x∗‖2
])

. (8.4)

Note that in this estimate the role of the second-order scheme is quite weak: it is used only
to establish the bounds of the termination stage. Of course, as it is shown in Section 6, we
could use it on the first stage also. However, in this case the size of the optimal solution
x∗ enters polynomially the estimate for the number of iterations. Thus, the following
question is still open:

For the problem class (8.3), can we get any advantage from the second order
schemes being used at the initial stage of minimization process?

3. From the computational point of view, the results presented in this paper are rather
preliminary. For example, we always assume that all necessary constants are known. In
practical algorithms, the adaptive strategies for updating these parameters are of crucial
importance. However, the author believes that the theory presented here could serve as
a useful guideline for such developments.
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