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Abstract
Data-driven constitutive modeling in continuum mechanics assumes that abundant material data are available and can effec-
tively replace the constitutive law. To this end, Kirchdoerfer and Ortiz proposed an approach, which is often referred to as the
distance-minimizing method. This method contains hyperparameters whose role remains poorly understood to date. Herein,
we demonstrate that choosing these hyperparameters equal to the tangent of the constitutive manifold underlying the available
material data can substantially reduce the computational cost and improve the accuracy of the distance-minimizing method.
As the tangent of the constitutive manifold is typically not known in a data-driven setting, and as it can also change during an
iterative solution process, we propose an adaptive strategy that continuously updates the hyperparameters on the basis of an
approximate tangent of the hidden constitutive manifold. By several numerical examples we demonstrate that this strategy
can substantially reduce the computational cost and at the same time also improve the accuracy of the distance-minimizing
method.

Keywords Model-free elasticity · Hyperparameters · Fixed-point iteration · Linear regressions · Adaptive algorithm

1 Introduction

Data-driven methods have recently arisen as an alternative
approach to conventional constitutive modeling. They gen-
erally seek to replace analytical constitutive equations by
methods that do either not or only to a much smaller extent
imply an a priori bias. One branch of data-driven constitu-
tivemodeling is relying onmachine learningmethods such as
artificial neural networks [1–7]. For example, recently con-
stitutive artificial neural networks (CANNs) were introduced
[8] as a novelmachine learning architecture that enables data-
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driven constitutive modeling on the basis of only a minimal
amount of material data due to the incorporation of powerful
(and general) a priori knowledge from continuummechanics
and materials theory.

An alternative to classical machine learning approaches in
data-driven constitutive modeling is the local reconstruction
of the constitutive manifold underlying the given material
data [9–12]. Interestingly, this perspective opens up ways to
interpret problems of data-driven constitutive modeling by
way of mixed-integer programming [13].

Another branch of data-driven constitutive modeling that
has attracted rapidly increasing attention over the last years
are methods that interpret material data (i.e., strain–stress
data) as a sort of discrete constitutive law. These methods
seek to find a state that satisfies certain essential physical
constraints of elasticity theory and yet falls (as closely as
possible) into the set of given material data. This approach is
often referred to as the distance-minimizing method and was
introduced byKirchdoerfer andOrtiz [14] and extended since
then by numerous other works. The method was extended
to solve problems of elasticity at finite strains [15], elas-
todyanmics [16,17], fracture mechanics [18], and plasticity
[19]. Besides, also aspects of the implementation have been
addressed. For example, efficient data structures were pro-
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posed in [20] to reduce the computational cost of searching
through a material database. Shannon’s information entropy
and locally convex optimization techniques were applied to
deal with noisy databases [11,21]. Moreover, Leygue [22]
proposed an algorithm to derive and to build a database of
strain–stress pairs that sample mechanical responses of a
material in in silico or in situ experiments. The mathematical
background of the distance-minimizing method applied to
small strain and finite strain elasticity problems has recently
been examined in more detail by [23,24]. Since in this data-
driven framework there might exist no solution within the
givenmaterial data set that satisfies at least themajor physical
constraints (the equilibrium equation and the compatibility
condition on the strain field), a notion of relaxation must be
introduced to define the data-driven solution of the distance-
minimizingmethod. It is interesting to note that, according to
[23], relaxation within the distance-minimizing framework
is different from the classical relaxation of energy functions.
For example, the relaxation of a bistable material would
lead to material data sets that are no longer graphs. Such
insights provide some first foundations for the application
of the distance-minimizing framework also to non-convex
stress–strain data sets. Moreover, a particularly interesting
extension of the data-driven perspective towards the realm
of stochastics has been proposed in [25].

Generally, in the distance-minimizing paradigm intro-
duced by [14], a data-driven boundary value problem (BVP)
is formulated as a double-minimization problem with an
associatedmetric. Such ametric can be defined as a quadratic
functional form on the strain–stress phase space [14,17].
To weigh the contributions of the strain and the stress
appropriately in the metric, a priori chosen tensor-valued
hyperparameters are employed. These were considered to
be of only numerical nature in the original work [14]. How-
ever, these hyperparameters affect the convergence rate of
the distance-minimizing method formulated as a fixed-point
iteration method. Moreover, for finite sets of material data, a
poor choice of the hyperparameters can lead to low accuracy
of data-driven solutions, even in case of noise-free material
data. Despite several recent improvements and extensions of
the distance-minimizing method, our understanding of the
influence of its hyperparameters remains limited to date. In
particular it remains poorly understoodwhether and how they
could be chosen to optimize the numerical properties of the
distance-minimizing method.

In this paper, we demonstrate that choosing these hyper-
parameters equal to the tangent of the constitutive manifold
underlying the available material data can substantially
reduce the computational cost and improve the accuracy of
the distance-minimizing method. As the tangent of the con-
stitutive manifold is typically not known in a data-driven
setting, and the tangents evaluated at the strain solutions in
each iteration change during an iterative solution process, we

propose an adaptive strategy that is continuously updating the
hyperparameters on the basis of an approximate tangent of
the hidden constitutive manifold. We demonstrate the advan-
tages of our novel adaptive strategy by several numerical
examples.

2 Data-driven elasticity and
distance-minimizingmethod

2.1 Terminology

To explain the distance-minimizing method for computa-
tional mechanics as well as its shortcomings, we revisit the
classical BVP and then define a corresponding data-driven
BVP.

• The primary field is the field on which we can impose
the essential boundary conditions.

• The gradient field is defined as the gradient of the primary
field.

• The energetically dual field is energetically conjugate to
the gradient field.

The following discussion relies on the context of the small
strain theory of continuum mechanics. Specifically, the pri-
mary field, the gradient field, and the dual field will be the
displacements, the strains and the stresses stored at the mate-
rial points. For stresses and strains we use Voigt’s notation
herein, that is, they are not represented by second order
tensors but rather by vectors (with 6 components for three-
dimensional problems). Analogously, material stiffness and
compliance are represented by matrices rather than fourth
order tensors.

2.2 Classical versus data-driven boundary value
problem

A standard boundary value problem consists of three ingre-
dients besides boundary conditions: (A) Compatibility con-
ditions, (B) conservation laws and (C) a constitutive law or a
material law. In the following, we assume that the mechan-
ical continuum on which the boundary value problem is
defined has already been discretized, using, for example,
the finite element method [26]. That is, we assume that the
displacement field is represented by a displacement vector
u = {ui }NDOF

i=1 . Each of its components ui relates to a specific
discrete point in the continuum (e.g., a node of a finite ele-
ment discretization) and a certain coordinate direction. NDOF

is the number of degrees of freedom of the discretization.
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2.2.1 Compatibility conditions

Let the matrix Be relate the displacement vector to the strain
εe at a discretematerial point ewhere the constitutive relation
has to be evaluated (e.g., a Gauss point in a finite element
discretization). If there are in total M such points, we have

εe = Beu, e = 1, . . . M . (1)

For example, if the continuum is discretized using Nelem two-
dimensional linear quadrilateral finite elements with four
Gauss points each, M = 4Nelem [17]. For a quadrature point
e in a specific finite element, most components ofBe are zero
and the non-zero components are computed from the gradi-
ent of the shape functions of the specific finite element (see
also [26]). If the displacement field is sought as the solution
and the strain is derived from this field, the compatibility
conditions are automatically fulfilled in the discrete setting
by applying (1).

2.2.2 Conservation laws

The conservation law for the deformation of a continuum
body in quasi-static analysis is given in the strong form by

∇ • σ + f = 0 in �, (2)

where � is the spatial domain the body occupies, σ the
Cauchy stress tensor, and f the external volume force exerted
on the body. The continuum body has a prescribed displace-
ment on the part �D ⊂ ∂� of the boundary and is subject
to the external traction σ • n = t on the part �N ⊂ ∂� of
the boundary, where n is the outer unit normal vector to the
boundary ∂� and t is the prescribed traction.We assume that
∂� = �D ∪�N and �D ∩�N = ∅. This strong form together
with the prescribed boundary conditions is first converted to
a weak form, which is subsequently discretized by the stan-
dard finite element method yielding the discrete equilibrium
equation

F =
M∑

e=1

weBT
e σ e. (3)

Here, the external nodal force vector F captures the effect
of external loading on each finite element node and is ener-
getically conjugate to the nodal displacement vector u. The
right-hand side in (3) can be understood as an internal force
vector that summarizes for each degree of freedom of the dis-
cretized continuum the overall effect of the elastic stresses in
the continuum. The coefficients {we}Me=1 are weight factors
of the different material points where the stress is evaluated
(e.g., of the Gauss points in a finite element scheme), see also
[17] for detail discussion of these coefficients. ThematrixBT

e

captures numerical effects of the chosen discretization (e.g.,
of the chosen shape functions)

2.2.3 Material laws

To arrive at a closed system of equations, the strain and stress
must be related to each other. In a classical boundary value
problem, one defines to this end a function

σ = σ̂ (ε). (4)

that assigns to any strain ε a stress value. In the data-driven
boundary value problem, a material law like (4) does not
exist. Instead, there are abundant material data points col-
lected in a material data set

D = {(ε j , σ j )
}Ndata
j=1 , (5)

which specifies for a number of Ndata discrete strain states
ε j the associated stress states σ j . In a classical boundary
value problem, we seek the solution to (3) that preserves
both the compatibility condition (1) and a given material law
(4). By contrast, in a data-driven framework for constitutive
modeling, we seek the data points in D that minimize the
violation of (1) and (3). In other words, we seek the solution
to (3) that is closest to the data set D. In the next section,
these ideas will be formulated mathematically.

2.3 Distance-minimizingmethod

In this section, we introduce the data-driven boundary
problem in the sense of the distance-minimizing method fol-
lowing the ideas and concepts of [14,17].

2.3.1 Phase space

The phase space Z is defined as the set of all possible
strain–stress states at all the material points of the system.
Mathematically, the phase space Z and an element z ∈ Z
can be written as

Z =
M∏

e=1

(Rq × R
q), z =

M∏

e=1

(εe, σ e), (εe, σ e) ∈ R
q × R

q ,

where q is the dimension of ε and σ and depends on the
problem setting [17]. Each element z of the phase space
consists of multiple strain–stress pairs, each of which cor-
responds to one material point. The addition of two elements
and the multiplication of one element in Z by a real scalar
are defined in a component-wise manner. The set of possible
strain–stress states (εe, σ e) specifically at the e-th material
point is referred to in the following as local phase space Ze.
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The strain–stress states at all the material points are
collected in one global strain–stress state and denoted by
(ε, σ ) = {(εe, σ e)}Me=1. Therefore, the strain–stress pair
without the subscript e will refer to the global state.

2.3.2 Material data space, constitutive manifold and
physical-constraint space

The material data space D

D =
{
d =

M∏

e=1

(εe, σ e), with (εe, σ e) ∈ D

}

is the subset of Z that results if we admit only strain–stress
pairs from the material data set D.

Thematerial data D can be imagined to result from a com-
bination of some hidden constitutive law σ = σ̂ (ε) following
(4) and some additional noise. The hidden constitutive law
can be represented in the local phase spaceZe by a so-called
constitutive manifold

M = {(ε, σ ), with σ = σ̂ (ε)} , (6)

and the material data are located in a close corridor around
M, whose width is determined by the magnitude of the noise
(Fig. 1).

The physical-constraint space C ⊂ Z comprises of ele-
ments c = {(εe, σ e)}Me=1 satisfying both the compatibility
conditions and the conservation law. C is also referred to as
physical-constraint manifold.

ε

σ

M : σ = σ̂(ε)

Data points

Corridor of M

Fig. 1 The material data D is typically located in the close neighbor-
hood of some (in general unknown) constitutive manifold M. The
difference between the material data and the constitutive manifold is
caused by the noise incorporated in the material data

2.3.3 Metric

With the above notions, we can equip the phase spaceZ with
a metric [14,17]

‖(ε, σ )‖ =
M∑

e=1

we
1

2
εe • Ceεe
︸ ︷︷ ︸
�ε(εe,Ce)

+
M∑

e=1

we
1

2
σ e • Seσ e
︸ ︷︷ ︸

�σ (σ e,Se)

=
M∑

e=1

we
[
�ε(εe,Ce) + �σ (σ e,Se)

]
, (7)

Herein, we use Voigt notation so that Ce and Se are matrices
and the central dot denotes a scalar product between two
vectors. The matrices Ce and Se are of numerical nature and
must be defined a priori. They are the hyperparameters in
the distance-minimizing method described below. �ε and
�σ denote energy-like terms whose definition will turn out
convenient for the development below. The scalars we are
weights of the contribution of each material point.

Similarly to (7), also the local phase space Ze can be
equipped with a metric

‖(εe, σ e)‖e = �ε(εe,Ce) + �σ (σ e,Se) (8)

so that the global metric (7) is determined as a weighted sum
of the local metric (8), namely ‖(ε, σ )‖ = ∑M

e=1 we‖(εe,
σ e)‖e.

2.3.4 Distance-minimizing method

We define the data-driven boundary value problem in the
sense of the distance-minimizing method as an optimization
problem (see Fig. 2)

{c∗, d∗} = arg
{
min
c∈C

min
d∈D

‖c − d‖
}

= arg
{
min
d∈D

min
c∈C

‖c − d‖
}
.

(9)

That is, we seek among all possible strain–stress states the
state d∗ in the material data space that is as close as possible
to the physical-constraint space as well as the state c∗ in
the physical-constraint space that is as close as possible to
the material data space. The actual data-driven solution can
either be defined as z = c∗ or as z = d∗. In the first case, we
strictly demand a strain–stress state of which it is sure that
is possible (because it forms part of the given material data
space D) but allow an—as small as possible—violation of
fundamental physical laws. By contrast, in the second case,
we strictly demand that all fundamental physical laws are
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exactly satisfied and allow to this end also strain–stress states
of which we do not know for sure that they are possible but
which are at least as close as possible to strain–stress states
of which we know that they are possible.

Both approaches are in principle possible and it is up to
the user which of them to define as the solution to the data-
driven BVP. It is worth mentioning that the minimization
steps in (9) are interchangeable. The conceptualization of
this minimization problem is visualized in Fig. 2.

At this point, it is instructive to distinguish between the
setting of and the solutionmethod for a boundary value prob-
lem (BVP). Whereas a classical BVP is associated with a
constitutive law (4), a data-driven BVP comes along with a
material data set replacing the constitutive law. The classi-
cal BVP can be solved both by a direct method or by the
distance-minimizing method described in this section.

In the first case, we express the equilibrium equations in
terms of the displacement field by eliminating the stress field
from the system with the aid of the material law. Subse-
quently, we search a solution within the space of admissible
displacement fields. By contrast, in the second case the solu-
tion to the classical BVP is simply found as the solution to
(9). In this case c∗ = d∗ because in a classical BVP there
exists a state in the phase space that both satisfies all the
physical constraints and the given constitutive equation (4)
at the same time.While the classicalBVPcan be solved either
by a classical, direct method or by the distance-minimizing
method, the data-driven BVP cannot be solved by classical,
direct methods but rather the distance-minimizing (or a sim-
ilar) method is required.

2.3.5 Numerical implementation of the
distance-minimizing method

In this section,we summarize the staggered schemedescribed
in [14,17] for solving the double-minimization problem (9).
This problem is decomposed into a series of singleminimiza-
tion problems. We randomly pick an initial value d[0] ∈ D
and then solve iteratively for k = 0, 1, 2, . . . the problems

c(k) = arg
{
min
c∈C

∥∥c − d[k]∥∥
}
,

d[k+1] = arg
{
min
d∈D

∥∥c(k) − d
∥∥
}
,

(10)

until a converged solution is achieved. Here, both the super-
scripts (k) and [k] refer the iteration step k and c(k) and d[k]
on the right-hand sides are known from the previous iteration
step, respectively. Herein, the parentheses (
) imply that the
associated quantities belong to the physical-constraint space
C and the square brackets [ 
 ] that they belong to thematerial
data spaceD. Equivalently, we could also start with a random
c(0) ∈ C for the initialization and then repeat the two steps

C

D

Z

d[0]

c(0)

c∗

d∗

c(0) = argmin
c∈C

∥
∥d[0] − c

∥
∥

d[1] = arg min
d∈D

∥
∥c(0) − d

∥
∥

dist(D, C)

c[n] = argmin
c∈C

∥
∥d[n] − c

∥
∥

d[n+1] = arg min
d∈D

∥
∥c(k) − d

∥
∥

Fig. 2 Algorithm for implementation of distance-minimizing comput-
ing method. The distance dist(D, C) between two subsets C and D of
the phase space Z can be computed by performing a sequence of pro-
jection operations defined by Eq. (10). The final solution can be chosen
as either c∗ or d∗ depending on the user’s choice. Reprinted from Com-
puter Methods in Applied Mechanics and Engineering, Volume 365,
112898, Lu Trong Khiem Nguyen, Matthias Rambausek, Marc-André
Keip, Variational framework for distance-minimizing method in data-
driven computational mechanics, with permission from Elsevier [17]

in (10) in reversed order. The described solution scheme is
demonstrated in Fig. 2.

In general, we do not have a strain–stress pair (ε, σ )

satisfying the compatibility and equilibrium equations at ini-
tialization. Therefore, starting with a properly chosen c(0)

is typically not trivial. By contrast, it is easy to pick some
d ∈ D. Hence, a numerical solution with the initialization in
D is more favorable. Nevertheless, the final solution in C has
the favorable property of respecting the physical laws.

The numerical scheme to solve (10) can be rewritten in a
fixed-point formulation as

d[k+1] = min
d∈D

∥∥∥d −
{
min
c∈C

∥∥c − d[k]∥∥
}∥∥∥ ∀k ≥ 0. (11)

The iteration scheme stops when there is no further effective
change in the data selection process. The value of c from
the last iteration with (10)1 automatically yields c∗ for (9).
Section 2.5 discusses how to define stopping criteria for (11).

2.4 Data-driven solver for linear elasticity problem

In the following, we briefly summarize the single steps to
the solution in the distance-minimizing method for linear
elasticity problems, following [14,17].

2.4.1 Projection on the physical-constraint space

The strain–stress state stored in the mechanical system in
one particular step k (k = 0 for the initialization step) is
given by d[k] = (ε[k], σ [k]). To solve (10)1, we need to find
c(k) = (ε(k), σ (k)) that minimizes the norm
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∥∥(ε(k) − ε[k], σ (k) − σ [k])
∥∥

=
M∑

e=1

we

[
�ε(ε(k) − ε[k],Ce) + �σ (σ (k) − σ [k],Se)

]
, (12)

and satisfies the physical constraints (1) and (3). The solution
can be obtained by using the method of Lagrange multipliers
with a Lagrangian function

L = 1

2

M∑

e=1

we
[
(Beu(k) − ε[k]

e ) • Ce(Beu(k) − ε[k]
e )

+(σ (k)
e − σ [k]

e ) • Se(σ (k)
e − σ [k]

e )
]

−
( M∑

e=1

weBT
e σ (k)

e − f
)

• η(k). (13)

Here we used (1) in the norm, which allows us to satisfy
always the compatibility conditions. Then the only remain-
ing constraint is the balance law, which is enforced by the
(vectorial) Lagrange multiplier η(k). The stationary point of
L is the solution to the following system

[ M∑

e=1

weBT
e CeBe

]
u(k) =

M∑

e=1

weBT
e Ceε

[k]
e ,

[ M∑

e=1

weBT
e S

−1
e Be

]
η(k) = f −

M∑

e=1

weBT
e σ [k]

e ,

(14)

where the stress σ
(k)
e has been resolved according to

σ (k)
e =

M∑

e=1

S−1
e Beη

(k) + σ [k]
e . (15)

We will call the right-hand side of the second equation resid-
ual vector as the equilibrium state corresponds to this vector
being close to zero. This result can be derived in a variational
framework proposed in [17]. Finally, the solution (ε(k), σ (k))

is obtained by solving system (14) and computing the strains
and stresses according to (1) and (15).

Following (14), it appears reasonable to choose Se = C−1
e

because this way the left-hand side of the two equations of
(14) can be computed by one single assembly process. Thus,
in the following we will strictly use Se = C−1

e with C−1
e

being the inverse of Se in the sense Ce • Se = I, where I is
the identity matrix.

2.4.2 Projection on the material data space

Solving the minimization problem (10)2 means pulling the
solution c(k) = (ε(k), σ (k)) back to the material data space
D. For each material point in the continuum body, we
seek

(ε[k+1]
e , σ [k+1]

e )

= argmin
(εe,σ e)∈D

[
�ε(εe − ε(k)

e ,Ce) + �σ (σ e − σ (k)
e ,C−1

e )
]
. (16)

This is simply a discrete optimization problem (without addi-
tional constraints). It can be solved by going through all the
material data points in D and then selecting the one minimiz-
ing the above function. The combination of all the optimal
local solutions of (16) at the individual material points con-
stitutes the global solution d[k+1] = (ε[k+1], σ [k+1]) to the
global problem as shown in [17].

2.5 Convergence criteria for the
distance-minimizingmethod

The distance-minimizing method as expressed in (11) can be
implemented by a fixed-point iteration scheme [14,17]where

∥∥(ε(k+1) − ε(k), σ (k+1) − σ (k))
∥∥ ≤ δ (17)

can be used as a stopping criterion. Note that the metric used
in this condition depends on the hyperparameters Ce and
Se. An alternative criterion is an inequality operating on the
material data space in the form

∥∥(ε[k+1] − ε[k], σ [k+1] − σ [k])
∥∥ ≤ δ. (18)

This criterion works equivalently to the criterion (17) as the
projections of elements z ∈ Z onto the data function space
D and onto the physical-constraint space C are continuous
and linear operators. Moreover, for this reason a sequence
{z(k)}∞k=0 obtained by applying consecutively the above pro-
jections between physical-constraint and material data space
will finally converge to the classical solution for a classical
BVP. A proof of this statement for a simple system will be
presented in Sect. 5.1.2.All of the numerical examples shown
below use (18) with δ = 10−10.

Asmentioned above, the distance-minimizingmethod can
be used to solve both classical and data-driven BVPs. In clas-
sical BVPs, the constitutivemanifoldD and thematerial data
set are continuous domains so that one has to choose some
small positive tolerance δ. By contrast, since in data-driven
BVPs the material data set is discrete with |D| < ∞, also
δ = 0 can be used both in (17) and (18).

3 Role of hyperparameters in the
distance-minimizingmethod

In this section, we consider the deformation of an in general
multidimensional elastic continuum and examine how the
choice of the hyperparameters affects the numerical iterations
required for the distance-minimizing method. The goal is to
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find estimates for the hyperparameters of which one can hope
that they accelerate the convergence of these iterations.

The distance-minimizing method consists of a series of
projections of type (10)1, where a projection from the mate-
rial data space to the physical-constraint space is performed,
and of type (10)2, where a projection from the physical-
constraint space to the material data space is performed.
During both projections a step 	ze = (	εe,	σ e) is per-
formed at each material point in the local phase space Ze.
To perform this step, for both projections a cost function has
to be minimized. For projection steps of type (10)1 the cost
function is (16) and for projection steps of type (10)2 the cost
function is (12). Both cost functions consist of summands of
the type

∥∥	ze
∥∥
e = ∥∥(	εe, 	σ e)

∥∥
e = �ε(	εe,Ce) + �σ (	σ e,C−1

e )

= 1

2
	εe • Ce	εe
︸ ︷︷ ︸

�ε(	εe,Ce)

+ 1

2
	σ e • C−1

e 	σ e
︸ ︷︷ ︸

�σ (	σ e,C
−1
e )

. (19)

Themagnitudes of the strain-related contributions�ε(	εe,

Ce) and the stress-related contributions �σ (	σ e,C−1
e )

depend on the hyperparameters Ce, respectively. If both
types of contributions are substantially different in mag-
nitude, one will dominate the other during the solution of
the minimization problem. In such cases, the iteration steps
will be performed either in a way that focuses on strain and
largely neglects the role of stress or vice versa. This implies
little progress during the single iteration steps for the respec-
tively neglected quantity. At the same time, however, the
initial state at the beginning of the iterations differs from
the sought solution typically both in stress and strain con-
siderably. So, if the hyperparameters are chosen such that
changes of one of these two quantities remain small dur-
ing the single iteration steps, necessarily a large number of
iteration steps will be required to obtain a solution that is
optimal with respect to both. In other words, if the magni-
tudes of �ε(	εe,Ce) and �σ (	σ e,C−1

e ) are substantially
different, we have to expect in general slow convergence of
the distance-minimizingmethod at leastwith respect to either
stress or strain.

The key question is now under which conditions we can
expect that �ε(	εe,Ce) and �σ (	σ e,C−1

e ) are of compa-
rable or, by contrast, starkly different order of magnitude.
To understand this, we focus for simplicity on the later
stage of the iterative solution procedure required by the
distance-minimizing.Moreover,we assumea situationwhere
abundant material data of high quality is available so that the
strain–stress pairs computed by the projection steps (10)1
the cost function is (16) and (10)2 the cost function is (12)
are—in the later stage of the iterative solution procedure—
close to the (hidden) constitutive manifold σ = σ̂ (ε) of the
material. It is important to note that this situation is indeed
representative for many practically relevant application sce-

narios because there one will often seek to obtain a large
amount of material data of good quality. Moreover, iterative
solution procedures tend to spend most of their iterations
in a relatively small neighborhood around the final solution
to achieve the elevated accuracy that is numerically desired.
As in that neighborhood strain–stress pairs are close to the
(hidden) constitutive manifold, we can assume that stress
increments between two subsequent steps in the iterative
solution of the distance-minimizing problem are related to
their associated strain increments by

	σ e = Ĉe	εe + O(‖	εe‖2) (20)

with the tangent of the hidden constitutive manifold Ĉe =
∂ σ̂/∂ε(εe) computed at the strain–stress state (at the begin-
ning or end) of the respective iteration step. Using this
approximation,

	σ e • C−1
e 	σ e = [Ĉe	εe + O(‖	εe‖2)

]

• C−1
e

[
Ĉe	εe + O(‖	εe‖2)

]

= Ĉe	εe • C−1
e Ĉe	εe + O(‖	εe‖3)

(21)

and thus

�σ (	σ e,C−1
e )

�ε(	εe,Ce)
= 	σ e • C−1

e 	σ e

	εe • Ce	εe

= Ĉe	εe • C−1
e Ĉe	εe

	εe • Ce	εe
+ O(‖	εe‖). (22)

Now we assume Ce = γ Ĉe, which allows us to discuss in a
rule-of-thumb manner cases where the hyperparmaeters are
either of comparable magnitude as the tangent stiffness of
the hidden constitutive manifold (γ = 1) or much larger
(γ � 1) or much smaller (γ � 1). From (22) we derive

�σ (	σ e,C−1
e )

�ε(	εe,Ce)
≈ 1

γ 2 . (23)

That is, we expect the strain-related contributions �ε(	εe,

Ce) and the stress-related contributions �σ (	σ e,C−1
e ) in

the objective functions of the minimization problems solved
in each step of the distance-minimizing method to be of sim-
ilar order of magnitude if the hyperparameters are of similar
magnitude as the tangent stiffness of the (hidden) constitutive
manifold. By contrast, if this is not the case and the hyperpa-
rameters are chosen much larger or much smaller, we expect
that in these minimization problems either the contributions
of the type�ε(	εe,Ce) or�σ (	σ e,C−1

e )will dominate the
respective other. And for the reasons above, we then expect
slow convergence.
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4 Distance-minimizingmethod with
adaptive hyperparameters

4.1 Hyperparameters based on linear regressions

From the above sections it is clear that for an efficient and
effective implementation of the distance-minimizingmethod
it is essential to choose its hyperparameters comparable to
the tangent of the hidden constitutive manifold. As the latter
is not known, it is important to estimate it. Here we will
discuss how this is possible on the basis of linear regression
techniques, which are computationally cheap and simple.

To estimate the tangent of the hidden constitutivemanifold
in the neighborhood of a specific ze = (εe, σ e) ∈ Ze at a
material point e, we first have to identify the material data
given in its neighborhood. We may do so by defining these
data as

N (ze, r) = N (εe, r) = {(ε, σ ) ∈ D : ‖ε − εe‖E < r
}
.

(24)

with the Euclidean norm ‖.‖E . Note that here we cannot
use the above usually used phase space norm because its
computation requires exactly the hyperparameters whose
determination is the objective of the procedure described in
this section. Therefore, we have to use a Euclidean (or alter-
natively other standard) norm here and can thus compare
only either the stress or the strain components of a state in
the local phase space to quantify proximity in some sense.
Here we decide to focus on the strain components so that we
can useN (ze, r) andN (εe, r) equivalently. By the denoting
k = |N (ze, r)|, we can defineN (ze, k) := N (ze, r) as a set
of k material data points in D that are closest to ze, that is, as
the set of its k nearest neighbors. Based on the neighborhood
data from (24) we can perform a linear regression [27]. To
this end, we determine in

σ = Ĉa(ze)ε + σ 0(ze), (σ , ε) ∈ N (ze, r) (25)

the parameters Ĉa(ze) and σ 0(ze) such that they best fit the
material data inN (ze, r). Then Ĉa(ze) forms an estimate of
the tangent Ĉ of the hidden constitutive law as introduced
in (25). For practical purposes, r should be chosen small
enough so that the hidden constitutive law can be approxi-
mated reasonably by a linear relation in its range. At the same
time, r should be chosen large enough to suppress noise in
the material data by averaging across a sufficient amount of
data.

We make some minor remarks on a possibility of encoun-
tering the constitutive tangent tensor that can be not positive
definite. Physically, such a tangent stiffness tensor is asso-
ciated with an unstable material. As unstable materials have
hardly had any applications in engineering (with possibly a

few very special cases), we decided not to discuss such cases
n depth in our paper. When focusing on practically relevant
materials, we expect that issues with positive definiteness of
the tangent stiffness could only arise as numerical artifacts of
our regression techniques. Such problems could, however, be
handled simply by eliminating any hyperparameters that are
not positive definite in our set of pre-defined hyperparame-
ters established by our divide and conquer strategy. This can
be expected to affect the overall outcome in no significant
way. Another way of ensuring positive definiteness of the
hyperparameters, which we used in this work, is choosing
the radii of neighborhoods appropriately.

4.2 Adaptive hyperparameters based on the
constitutive manifold

The previous section discusses how to compute the hyperpa-
rameters so that they approximate the tangent of the hidden
constitutive manifold. This tangent, however, may in general
change from iteration step to iteration step andmaterial point
tomaterial point in the general case of a nonlinear hidden con-
stitutive law. Therefore, an adaptive procedure is required in
practice. Such a procedure can be defined for the distance-
minimizing method as follows: we start with some initial
guess. Based on this initial guess we use at each material
point linear regression to estimate the tangent of the hidden
constitutive manifold, which yields us the hyperparameters
for the next iteration step. With these hyperparameters, we
can solve the minimization problem giving us the next inter-
mediate configuration of our iterative solution process. From
this intermediate configuration we again estimate the hyper-
parameters by linear regression, perform the next iteration
step and so on. This adaptive hyperparameter strategy pre-
serves the fixed-point property of the scheme (11) in the
sense that still converges to a specific solution. As will be
seen from the numerical examples in Sect. 5, the adaptive
hyperparameter strategy described here indeed dramatically
decreases the number of iteration steps required to this end.
At the same time, however, also the computational cost per
iteration step increases. The reason is that for constant hyper-
parameters the left-hand side of (14) has to be evaluated only
once. By contrast, when using adaptive hyperparameters it
has to be reevaluated in every iteration step, which means
the computational cost of the assembly of an additional stiff-
ness matrix in each iteration step. The computational effort is
dominated by the process of recomputing hyperparameters
at all the material points. Therefore, a simple adaptation of
the hyperparameters in each iteration step does in practice
often not lead to the desired substantial reduction of compu-
tational cost. In the next subsection wewill discuss a strategy
to overcome this caveat.
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4.3 Divide and conquer technique for a finite set of
representative hyperparameters

The key idea for a computationally efficient adaptation of
the hyperparameters of the distance-minimizing method is to
allow variations of the hyperparameters only within a finite
set of predefined values. As will be seen below, this simple
strategy can decrease the computational cost of hyperparam-
eter adaptation substantially while still exploiting most of
its benefits, noting that for a reduction of the number of
iteration steps it is sufficient if the hyperparameters reason-
ably approximate the tangent of the hidden constitutive law
whereas an accurate adjustment of them is not required. For
an efficient adaptation of the hyperparameters, we proceed
as follows: let �ε be the domain of all possible strain states
that are of interest. In practice, �ε may often be chosen, for
example, as the convex hull of the strain states in the mate-
rial data set, potentially extended by some boundary layer to
allow also a certain extrapolation beyond the available mate-
rial data. We can divide �ε into a set of non-overlapping
subdomains �ε

i . To each such strain subdomain, we assign
an approximation Ĉa

i of the average tangent of the hidden
constitutive manifold in this domain. This approximation
may, for example, be computed as a weighted average of
all the approximations gained from linear regression for all
the states ze ∈ D in the material data set whose strain com-
ponents εe are located in �ε

i that is,

Ĉa
i =

∑

εe∈�ε
i

α(ze)Ĉa(ze), with ze = (εe, σ e) ∈ D. (26)

The weights α(ze) may be chosen equal to the (normalized)
size of the part of�ε

i for which εe is representative. This size
may, for example, be set equal to the size of an associated
Voronoi cell if aVoronoi tesselation of�ε

i is performed based
on the strain values in the material data set which fall into
�ε

i .
Having subdivided the strain space into �ε

i and computed
the associated Ĉa

i once in the beginning, our strategy for
hyperparameter adaptation is as follows: at a specific mate-
rial point in a specific iteration step, one first determines the
associated subdomain �ε

i and then uses for the next iteration
step Ĉa

i as hyperparameter Ce at this material point.

5 Examples

The following examples not only demonstrate the advan-
tages of the proposed strategy of adaptive hyperparameters
but also support the underlying theoretical considerations,
which is of particular importance since they could so far
not yet be based on a rigorous mathematical proof. First, we
present a set of exampleswhere classical BVP is solved using

the distance-minimizing method with various fixed hyper-
parameters. The effect of the choice of hyperparameters is
discussed and numerically illustrated. Then, we show that
the proposed method with adaptive hyperparameters outper-
forms the standard approach with constant hyperparameters
especially when the noise in the material data increases.
Finally, we show that the hyperparameter-adaptive solver
leads to a better convergence rate with respect to the amount
of available material data than that of the one with fixed
hyperparameters.

5.1 Statically indeterminate three-member truss
system

5.1.1 Problem setting

In Sect. 5.1 we study the three-member truss system illus-
trated in Fig. 3. As stresses and strains are constant within the
three trusses, respectively, the state of the system is character-
ized by three strain–stress pairs (εe, σe), e = 1, 2, 3 denoting
strain and stress in the e-th truss respectively. We assume a
linear constitutive law

σe = Eεe (27)

with E = 1000. For an external force { fx , fy} = {25,−25}
on the upper-right joint in Fig. 3, one can easily com-
pute the analytical solution of the classical boundary value
problem defined above as εref = [εref1 , εref2 , εref3 ]T =
{0,−2.5%, 2.5%}.

ux

uy

fx

fy

L 1
=
√ 2

L
2
=

1

L3 = 1

1 2

3

Fig. 3 Three-truss system.The systemconsists of three trusseswith unit
cross section connected by a joint on the upper right. The respective
other ends of the trusses are fixed with respect to their translational
degrees of freedom but free to rotate. The joint on the upper right is
subject to an external force f = ( fx , fy) (red arrows) and exhibits a
displacement (ux , uy). (Color figure online)
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5.1.2 Theoretical analysis

Now we discuss the solution of the classical BVP from
Sect. 5.1.1 using the distance-minimizing method. For this
specific problem, we can compute the sequence of iteration
steps performed by the distance-minimizing method analyt-
ically because the underlying minimization problems can be
solved analytically in each iteration step. Doing so allows
us to study thoroughly the dependence of the convergence
rate of the data-driven solver on the hyperpararmeters. If we
solve (10) analytically and set all the three hyperparameters
Ce equal to a single constant C , we obtain

ε[k+1] = Mε[k] + R, (28)

with

M = 1

κ1

⎡

⎣
2(C2 + √

2E2)
√
2(C2 − E2)

√
2(C2 − E2)

2(C2 − E2) (1 + 2
√
2)C2 + E2 −(C2 − E2)

2(C2 − E2) −(C2 − E2) (1 + 2
√
2)C2 + E2

⎤

⎦ ,

R = 1

κ2

⎡

⎣
2E( fx + fy)

E(−√
2 fx + (4 + √

2) fy)
E((4 + √

2) fx − √
2 fy

⎤

⎦ ,

κ1 = 2(1+ √
2)(C2 + E2), and κ2 = 2(2+ √

2)(C2 + E2)

and the associated stresses σ
[k+1]
e = Eε

[k+1]
e .

Now we recall the definition of the spectral radius of a
matrixM ∈ R

n×n as

ρ(M) = max
{ |λ1|, . . . , |λn|

}
.

where λ1, . . . , λn ∈ C are the (in general complex) eigen-
values of M. The theory of fixed-point schemes says [28]
that the sequence {ε[k]}∞k=0 generated by (28) converges if
ρ(M) < 1. Moreover, the smaller the spectral radius ρ(M)

is, the better the convergence rate. Using this theorem, we
can prove that the iteration scheme (28) guarantees a conver-
gent solution identical to the solution presented already at
the end of Sect. 5.1.1. To this end, we first note that if there
exists a fixed-point of (28), it must be the solution to the sys-
tem (M − I)ε + R = 0. Solving this linear equation system
immediately yields the solution presented above. Now there
only remains the question whether there always exists a fixed
point of (28). To examine this, we first compute the spectral
radius ρ(M) as

ρ(M) =

⎧
⎪⎪⎨

⎪⎪⎩

q1(C) := E2

C2 + E2 |C | < E,

q2(C) := C2

C2 + E2 |C | ≥ E .

(29)

It is clear that 1/2 ≤ ρ(M) < 1 for all C �= 0 and thus a
fixed-point is guaranteed. The scheme achieves the best con-
vergence rate at C = E , where the spectral radius attains the

smallest value ρ(M) = q1 = q2 = 1/2. This is in excel-
lent agreement with our above theoretical discussion where
we argued that generally hyperparameters of the distance-
minimizing method comparable to the tangent of the (in
general hidden) constitutive manifold—which is here E—
can be expected to yield the best convergence rate.

5.1.3 Numerical results

After having established by theoretical analysis that C = E
can be expected to be numerically optimal, we addition-
ally tested different values for the hyperparameter C by
solving the problem iteratively. As initial values, we used
{ε[0]

1 , ε
[0]
2 , ε

[0]
3 } = {−5%, 5%, 0%}. The stopping criterion

for the iterations was defined by (17) with δ = 10−10. The
results are shown in Fig. 4.

In Fig. 4, we see that for C = 103 = E , the strains (and
also the stresses) converge to the analytical solution solu-
tion around 60 times faster than for C = 102 or C = 104.
These results strongly support our theoretical considerations
and conclusions in Sect. 3. In particular, they illustrate the
high importance of a proper choice of the hyperparameters
in practical applications, where a difference in computation
time by a factor of 60 is in many cases the difference between
feasibility on the one hand and prohibitively high computa-
tional cost on the other hand.

To better understand the mechanism resulting in this sub-
stantial dependence of the number of iterations on the choice
of the hyperparameters, it is instructive to examine the resid-
ual error R[k]

σ for the balance of linear momentum and the
residual error R[k]

ε for the compatibility condition. These are

R[k]
σ =

√[
R[k]
x
]2 + [R[k]

y
]2

, R[k]
ε = ∣∣2ε[k]

1 − ε
[k]
2 − ε

[k]
3

∣∣,
(30)

with

R[k]
x = σ

[k]
1√
2

+ σ
[k]
3 − fx , R[k]

y = σ
[k]
1√
2

+ σ
[k]
2 − fy .

In Sect. 3 we discussed that hyperparameter much larger
or much smaller than the tangent stiffness would lead to a
situation where either stress or strain is largely neglected
during the minimization process so that it would take many
iterations to reach a point where both is satisfactory. In (30)
and Fig. 5 we see the underlying mechanism. If C � E ,
stress dominates the metric in (19). Therefore, the numerical
scheme can quickly reduce error in stress, that is, the residual
error R[k]

σ in the equilibrium equation. However, as strain is
numerically neglected, our solution scheme is unsuccessful
in reducing also the residual error R[k]

ε of the compatibility
equation, which does not depend on stress but only strain.
By contrast, C � E yields exactly the opposite situation.
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Fig. 4 Convergence of the fixed-point scheme (28) for three values of the hyperparamter C . Note the different scale of the horizontal axis in the
rightmost plot. For C = E = 1000 the error decreases around 60 times faster compared to C = 0.1E = 100 and C = 10E = 10000
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Fig. 5 Convergence of the residual errors R[k]
σ and R[k]

ε in the equilibrium equation and the compatibility condition. Fast convergence of both is
observed only for C = E = 103

5.1.4 Data-driven solution obtained by using various
hyperparameters

Wehave proven that for the problem defined in Sect. 5.1.1 the
distance-minimizing method converges to the correct solu-
tion. This is consistent with the theoretical analysis in [23]
because a continuous constitutive law mimics the limit case
where the number ofmaterial data points approaches infinity,
thereby fully characterizing the constitutive law. However, it
is important to note that convergence to the exact solution
cannot necessarily be expected from the distance-minimizing
method in case of a finite material data set. In this subsection
we will demonstrate that if the hyperparameter C is chosen
very different from the tangent of the (hidden) constitutive
manifold, not only the convergence of the data-driven solu-
tion is slow (as shown in the previous sections) but that one
requires also many more data to ensure that the limit of the
convergence is close to the physically correct solution.

Assume that we have Ndata material data points such that
D = {(εi , σi )}Ni=1 samples the linear constitutive manifold
(27) in the strain range �ε = (−5%, 5%) with Ndata ∈
{10 j + 1, j = 2, 3, 4, 5} data points. The data points always

included the point (ε, σ ) = (0, 0) to capture rigid bodydefor-
mations, while the remaining data points uniformly sampled
�ε . For these four different material data sets, we applied
the data-driven solver with the three different hyperparam-
eters C ∈ {20, 1000, 20000}. To measure convergence, we
examined the error norm

‖ε − εref‖ =
[ 3∑

i=1

(εi − εrefi )2
]1/2

(31)

with the exact solution εref = [εref1 , εref2 , εref3 ]T .
In Fig. 6 we see that even with 104 + 1 data points, the

data-driven solutions obtained withC ∈ {20, 20000} are still
worse than the ones obtained withC = 1000 for 102+1 data
points. Additionally, for C = 1000 one can observe linear
convergence with respect to the data size, while the conver-
gence rate for C ∈ {20, 20000} is clearly sub-linear. This
demonstrates that a proper choice of the hyperparameters
appears to accelerate—if the distance-minimizing method
is applied—not only the numerical solution but to improve
also its quality in case of a finite data set (which is in practice
always the case).
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Fig. 6 Convergence of data-driven solution with increasing number
Ndata of material data points for three different hyperparameters C

5.1.5 Noisy data

In this subsection we test the effect of the hyperparameter
adaptation introduced in Sect. 4. To this end,we slightlymod-
ify the three-truss problem introduced in Sect. 5.1.1 replacing
the linear constitutive law (27) by a nonlinear constitutive law

σ = 50 tanh(50ε). (32)

The applied load is changed to fx = 45, fy = −45 and
the exact solution can be shown to be εref1 = 0 and εref2,3 =
± ln(19)/100.

Moreover, tomimic amore realistic situation, we generate
material datawith noise. To this end,wefirst generate a noise-
free material data set D̃ = {

(̃ε j , σ̃ j )
}N
i=1 from the (hidden)

constitutive law (32). Thenwe create from D̃ a noisymaterial
data set D = {

(ε j , σ j )
}N
i=1, which we actually use for our

computations and which is defined by

σ j = (1 + r j )̃σ j , ε j = (1 + r j )̃ε j .

with random numbers r j drawn from a uniform distribution
in the interval (−a, a). In Fig. 7 the results for three sets of
material datawith a = 0, 2%, 3%are shown. Tomake a com-
parison with the original approach from [14], we first solved
the problem with the same material data sets used there and
with the fixed hyperparameter C = 1150 = 1

3

∑3
j=1 C

ref
j ,

where C ref
j = {2500, 475, 475}. These C ref

j are the tan-
gent stiffnesses of the truss elements at the state of the final
solution, that is, C ref

j = 2500 sech2(50εrefj ). Therefore, the
choice C = 1150 can be considered a particularly favorable
choice in a situation where one generally relies on constant
hyperparameters. Subsequently, we repeated the same com-
putationswith a less favorable choice ofC = 100. Finally,we
repeated the computations again with adaptive hyperparame-
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Fig. 7 Convergence of the data-driven solution on noisy datawith adap-
tive hyperparameters (circles) or constant hyperparameters (triangles).
In the latter case, the hyperparameters were either fixed to C = 1150

(top) or C = 100 (bottom). In all cases the same set with Ndata = 1024
material data points was used
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ters, which we initialized one time as C = 1150 and another
time asC = 100. The adaptive hyperparameters were chosen
among a finite set of 100 potential hyperparameters based on
a division of the strain domain (−5%, 5%) into 100 subdo-
mains. The results of all these computations are illustrated
in Figs. 7 and 8. Generally, the distance-minimizing method
with adaptive hyperparameters performs never worse than
with fixed hyperparameters. However, in case that the fixed
hyperparameters are chosen close to the tangent of the hid-
den constitutive law in the state of the exact solution (top row
in Fig. 7), the difference between adaptive hyperparameters
and fixed hyperparameters is only small. Nevertheless, one
has to keep in mind that in reality typically no such infor-
mation about the tangent of the constitutive law is explicitly
available. Therefore, in case of a nonlinear problem, fixed
hyperparameters will typically be chosen far from the tan-
gent of the constitutive law in the state of the final solution.
This more realistic situation is illustrated in the second row
of Fig. 7. There one indeed observes that the error obtained
with our novel adaptive hyperparameter scheme is around
one order of magnitude smaller than the one obtained with
fixed hyperparameters. It is important to note that this holds
even ifwe initialize the adaptive hyperparameter schemewith
exactly the same value we use for the fixed hyperparameter
scheme. The big advantage of the adaptive hyperparameter
scheme is that an improper initialization is quickly resolved
by the adaptation scheme as illustrated also in Fig. 8.

5.2 Multi-truss system

5.2.1 Problem setting

In this section, we deal with a planar multi-truss system con-
sisting of Nelem = 43 truss elements and Nnode = 21 nodes,
as shown in Fig. 9. The trusses have unit length L = 1. The
top nodes are subject to a vertical load F = 40 each. The
constitutive law for all trusses is given by (32).

5.2.2 Strategy of data enrichment and reference solution

Using this planar truss structure, we study the convergence
of the data-driven solution as the amount of material data
increases. To this end, we define a series of material data sets
Dn such that Dn ⊂ Dn+1 and the material data are uniformly
sampled in the strain domain (−5%, 5%) by (32). A strategy
of creating such data sets is illustrated in Fig. 10a and will be
explained here. Assume that we currently have the data set
Dn with the material data points given by

σi = 50 tanh
[
50
(− 5/100

+i · 	ε(n)
)] ∀i = 0, . . . , Nn, where 	ε(n) = 1

10Nn
,

(33)

and Nn is an even number. Then, the data set Dn+1 is con-
structed by adding one additional strain in the center between
each pair of neighboring strains in Dn , see Fig. 10a. Subse-
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Fig. 8 Evolution of adaptive hyperparameters over the course of the iterations in the computations shown in Fig. 7 (bottom). The hyperparameters
were always initialized as C j = 1150 in the first step
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Fig. 9 Planar system of trusses of unit length subject to vertical loading. The nodes at the left-most and right-most positions are fixed in both
directions. Other bottom nodes are only vertically constrained. IDs of some trusses are shown in blue circles. (Color figure online)
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quently, the corresponding stresses are computed using (32).
Thus, 	ε(n+1) = 	ε(n)/2, and Nn+1 = 2Nn . No noise is
considered in this section.

To obtain a reference solution for the distance-minimizing
method, we first solved the above system in the classical
fashion using the nonlinear finite element method where at
each material point the nonlinear constitutive equation (32)
was evaluated in an exact manner and the numerical solution
was computed by Newton–Raphson iterations with a very
low numerical tolerance to obtain a nearly exact solution.

The data-driven solution is obtained by the adaptive solver
using a data set described as in (33). Figure 10b demonstrates
that the data-driven solution agrees very well with the one
obtained in the classical fashion already for a dataset of 257
data points.

5.2.3 Convergence of the data-driven solution with respect
to the data size

In the following, the classically computed solution εC =
{εCe }Nelem

e=1 is used as a reference solution in a convergence

study of the data-driven solution εD = {εDe }Nelem
e=1 . The dis-

tance between both is measured by the Euclidean norm

∥∥εD − εC
∥∥ =

{ Nelem∑

e=1

(
εDe − εCe

)2
}1/2

. (34)

The convergence of the data-driven solution with an increas-
ing amount of material data is shown in Fig. 11a. We see
that the adaptive hyperparameters give the linear convergence
rate of the strain solution while the constant hyperparame-
ters give sub-linear convergence rate. Figure 11b compares

-0.05 0 0.05
ε

-50

0

50

σ

M
Dn

Dn+1

(a) Strategy of data enrichment

0 10 20 30 40 50
Element IDs

-0.04

-0.02

0

0.02

0.04

ε
Classical sol.

Data-driven sol.

(b) Strain solutions

Fig. 10 a Data set Dn+1 is generated from data set Dn by adding one
additional data point in each strain interval; b Reference solution com-
puted with nonlinear constitutive law and Newton-Raphson iterations
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Fig. 11 a Convergence of data-driven solution with adaptive (blue circles) and constant (orange triangles) hyperparameters as the material data set
increases; b Number of iterations for the data-driven solution with constant and adaptive hyperparameters. (Color figure online)
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the performance of the distance-minimizing method with
adaptive hyperparameters versus constant hyperparameters
(C = 2500) in terms of the number of iterations. Apparently,
the adaptive hyperparameters provide for the same amount
of material data a much higher quality of the solution. More-
over, the number of iterations increases with an increasing
number of material data points rapidly for constant hyperpa-
rameters but only very slowly for adaptive hyperparameters.
This is a highly important feature for the practical applica-
tion of the distance-minimizing method to ensure a feasible
computational cost.

5.2.4 Comparison of computational time

To demonstrate the benefits of the adaptive hyperparameter
strategy, we measured the computation time of the data-
driven solution with three different strategies: (i) constant
hyperparameters, (ii) hyperparameters updated continuously
with linear regression, (iii) hyperparameters computed using
divide-and-conquer technique. The comparison of compu-
tational time is shown in Fig. 12. It is obvious that for all
the three algorithms the computation time increases with the
data size. However, the computation time for the solver using
the strategy (i) is much lower than that of the strategy (ii).
This is because the computational efforts for updating the
hyperparameters by performing k-nearest-neighbor search
and then linear regression are very large as compared to those
for computing one entire iteration step in using the constant
hyperparameters. By contrast, the computation time for strat-
egy (iii) is much lower than for the other two strategies. The
computational overhead for computing pre-defined hyperpa-
rameters is insignificant. This becomes especially clear when
the number of finite elements, and hence the number of mate-
rial points, increases as compared to the number of partitions
of the strain domain �ε . In the divide-and-conquer strategy,
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Constant Hyper.

Simple adaptive scheme

Divide-and-conquer

Fig. 12 Comparison of computation time for data-driven solver using
constant hyperparameters (blue triangle), continuously updated hyper-
parameters (red circle), and hyperparameters computed with divide-
and-conque strategy (black circle). (Color figure online)

the pre-defined hyperparameters are computed only once.
Additionally, these hyperparameters are independent of the
finite element mesh because it is only relevant how we parti-
tion the strain domain �ε . In contrast, if we do not apply the
divide-and-conquer strategy, we must compute hyperparam-
eters at everymaterial point and in every fixed-point iteration.
Henceforth, it is important to emphasize the necessity of the
divide-and-conquer strategy as explained in Sect. 4.3.

5.3 Plane strain problem

In this section, we extend our scope from truss systems to
problems of general continuum mechanics and demonstrate
that the ideas and concepts introduced in this paper hold also
there. To this end, we consider the two-dimensional contin-
uum in plane strain condition that is illustrated together with
its loading conditions in Fig. 13 (left). To solve this problem,
the triangularmesh shown inFig. 13 (right)was usedwith one
quadrature point per element. It consists of Nelement = 1441
triangular elements and 841 nodes. The mesh exhibits small
elements around the circular holes to capture high stress con-
centration about the circular boundaries.

To generate the material data for this example, we
employed the constitutive law suggested by [17]. This law
is constructed by combining a Neo-Hookean with a Saint-
Venant material model [29], truncating strain terms of more
than quadratic order. Its strain energy density is [17]

ψ(ε) = μ
[
trace(ε) − log

[
1 + trace(ε)

]+ trace(ε2)
]

+λ

2
log2

[
1 + trace(ε)

]
, (35)

where λ = Eν/[(1 + ν)(1 − 2ν)] and μ = E/[2(1 + ν)]
are the Lame parameters defined in terms of Young’s mod-
ulus E and Poisson’s ratio ν. We assumed E = 200 and
ν = 0.34. We created four different data sets with increas-
ing data size. To this end, the problem was first solved in
a classical fashion with the analytical constitutive equation
(35). Next, the maximum and minimum values of all the
three strain components across all the quadrature points in the
whole domain were identified. Finally, we generated a mate-
rial data set sampling for each of these strain components the
interval between the respective maximal and minimal strain
value by N 1D

data = 15 × 2q uniformly distributed data points,
with q = 0, 1, 2, 3. After that, also the reference solution
(εref , σ ref) at each quadrature point was added to the data
set to enable the solver to find in principle at each point an
exact solution. Altogether, this yielded a material data set of
the size Nq

data = (15 × 2q)3 + Nelement. To examine role of
the hyperparameters, we defined the hyperparameters for the
data-driven solution as
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Fig. 13 Plane strain elasticity
problem. The domain is
composed of a unit square with
three circular voids with the
same radius r = 0.12. The
two-dimensional solid is
clamped at the left edge so that
the displacement field
u = (u1, u2) vanishes there and
subject to the traction
T = (3.0, 0) at the right edge. b
Mesh with 1441 elements and
841 nodes will be used for all
the subsequent simulations
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Fig. 14 Number of iterations required to obtain the data-driven solu-
tion (left) and error convergence of the data-driven solution (right) for
different ratios γ between hyperparameters and tangent stiffness (in

the load-free configuration) as well as adaptive hyperparameters. The
legend for both subfigures is shown only on the right

Ce = γ
∂2ψ

∂ε∂ε
(ε = 0). (36)

That is, for γ = 1, the hyperparameters are equal to the tan-
gent stiffness of the constitutive manifold in the stress-free
condition. In addition to γ = 1, we also tested γ = 0.2,
γ = 5, and finally also the case where the hyperparameters
were determined in each iteration step according to the adap-
tive scheme introduced in this paper. The results are shown
in Fig. 14. Apparently, also in this two-dimensional problem
the best numerical efficiency is reached for hyperparame-
ters comparable to the tangent stiffness; see Fig. 14 (left). If
the hyperparameters are much larger or much smaller, this
increases the computational cost especially for a large mate-
rial data set.As this example focuses on small strain elasticity,
the tangent stiffness of the material in the unloaded configu-

ration is a good approximation for the tangent stiffness in the
loaded configuration. Therefore, it is not surprising that the
number of iterations obtained with γ = 1 is similarly low as
the one obtained with adaptive hyperparameters.

Figure 14 (right) shows the convergence of the strain vec-
tor error norm

‖ε − εref‖2
‖εref‖2 =

∫

�

∣∣∣ε − εref
∣∣∣
2
dV

∫

�

∣∣∣εref
∣∣∣
2
dV

=

∫

�

∑2

i, j=1
(εi j − εrefi j )2 dV

∫

�

∑2

i, j=1
(εrefi j )2 dV

. (37)

where � is the domain of the two-dimensional continuum
and |.| denotes a standard Euclidean vector norm. Interest-

123



Computational Mechanics (2022) 70:621–638 637

ux

uy

fx

fy

L =
√ cos

2 α+ sin
2 α

L
1 2

Fig. 15 Symmetric system of two trusses with equal cross section,
which are aligned at an angle α relative to the horizontal direction

ingly, in terms of the strain error norm the solution obtained
with adaptive hyperparameters does not only outperform the
one obtained with poorly chosen hyperparameters (γ = 0.2
or γ = 5) but also—though to a much lesser extent—the
one obtained with reasonably chosen (γ = 1) but constant
hyperparameters. As already seen from the comparison of
computation time shown in Fig. 12 for the 2D truss system,
it is reasonable to expect that the solver with adaptive hyper-
parameters (using the divide-and-conquer strategy) is more
efficient than that with constant hyperparameters. However,
the strategy of updating hyperparameters continuously with
k-nearest-neighbor search and linear regressions should be
avoided in general due to its excessive computational cost.

6 Conclusion

This work revisits the distance-minimizingmethod proposed
by Kirchdoerfer and Ortiz [14] for data-driven boundary
value problems in elasticity. Relying on the notion of the
phase space of strain–stress states and its associated metric,
the distance-minimizing method is formulated as a fixed-
point iteration scheme. The distance-minimizing method
was introduced in its original form with constant hyperpa-
rameters influencing the final data-driven solution. Herein,
we demonstrated that setting these hyperparameters equal
to the tangent of the hidden constitutive manifold can not
only reduce the computational cost substantially but also
improve the accuracy of the solution finally obtained. As
the tangent of the hidden constitutive manifold is a priori not
known inmost cases, we proposed a computational approach
in which the hyperparameters are updated after each iter-
ation in the fixed-point scheme. To ensure computational
efficiency, the hyperparameters are allowed to vary only
within a finite set constructed by combining linear regres-
sions and a divide-and-conquer strategy. In the process of

adapting hyperparameters based on estimating the constitu-
tive tangents of the hidden constitutive manifold, we have
subtly based our data-driven framework on a sort of de-facto
constitutive model, although one that is particularly robust
against noise in thematerial data.Using several examples,we
demonstrated the favorable numerical properties of this adap-
tive hyperparameter scheme, which can substantially reduce
computational cost and improve accuracy compared to clas-
sical approaches with fixed hyperparameters. While we have
presented above ample numerical evidence for our concept,
we have not yet succeeded in supporting it by a rigorous
mathematical proof for general cases. In Sect. 5.1.2 we pre-
sented such a proof for our ideas for a specific application
example. This proof relied on the concept of the spectral
radius. Unfortunately, we found in lengthy analyses that this
type of proof can most likely not be extended in a way that
captures also the most general case. Indeed, when working
on such an extension, we found that there exist degenerate
cases such as the one illustrated in Fig. 15 where the spec-
tral radius does not become minimal if the hyperparameters
are equal to the tangent of the hidden constitutive manifold
but rather for zero hyperparameters. Interestingly, all such
degenerate cases that we could construct also had the prop-
erty that their special structure implied that the data-driven
solution could be obtained in a single iteration step regardless
of the hyperparameters. Therefore, although in these cases
zero hyperparameters yielded the smallest spectral radius,
they did in the end not lead to a faster convergence or more
accurate solution than hyperparameters equal to the tangent
of the constitutive manifold. Hence, these (rare and very spe-
cial) cases are by no means in contradiction to the general
ideas we presented in this paper. However, they yet reveal
that developing a general mathematical proof for these ideas
may require mathematically more advanced concepts than
the one of the spectral radius. The identification and devel-
opment of such concepts may form an interesting avenue of
future research.
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