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Summary

• Genomic selection is increasingly considered vital to accelerate genetic improvement. How-

ever, it is unknown how accurate genomic selection prediction models remain when used

across environments and ages. This knowledge is critical for breeders to apply this strategy in

genetic improvement.

• Here, we evaluated the utility of genomic selection in a Pinus taeda population of c. 800

individuals clonally replicated and grown on four sites, and genotyped for 4825 single-

nucleotide polymorphism (SNP) markers. Prediction models were estimated for diameter and

height at multiple ages using genomic random regression best linear unbiased predictor (BLUP).

• Accuracies of prediction models ranged from 0.65 to 0.75 for diameter, and 0.63 to 0.74

for height. The selection efficiency per unit time was estimated as 53–112% higher using

genomic selection compared with phenotypic selection, assuming a reduction of 50% in the

breeding cycle. Accuracies remained high across environments as long as they were used

within the same breeding zone. However, models generated at early ages did not perform

well to predict phenotypes at age 6 yr.

• These results demonstrate the feasibility and remarkable gain that can be achieved by incor-

porating genomic selection in breeding programs, as long as models are used at the relevant

selection age and within the breeding zone in which they were estimated.

Introduction

The growing worldwide demand for food and fiber (FAO, 2002)
and increasing evidence of climate change (IPCC, 2007) creates a
pressing need for the development of more productive germ-
plasm that is adapted to existing and novel sources of biotic and
abiotic stress. Marker-assisted selection (MAS) has been proposed
as an approach to accelerate plant genetic improvement (Lande
& Thompson, 1990; Paterson et al., 1991), and is expected to be
particularly valuable for species with long generation times, for
characteristics that display low heritability and for selection of
traits expressed late in the life-cycle. Early identification of mark-
ers for MAS relied largely on quantitative trait loci (QTL) studies
derived from the analysis of a few segregating populations. How-
ever, weak linkage disequilibrium between markers and traits
across different genetic backgrounds and the narrow allelic range
captured in QTL studies limited their use to within-family selec-
tion strategies (Strauss et al., 1992; Dekkers, 2004; Grattapaglia

& Kirst, 2008). Many of the limitations of the QTL approach
are being overcome by association genetics. However, because
quantitative traits are often controlled by many loci of small
effect (Visscher, 2008; Buckler et al., 2009) large populations are
required to achieve sufficient statistical power to detect all rele-
vant marker-trait associations (Long & Langley, 1999) – a limita-
tion of many current association studies in non-model crops.
Populations designed to achieve high mapping resolution and
statistical power, while capturing broad allelic variation, have
been established in maize and Arabidopsis (Kover et al., 2009;
Tian et al., 2011). However, their development is impractical for
many crops, particularly those that require several years to reach
reproductive age.

Genomic selection (GS) has recently been proposed as an alter-
native to MAS in crop improvement (Bernardo & Yu, 2007;
Heffner et al., 2009), after becoming widely adopted in animal
breeding (Hayes et al., 2009; Daetwyler et al., 2010; Hayes &
Goddard, 2010). Genomic selection relies on phenotyping and

Research

� 2011 The Authors

New Phytologist � 2011 New Phytologist Trust

New Phytologist (2012) 193: 617–624 617
www.newphytologist.com



high-density genotyping of a sufficiently large and representative
sample of the target breeding population, so that the majority of
loci that regulate a quantitative trait are in linkage disequilibrium
with one or more molecular markers. Contrary to MAS, in GS
the effects of all available genetic markers are estimated simulta-
neously in a training population, and models are developed to
predict the genomic breeding value of progeny in future genera-
tions (Meuwissen et al., 2001). In plant species, simulations sug-
gest that GS provides superior efficiency relative to traditional
breeding and marker-assisted recurrent selection (Bernardo &
Yu, 2007; Heffner et al., 2009; Grattapaglia & Resende, 2010;
Iwata et al., 2011). Simulations also indicate that the accuracy of
prediction models depends primarily on the level of linkage dis-
equilibrium (LD) in the training population – higher LD
improves the likelihood of linkage between markers and a quanti-
tative trait locus. Larger training populations also provide more
accurate estimates of marker effects on phenotypes. Finally, the
heritability of the trait and the number of QTL regulating its
variation also affect model accuracies, because a simpler genetic
architecture (i.e. fewer loci that regulate larger fractions of the
phenotypic variance) is more easily captured relative to more
complex traits. While the importance of marker density, training
population size and trait genetic architecture is well established, it
is still largely unknown how accurate prediction models remain
across different environments. Also, for long-lived perennial
species, the suitability of applying one prediction model across
multiple ages is unclear. Previous QTL studies in agricultural and
forest tree species have suggested that age and genotype ·
environment interaction effects largely affect the genetic control
of complex traits (Paterson et al., 1991, 2003; Kaya et al., 1999).

Here we report the development of prediction models for
genomic selection in a breeding population of loblolly pine
(Pinus taeda), one of the most economically and ecologically
important tree species in North America. There are over 30
million acres of pine stands in the south-eastern USA (Wear
et al., 2007) – in these stands, loblolly pine is the dominant spe-
cies, providing over 60% of the timber produced in the USA.
However, breeding of pines is costly and time-consuming, and a
single breeding cycle can extend for over two decades (White &
Carson, 2004). Even genetic improvement programmes that use
advanced methods of breeding and propagation require over a
decade for completion of a breeding cycle, largely because of the
extended period necessary for reliable phenotyping and selection
to occur. Incorporation of early-selection based on GS prediction
models can virtually eliminate the long period of field-testing.
Genomic selection is also expected to be useful for genetic
improvement of loblolly pine and other conifers because
dramatic changes in wood chemical and physical properties occur
from the juvenile to mature phase, delaying selection of superior
genotypes. In this study we developed genomic prediction
models for growth traits measured at multiple sites, to evaluate
the impact of genotype by environment interactions on their
accuracy. Training populations were also measured over multiple
ages, and models were developed to assess their value in predict-
ing breeding values later in the lifecycle. We show that while a
high proportion of the heritable variation in diameter at breast

height (DBH) and total height (TH) can be predicted with mod-
erate to high accuracy, the use of models across different climate
zones and ages is limited.

Materials and Methods

Population, phenotypes and genotypes

This study was carried out in a structured population of loblolly
pine (P. taeda L.) derived by crossing 32 parents in a circular
mating design, resulting in 61 full-sib families with an average of
15 individuals per family (Baltunis et al., 2005, 2007). This
population of 926 individuals is referred hereafter as CCLONES
(Comparing Clonal Lines ON Experimental Sites). Parents of
CCLONES were sampled to represent Atlantic Coastal Plain,
Florida and Lower Gulf provenances of loblolly pine. The 926
individuals in CCLONES were clonally propagated, and eight
ramets (i.e. clones) of each individual were planted on each of
four sites in the southeastern USA: Palatka and Nassau (Florida,
USA), Cuthbert and the B.F. Grant Forest (Georgia, USA).
Owing to tree mortality, 790–840 individuals (out of the 926) are
represented in each site, and 711 are consistently represented in all
four sites. Tests were established using single-tree plots in eight
replicates (one ramet of each individual is represented in each repli-
cate) using a resolvable a incomplete block design (Williams et al.,
2002). In each test, four replicates were grown under high-
intensity culture and four were grown under standard-intensity
culture. The traits analysed in this study were DBH and HT. Total
height was measured when trees were 1, 2, 3, 4 and 6 yr old, and
DBH was measured when trees were 3, 4 and 6 yr old.

The CCLONES population was genotyped using the Illumina
Infinium assay (Illumina, San Diego, CA, USA) with 7216 sin-
gle-nucleotide polymorphisms (SNPs), each representing a
unique pine expressed sequences tag (EST) contig (Eckert et al.,
2010). A total of 4825 SNPs selected based on quality and reli-
ability of the genotyping calls, according to the BEADSTUDIO ver.
3.1.3.0 software (Illumina), were used in this study. Allele freq-
uency was not considered a criterion to discard SNPs. Genotypic
data is publicly available at http://loblolly.ucdavis.edu/bipod/ftp/
Genotype_Population_CCLONES.txt.

Variance component estimation and individual breeding
values prediction

Analyses were carried out using ASREML v.2 (Gilmour et al.,
2006) under the following mixed linear model:

y ¼ Xb þ Z1i þ Z2a þ Z3n þ Z4f þ Z5d1 þ Z6d2 þ e

y,measure of the trait being analysed; b, a vector of fixed effects
(i.e. culture type and replication within culture type); i, a vector
of random incomplete block effect within replication � N(0,
Ir2

iblk), which captures the common environmental block effect.
The estimated breeding values (EBVs) are obtained from a,
which is a vector of random additive effects of clones � N(0,
Ar2

a). The vector n of random nonadditive effects of clones
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� N(0, Ir2
n) includes epistasis and within-family dominance

effects. The specific combining ability, or among-families
dominance effects were captured in f, which is a vector of random
family effect � N(0, Ir2

f ). The vector d1 is a vector of random
additive by culture type interaction � N(0, DIAGr2

d1 ), d2 is a
vector of random family by culture type interaction � N(0,
DIAGr2

d2 ), and e is the random residual effect � IDD(0,
DIAGr2

e ). X and Z1–Z6 are incidence matrices and I, A and
DIAG are the identity, numerator relationship and block diago-
nal matrices, respectively. Predicted additive genetic values were
deregressed as previously described (Garrick et al., 2009) to
obtain the adjusted phenotypic values used in the genomic
prediction. Narrow-sense heritability was calculated by
h2 ¼ r2

a=ðr2
a þ r2

n þ r2
f þ r2

d 1 þ r2
d 2 þ r2

e Þ:

Estimation of the effects

Individual markers had their effects estimated adjusting all the
allelic effects simultaneously using the random regression best
linear unbiased predictor (RR-BLUP) (Meuwissen et al., 2001).
The linear mixed model used was:

y ¼ X bþ Zm þ e

y, vector of adjusted phenotypic values (deregressed additive
genetic values); b, vector of fixed effects; m, vector of random
marker effects; e, vector of random error effects. X and Z are the
incidence matrices for b and m, respectively. The structure of
means and variances of this model are described next, as previ-
ously defined (Resende et al., 2008):

m � N ð0; G Þ E ðyÞ ¼ X b

e � N ð0; R ¼ I r2
eÞ VarðyÞ ¼ V ¼ ZGZ0 þ R

G ¼ I r2
m

n, the number of marker loci.
Under these settings the genomic mixed models equation for

the prediction of m through the genomic BLUP (GBLUP) is
equivalent to:

X 0X X 0Z
Z 0X Z 0Z þ I r2

e
ðr2

a=gÞ

� �
b̂
m̂

� �
¼ X 0y

Z 0y

� �

where r2
a refers to the total genetic variance of the trait and r2

e is
the residual variance.

By RR-BLUP, an estimate of the effect of each marker is
obtained by the regression of the adjusted phenotypic records on
marker genotypes. The predicted genomic breeding value (GBV)
of the individual j is given by ĝj ¼

P
i Zijm̂i . The matrix Z was

built from the number of alleles observed in each SNP marker (0,
1 or 2) and was standardized to have mean of zero and variance
of 1, as previously described by Resende et al. (2010). Therefore,
the value Zij for the ith marker in the jth individual can have the
values:

Zij ¼ ð0�2pi Þffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðZi Þ
p if the individual is homozygous for the first

allele (mm);

Zij ¼ ð1�2pi Þffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðZi Þ
p if the individual is heterozygous (Mm);

Zij ¼ ð2�2pi Þffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðZi Þ
p if the individual is homozygous for the second

allele (MM) or;

Zij ¼ 0 if the individual is a missing data.
This prediction equation assumes a priori that all loci explain

an equal amount of the genetic variation, as previously described
by Meuwissen et al. (2001) and applied by others (Bernardo &
Yu, 2007; Muir, 2007). Without standardization the genetic vari-
ation of each locus is given by r2

a=g where g is related to the
number of markers used and is given by g ¼ 2

Pn
i

pið1� piÞ
(Resende et al., 2008; Gianola et al., 2009), where pi is the
frequency of one of the alleles of loci i. The total additive genetic
variance r2

a was estimated by restricted maximum likelihood
(REML).

Partitioning the data in training (estimation) and test
(validation) data sets

The estimated effects of the markers were validated using
a 10-fold cross validation approach using random subsampling
replication. Briefly, each population was divided in two subsets.
The first population was composed by the majority of the indi-
viduals and was used to estimate the marker effects. The second
population (the validation population) had their phenotypes pre-
dicted based on the marker effects estimated in the training set.
Random samples of N = (9 ⁄ 10) · NT individuals, were used as
training sets while the remaining random set of N = (1 ⁄ 10) ·
NT individuals were used as validation sets, where NT is the total

number of individuals in each population. This process was
repeated 10 times using a different set of individuals as the valida-
tion population each time. Therefore, each fold did not overlap
with the others, and at the end of the process all individuals had
their phenotypes predicted by genomic selection, as previously
described (Legarra et al., 2008; Usai et al., 2009; Verbyla et al.,
2010).

Predicted phenotype and accuracy of GS

During the validation step, each individual had its genomic esti-
mated breeding values (GEBV) predicted through GS by multi-
plying the incidence matrix Z for the marker by the vector of
estimated marker effects and summing the estimated general
mean according to the expression:

ŷj ¼ û þ
X

i

Zijm̂i

The accuracy of GS (rGS) to predict breeding values was calcu-
lated by the correlation of the vector with the GEBV of all the
individuals in the population with their EBV. The accuracy at
each validation group of the cross-validation was also calculated

New
Phytologist Research 619

� 2011 The Authors

New Phytologist � 2011 New Phytologist Trust

New Phytologist (2012) 193: 617–624

www.newphytologist.com



and the standard error of the accuracy was computed. These anal-
yses were performed across all sites, traits and ages. The selection
gain of genomic selection was compared with classical phenotypic
selection considering a reduced breeding cycle as a result of early
selection, as previously described by Grattapaglia & Resende
(2010). Therefore, the selection response was obtained as the
ratio between the selection accuracy and the time in years. For
GS it is SRGS ¼ rGS

CGS
and for traditional BLUP based selection

(TS) it is SRTS ¼ rTS

CTS
where (rGS) and (rTS) are the selection accu-

racies of GS and TS respectively, and (CTS) and (CGS) are the
breeding cycle length for TS and GS, respectively. The ratio of
these two selection responses gave the selection efficiency of GS
over TS computed using the expression RGS:TS ¼ rGSCTS

rTSCGS
.

Validation of the models across ages and sites and
estimation of type B genetic correlation

The GS models developed at each age were evaluated for their
accuracy in predicting breeding values across ages. For this analy-
sis, accuracy was calculated by the correlation of the GEBV
derived from data collected at early ages, with the EBV at age
6 yr. As the same plant is compared across ages, there is a perma-
nent dependency between a plant in two different ages. There-
fore, a 10-fold cross validation was performed the same way as
described previously. Next, GS models developed based on
measurements made at age 6 yr in each site were validated across
sites. For this validation, only 711 individuals that are consis-
tently represented in all four sites were used. The model was
estimated using the entire population of one site without
jackknife cross-validation. The type B genetic correlation across
sites and across ages was calculated as described previously
(Yamada, 1962). For that analysis, the initial linear mixed model
used to estimate the variance components and predict the indi-
vidual breeding values was fitted by adding a fixed site ⁄ age effect
and random interaction effects.

Results

Trait heritability

To assess the extent to which the phenotypic variation is geneti-
cally controlled and amenable to GS, we initially estimated the
narrow-sense heritability (h2) for HT and DBH. Heritabilities
ranged from 0.09 to 0.32 for both traits (Table 1; see the Sup-
porting Information, Table S1), consistent with previous reports
for this population (Baltunis et al., 2005, 2007).

High accuracy of genomic selection prediction models

The CCLONES population is clonally replicated on four sites in
the Southeastern USA, for which there is phenotypic data from
consecutive years (Palatka and Nassau in Florida, Cuthbert and
B.F. Grant in Georgia). Initially, prediction models for GS were
developed using phenotypic data measured in each site at year 6
– an age typically used to make early selections in pine breeding
– to assess if there was significant variation in the estimated

accuracies across sites. Accuracies at all four sites ranged from
0.65 to 0.75 for DBH and 0.63–0.74 for HT (Tables 1, S1).

Improved efficiency of genomic selection compared with
BLUP-based phenotypic selection

To evaluate the performance of GS relative to traditional breeding
methods, we estimated the accuracies of BLUP-based selection
(Resende et al., 2008) and used it as a benchmark for comparing
accuracies obtained by GS (Grattapaglia & Resende, 2010). The
increase in efficiency per unit of time in the selection response of
GS was 53–92% higher for DBH, and 58–112% higher for HT,
assuming a conservative reduction of 50% in the length of the
breeding cycle (Table 2). The accuracy of GS was comparable to
the accuracy of clone selection based on phenotypic BLUP pre-
dicted from clone trials at two sites (B.F. Grant and Cuthbert). At
the other two sites (Nassau and Palatka) the accuracies of genomic
selection were slightly lower. But the genetic gains per unit of time
were higher for genomic selection at all sites.

Validation of GS prediction models across ages

In loblolly pine, phenotypic selection occurs at age 5–7 yr, when
traits are considered sufficiently predictive of performance at

Table 2 Efficiency of genomic selection when compared with traditional
phenotypic selection in Pinus taeda

Trait Site h (BLUP) h (GS) Efficiency

Increase
relative to
phenotypic
selection (%)

DBH B.F. Grant 0.79 0.73 1.85 85
Cuthbert 0.75 0.72 1.92 92
Nassau 0.85 0.65 1.53 53
Palatka 0.81 0.68 1.68 68

HT B.F. Grant 0.74 0.74 2.00 100
Cuthbert 0.68 0.72 2.12 112
Nassau 0.80 0.64 1.60 60
Palatka 0.85 0.67 1.58 58

Accuracies (h) of traditional best linear unbiased predictor (BLUP) and
genomic selection (GS) were estimated (Grattapaglia & Resende, 2010),
and the efficiency calculated assuming a reduction in the length of the
breeding cycle by 50%. DBH, diameter at breast height; HT, total height.

Table 1 Pinus taeda diameter at breast height (DBH) and total height
(HT) heritability, accuracy of genomic selection (GS) and standard error,
based on data measured at age 6 yr in four sites

Trait Site Heritability Accuracy of GS Standard Error

DBH B.F. Grant 0.23 0.73 0.04
Cuthbert 0.22 0.72 0.05
Nassau 0.32 0.65 0.07
Palatka 0.21 0.68 0.04

HT B.F. Grant 0.17 0.74 0.03
Cuthbert 0.13 0.72 0.05
Nassau 0.26 0.64 0.06
Palatka 0.26 0.67 0.04

Data from all ages are described in the Supporting Information, Table S1.
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harvest. To evaluate if this delay is also necessary for development
of prediction models, we assessed the accuracy of models devel-
oped for HT based on data collected at ages 1–4 yr, but validated
with measurements from the same populations at age 6 yr.
Genetic correlations between measurements made at these ages
were also estimated. As expected, using the accuracy of models
developed based on data collected at age 6 yr as the benchmark,
we observed decreasing accuracies as measurements at younger
ages were used (Fig. 1). Models developed based on HT data
from year 1 were approximately only half as accurate in predict-
ing HT at age 6 yr. These accuracies were particularly low in
Cuthbert (0.16), reflecting the lowest genetic correlation between
HT measurements made in year 1 and 6 (0.63) in this site
(Fig. 1). By contrast, in Palatka the accuracy of models developed
based on HT data from year 1 were far more predictive of year 6
measurements, where the highest genetic correlation (0.87)
between the traits was observed (Fig. 1). Similar trends were
observed when prediction models developed based on DBH
measurements at ages 3 yr and 4 yr were validated at age
6 yr (Fig. S1).

GS prediction models have limited accuracy across sites

Next, we tested the suitability of using models estimated based
on data from each individual site, in predicting phenotypes across
different sites. Because CCLONES is clonally replicated along a
North–South transect, the extent by which prediction models
were accurate could be tested across highly distinct environmen-
tal conditions. As expected, the accuracies of models predicting
GEBV were higher for the same site and declined for different
sites (Table 3). The decrease in accuracy parallels the increase in
geographic distance between the site for which models were esti-
mated, and the site where they were validated. For example, for
models estimated in B.F. Grant (Northern Georgia), and vali-
dated in Palatka (Central Florida), the accuracies were only 0.22

and 0.33 for DBH and HT, respectively. Conversely, models
estimated from DBH and HT data collected in the most south-
ern site, Palatka, were relatively accurate in Nassau (0.60 and
0.66, respectively). As observed in the analysis of stability of
prediction models across ages, these results paralleled the genetic
correlation estimated between sites (Figs 2, S2). Palatka and
Nassau are located in regions with a similar climate, which likely

Fig. 1 Accuracy of total height (HT) prediction models estimated at ages
1–4 yr, and validated at age 6 yr for Pinus taeda, in B.F. Grant (blue line),
Cuthbert (red line), Nassau (green line) and Palatka (purple line). Dotted
lines represent the genetic correlation between HT measurements at ages
1–4 yr, and age 6 yr, in each site.

Table 3 Accuracy of genomic selection prediction models estimated and
validated across sites for Pinus taeda (a, diameter at breast height (DBH);
b, total height (HT))

Validation

Estimation B.F. Grant Cuthbert Nassau Palatka

(a)
B.F. Grant 0.73 0.50 0.52 0.22
Cuthbert 0.49 0.72 0.48 0.34
Nassau 0.51 0.50 0.65 0.60
Palatka 0.18 0.32 0.60 0.68

(b)
B.F. Grant 0.74 0.43 0.55 0.33
Cuthbert 0.41 0.72 0.38 0.24
Nassau 0.50 0.37 0.64 0.64
Palatka 0.29 0.23 0.66 0.67

(a)

(b)

Fig. 2 Accuracy of prediction models estimated in B.F. Grant (a) and
Palatka (b) and validated in the other sites, for Pinus taeda diameter at
breast height (DBH, grey line) and total height (HT, black line). Dotted
lines represent the genetic correlation between DBH and HT measure-
ments made in B.F. Grant (a) and Palatka (b), relative to the other sites.
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contributes to lower genotype · environment interactions, and
higher accuracy of models in predicting GEBV across sites.

Discussion

We developed prediction models for genomic selection of growth
properties in the conifer loblolly pine, and assessed their accuracy
over distinct environments and ages. Prediction models were esti-
mated based on a training population of c. 800 individuals
derived from 32 parents, crossed in a circular mating design.
Accuracies ranged from 0.63 (HT) to 0.75 (DBH), with a mean
of 0.68, largely in agreement with the expectation for a training
population with the genetic properties of CCLONES – that is,
effective population size (Ne) � 40, genotyped at a marker den-
sity of 3 SNP per cM (Grattapaglia & Resende, 2010). Under
these conditions, and for traits with low to moderate heritabilities
that are regulated by a large number (50+) of loci of small effect,
accuracies in the range of 0.55 and 0.80 would be expected.

Accuracy of genomic selection prediction models over time

For DBH and HT, measurements were obtained over multiple
years, allowing for the development of separate prediction models
for each year. For both traits, estimated accuracies were similar
across the years of measurement (Table S1). We also tested how
models developed at an early age perform in predicting pheno-
types later in the life-cycle – accelerating model estimation is ben-
eficial because the sooner models that accurately predict
phenotypes at rotation age can be developed, the faster genomic
selection can be adopted. However, models developed for DBH
and HT early in the rotation (age 1 yr and 2 yr) had limited
accuracy in predicting phenotypes at age 6 yr (Fig. 1). Thus,
phenotyping of the training population at mid-rotation or later,
as done in traditional tree breeding (White et al., 2007), seems
necessary for accurate prediction of growth performance. These
results likely reflect the significant physiological changes that
occur as conifers transition from the juvenile to mature stage,
which translate into noticeable differences in growth rates and
other properties. Maker-trait associations detected in QTL stud-
ies have been previously shown to be largely unstable over time
(Emebiri et al., 1998; Kaya et al., 1999; Lerceteau et al., 2001)
in tree species, supporting the conclusion that changes in the
genetic control of growth and development negatively affect early
model development.

Accuracy of prediction models within and between
breeding zones

Loblolly pine breeding populations are typically established to
support genetic improvement over broad geographic regions, or
‘breeding zones’. Therefore, from a tree improvement standpoint,
it is critical that prediction models be accurate across sites, at least
within a breeding zone. CCLONES is biologically replicated on
four sites spanning multiple breeding zones in a north-south
transect, from central Florida (Palatka site, latitude 29.65� N) to
northwest Georgia (B.F. Grant site, latitude 33.74� N). Palatka

(FL) and Nassau (FL) are in the same breeding zone (Florida),
while Cuthbert and B.F. Grant are in the Upper Coastal Plain
and Piedmont zones, respectively. As expected from the estimated
genetic correlation, the comparison of accuracies derived by esti-
mating models in one Florida site, and validated in the other,
indicates a small loss in predictability. The accuracy of prediction
models for HT and DBH (age 6 yr) were 0.64–0.68 in Palatka
and Nassau, decreasing marginally (£ 0.08) when validated in
the reciprocal site (Table 3). However, much lower accuracies
(0.18–0.32) were observed when models estimated in the most
southern Florida population (Palatka) were validated based on
data from sites in the Upper Coastal Plain (Cuthbert) and Pied-
mont (B.F. Grant), suggesting that environment · genotype
interactions severely affect the transferability of models across
breeding zones. Therefore, we anticipate that prediction models
will be primarily applicable within breeding zones, and new
training population will have to be established if genomic selec-
tion is to be applied to different zones. Nonetheless, the robust
relationship between genetic correlations and the stability of pre-
diction models across sites provides a valuable indication to
breeders as to when these models may be widely applicable.

Implementing genomic selection in conifer breeding
programs

In conifers, the time-frame between the beginning of a breeding
cycle and the production of improved seeds for commercial plan-
tations can span multiple decades, divided essentially into three
phases: (1) breeding, (2) testing and (3) propagation. For loblolly
pine, the long period (8+ yr) required for plants to become sexu-
ally mature can be drastically reduced by top-grafting, a strategy
used to stimulate male and female strobili production from seed-
lings as young as 1 yr. As a consequence, the breeding phase may
be completed in < 4 yr, between top grafting, pollination and
seed production for field testing in the second phase. Similarly,
the last phase of propagation can be reduced to one or a few years
by implementing advanced methods of clonal propagation, such
as somatic embryogenesis or rooted cuttings. Therefore, testing
has remained the most time-consuming phase in genetic
improvement of loblolly pine, lasting typically for 6–10 yr in
loblolly pine. Incorporating genomic selection could dramatically
reduce the time required for completion of a cycle of genetic
improvement by eliminating the testing phase, significantly accel-
erating the genetic gain relative to traditional breeding. One can
envision a scenario where every c. 4 yr selected individuals are
top-grafted, crossed and seeds are produced (Fig. 3). Seedlings
are then genotyped and selected for top-grafting, initiating the
next breeding cycle. In this scenario, rapid pyramiding of favor-
able alleles can be pursued by establishing crosses that create the
best allelic complement across quantitative trait loci throughout
the genome. In parallel, selected seedlings can be clonally repli-
cated and established in clonal trials to verify their performance
relative to elite material. Because breakdown of the accuracy of
GS is known to occur across generations, the application of this
methodology will require monitoring of the accuracy of predic-
tion models and their recalibration, as necessary.
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An alternative and even more aggressive use of GS in loblolly
pine breeding would be to apply it in combination with somatic
embryogenesis (SE), to deploy clonally propagated elite geno-
types in a similar way as cattle breeders are now advancing the
use of GS in combination with reproductive technologies
(Humblot et al., 2010). In this scenario, elite parents with high
specific combining ability, determined by conventional quantita-
tive genetics methods or by GS-based prediction, can be crossed
and large quantities of seeds produced. As somatic embryogenesis
is initiated, genotyping can be carried out to eliminate zygotic
embryos predicted to perform poorly based on their GBV.
Furthermore, as cultures of zygotic embryos with highest GBV
are identified, more effort can be dedicated to optimize the
methods to culture somatic embryos of the best performers. A set
of predicted elite genotypes are immediately propagated and
established in clonal trials or even deployed commercially
depending on the acceptable level of risk. Combining GS with
SE offers several advantages compared with the current imple-
mentation of clonal propagation in loblolly pine, notably: a
significant reduction in the cost associated with maturing SE cell
lines and establishing costly field trials; a remarkable increase in
the selection intensity applied to the initial seed population
derived from elite crosses, allowing a better capture of additive
and nonadditive effects; and the elimination of large-scale, long
clonal testing trials, if elite genotypes can be confidently selected
at the SE cell line stage, and immediately propagated at a
commercial scale.

Integration of genome-wide association data and genomic
selection in pine breeding

Identification of quantitative trait nucleotides in genome-wide
association studies will be a daunting task in conifers because of
technical challenges associated with the need to genotype exceed-
ingly large numbers of polymorphisms, and establishing suffi-
ciently large populations to identify genetic variants with small
effects. Despite these difficulties, progress has been made in the
last decade, and a few loci significantly associated with traits have
been discovered, although invariably controlling small propor-
tions of the total phenotypic variation (Gonzalez-Martinez et al.,
2007, 2008; Eckert et al., 2010). It can be anticipated that over
the next decade the genetic basis of complex trait variation will be

gradually uncovered in loblolly pine and other conifers, explain-
ing an increasingly greater portion of the phenotypic variance.
How can the existing and future association genetic studies in
loblolly pine and other conifers be integrated with breeding
programs relying on genomic selection? We anticipate that, as
causative quantitative trait polymorphisms are discovered, and
their effects on phenotypes are adequately assessed in the relevant
environments and ages, they will be incorporated into GS train-
ing models, further improving their accuracies. Ultimately, one
can anticipate that models will be solely based on causative poly-
morphisms. However, until a detailed description of the genetic
architecture of the most economically important traits becomes
available, strategies such as genomic selection are likely to remain
valuable for integrating molecular markers into breeding and
selection in traditional conifer genetic improvement programs.
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Fig. S1 Accuracy of diameter at breast height (DBH) prediction
models estimated at ages 3 yr and 4 yr, and validated at age 6 yr,
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Fig. S2 Accuracy of prediction models estimated in Cuthbert
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