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Accelerating the experimental 
responses on cell behaviors: 
a long‑term prediction of cell 
trajectories using Social Generative 
Adversarial network
Maria colomba comes1,2*, J. Filippi1,2, A. Mencattini1,2, F. Corsi3, P. Casti1,2, A. De Ninno4, 
D. Di Giuseppe1,2, M. D’Orazio1,2, L. Ghibelli3, F. Mattei5, G. Schiavoni5, L. Businaro4, 
C. Di Natale1 & E. Martinelli1,2

the incremented uptake provided by time‑lapse microscopy in organ‑on‑a‑chip (ooc) devices 

allowed increased attention to the dynamics of the co-cultured systems. However, the amount of 
information stored in long‑time experiments may constitute a serious bottleneck of the experimental 

pipeline. Forward long-term prediction of cell trajectories may reduce the spatial–temporal burden 
of video sequences storage. Cell trajectory prediction becomes crucial especially to increase the 
trustworthiness in software tools designed to conduct a massive analysis of cell behavior under 

chemical stimuli. To address this task, we transpose here the exploitation of the presence of “social 
forces” from the human to the cellular level for motion prediction at microscale by adapting the 

potential of Social Generative Adversarial Network predictors to cell motility. To demonstrate the 
effectiveness of the approach, we consider here two case studies: one related to PC-3 prostate cancer 
cells cultured in 2D Petri dishes under control and treated conditions and one related to an OoC 
experiment of tumor-immune interaction in fibrosarcoma cells. The goodness of the proposed strategy 
has been verified by successfully comparing the distributions of common descriptors (kinematic 
descriptors and mean interaction time for the two scenarios respectively) from the trajectories 

obtained by video analysis and the predicted counterparts.

�anks to the incremented uptake provided by time-lapse microscopy (TLM) and the use of micro�uidic devices 
to mimic closely the in vivo cellular microenvironments (called Organ-on-a-Chip, OoC), long-term live cell 
imaging and high-throughput quanti�cation of response dynamics have been recently considered with increased 
 attention1,2. In particular, the detection of cell motility, migration patterns, and interactions in multicellular 
ecosystems have proved to be crucial in OoCs for the modeling and understanding of very complex diseases 
such as cancer and its related processes of metastasis or mechanisms of cross-talk with the immune  system3–5.

On the other hand, the huge amount of information stored in long-term time-lapse experiments, involving 
many cells and events, may constitute one of the most serious bottlenecks of the pipeline. In addition, unwanted 
e�ects related to phototoxicity or photobleaching phenomena may also produce misleading consequences and 
alter the whole comprehension of the  experiment6. Hence, to increase the trustworthiness in these alternative 
methods, it is crucial to demonstrate the possibility of performing massive and reliable analysis on large set of 
living cells interacting and migrating in the reconstituted environment.
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In particular, in a multi-cell type environment, most important information relies on the cell movement that 
acts as a sort of “alarm bell” of underlying biological processes. Understanding the mechanisms of cell move-
ment plays a key role for preventative therapeutic agents to many diseases that cause abnormalities in motility 
 behaviors7,8. Indeed,  morphogenesis9, tissue  repair10, immune  response11 but also cancer growth and  metastasis3,4 
involve motility behaviours re�ecting the main cell functionalities. Typically, cell motility experiments use time-
lapse microscopy imaging techniques that allow to acquire high-frame rate video sequences and reconstitute the 
position of many cells simultaneously in a label free  modality12. To date, the image-based system approach has 
steadily provided great contribution to decipher cellular motion pattern thanks to accurate single-cell segmen-
tation and tracking  tools2,13. If on one hand, standard quanti�cation of cell motility relies upon the extraction 
of handcra�ed kinematic  descriptors14,15, on the other hand, deep learning methodologies have recently been 
developed to discover the “motility style” by learning features directly from cell  trajectories2,16. Such informa-
tion may represent a serious drawback due to memory and time required. �erefore, forward prediction of cell 
trajectories along time becomes a challenging aspect for the reduction of spatial–temporal burden of video 
sequences storage and analysis.

To the aim, we extended here a neural network approach based on Social Generative Adversarial Network 
(SGAN) previously described in Gupta et al.17. �e key idea was to transpose the exploitation of the presence of 
“social forces” from the human to the cellular level for motion prediction at microscale. Actually, cells (as well 
pedestrians in a realistic scene) can be summarized as interactive agents/objects in motion, animated by chemical 
(social) forces that make their behavior interpersonal and socially acceptable. Agents can contribute each other 
to a�ect their own motion behavior and, as consequence, to move accordingly to avoid collision.

Some approaches have already been tackled in literature to model collective cell behaviour through the 
use of equations (i.e. diverse versions of Langevin equations)18,19 especially stressing that groups of cells may 
coordinate their motion not as a mere sum of many individually moving cells. Proof of such concept are the 
presence of diverse cell-roles (leader/follower) in collective  migration20 or the emergent chemotaxis when cells 
crawling  together19.

However, only recently the possibility of predicting cell motility using deep learning has been discussed by 
Kimmel et al.16 and Nishimoto et al.21 . We can distinguish two categories of systems: image-based21 and track-
based16 methods among which our approach falls. In the work of Nishimoto et al.21 a Convolutional Neural 
Network (CNN) predicted cell movement by studying the cell shape change from images. In Kimmel et al.16 
the authors drew up a Recurrent Neural Network (RNN) to predict a certain time steps of cell trajectories in 
the future including a comparison with a well-known linear baseline method which requires cells to move 
according to a ballistic  motion22. �e baseline model arose on a priori imposed model of motion, while the 
RNN architecture accepted cell trajectories of �xed length as input. Moreover, from a biological point of view, 
drawing cell trajectories as separate and unrelated entities may yield a simplistic model of reality neglecting how 
each individual cell correlates its own movement with that of its neighbours by means of a shaped social signal-
ling  network23. To account for the collective behaviour, in Gupta et al.17, the authors introduced a prediction 
approach named Social Generative Adversarial Network (SGAN) that was oriented to the short-term predic-
tion of human motion attitude. A social-force collective movement rationale inspired our present work in cell 
motility and migration studies. Unlike Gupta et al.17, we endeavoured predictions of long periods with respect 
to the time-constant involved, by upgrading SGAN using an iterative structure accepting in input ground-truth 
as well previously predicted cell positions.

Based on the previously mentioned approach, the main scope of this work is to apply the SGAN architecture to 
predict cell trajectories. A quantitative evaluation of the prediction was executed by computing the average mean 
squared error (MSE) between the predicted and the corresponding trajectories tracked on real images. Beyond 
such evaluation, the goodness of the predicted trajectories was assessed through the comparison of the distribu-
tion of the statistical descriptors (or interaction parameters) extracted in the predicted and in the correspond-
ing trajectories tracked on real images. �e aim was to demonstrate that there was not any statistical di�erence 
between the distribution of values and hence that the cell trajectory prediction was e�ective in providing tracks 
reliable for the extraction of cell behavior characteristics. Di�erently from a standard classi�cation procedure, 
training and testing partition of trajectories were only extracted for the task of SGAN learning procedure as it 
will be described in the following paragraphs. �e obtained result allows not only to prove the practicability of 
the approach in cell motility studies but also suggests a novel indirect assessment procedure that looks at the 
usefulness of the extracted trajectories.

To demonstrate the feasibility of the proposed approach, we have �rstly evaluated the results obtained with 
simulated videos where the theoretical trajectories were known. A�er this preliminary analysis, we considered 
two distinct biological scenarios in conventional and micro�uidic-based cell culture methods. In the �rst experi-
ment, the SGAN approach transposed the in�uential “social role” of the clusters of prostate cancer cells on each 
single cell motion prediction, transferring the ability of the group to “include” or to “exclude” every single cell 
accordingly.

As a second scenario, we moved from cell motility to cell migration of immune cells toward a tumor cell. 
Cell migration can be seen as the response to a cell attractant or repellent, acting as the cause of cell motility 
 variation19. �e “social role” of many immune cells co-targeting towards the same tumor cells, in a sort of com-
petition/completion activity, was here modelled by the SGAN architecture with the aim to predict the trajectories 
of the immune cells during the task.

Finally, our e�ort was oriented to accelerate the uptake of the experiments moving from OoCs to Organ 
in-Silico (OiS) experiments saving information about the biological content inside the OoCs experiments. �e 
OiSs the improvement relies principally on the possibility to conduct massive analysis in parallel, therefore, 
accelerating the responses on cell behaviour (hence the time-to market) and providing an output ahead of the 
actual experiment time. Moreover, the invasive e�ects of phototoxicity and/or photobleaching phenomena may 
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be drastically reduced towards a safer experiment and an even more “in-vivo-like” scenario, with the possibility 
to acquire with the longer time interval. �anks to the “social-based-reasoning” of the SGAN architecture, we 
were able to model the complexity of a multi-population environment and foresee the possibility to investigate 
even more realistic scenarios towards a deep understanding of human biology.

Results
Proposed approach and the experimental set-up. In this section, we provide a sketch of the proposed 
approach (see Fig. 1) and a summary of the experiments (see Fig. 2) run for method validation and performance 
assessment.

�e cells were cultured in a Petri dish or in an Organ on a chip device and time-lapse microscopy was used to 
acquire a video sequence of cell microenvironment (Fig. 1a). Cells were then automatically located and tracked 
through Cell-Hunter  so�ware13,15,24 producing a set of trajectories from the initial cell positions (Fig. 1b). �e 
trajectories were next processed by dividing them in two parts: starting and ending slices, both counting some 
positions over time. �e starting slices were taken in input by SGAN which iteratively predicted the socially 
acceptable future positions composing the ending slices, thus foreseeing the cell behavior (Fig. 1c). Finally, the 
ending paths of trajectories (real, i.e. detected by Cell-Hunter, and predicted by the network) were characterized 
in terms of kinematic descriptors or cell–cell interaction parameters (according to the experiment under study) 
for drug e�cacy or tumor cell attractiveness investigations (Fig. 1d).

More in depth, we demonstrated the e�ectiveness of the proposed method by devising four diverse experi-
ments, two phantom, i.e., simulated, and two real experiments. Each of them included a certain number of 
videos. Each video can be viewed as a “social” scene where cells of a unique population or belonging to diverse 
populations come in contact through interaction forces (“social forces”).

An overview of the whole experimental set-up is shown in Fig. 2. �e number of analyzed videos are also 
speci�ed. �e two sets of phantom videos take into account one cell population, i.e., immune cells in a collective 
migration, and two cell populations, i.e., immune cells moving towards and then interacting with a target cancer 
cell, respectively (Fig. 2a). �ey were arti�cially generated by implementing stochastic migration-interaction 
particle  models13. �eoretical immune trajectories obtained from the models were considered as ground truth 
trajectories.

On the real experiment side, a �rst experiment refers to one population of cells, PC-3 prostate cancer cells 
cultured in 2D �at Petri dishes and spontaneously disposed in clusters with di�erent doses of the chemothera-
peutic drug etoposide. Speci�cally, untreated (no-drug case in Fig. 2b) and treated (drug case in Fig. 2b) cells 
were considered. �e “social” scenes (videos) of such experiments are represented by clusters (see block to the 
le� in Fig. 2b). As a second real experiment, we investigated the tumor-immune interaction process described in 
Vacchelli et al.25 by analyzing microscopy images in a microdevice (OoC) of cocultured spleen cells and apoptotic 
�brosarcoma cells (MCA205) treated with anthracyclines. �e e�cacy of immune recruitment and anticancer 
response was evaluated in two distinct conditions: the control/negative case where the tumor cell ligand was not 
present leading to a defective crosstalk and the positive case (wild-type �brosarcoma) with the ligand involved 

Figure 1.  A schematic representation of the proposed method. (a) Time-lapse microscopy is used to acquire 
the video sequence of cells moving in a Petri dish or in an OOC platform. (b) Cells are localized and tracked 
through the video sequence. (c) By giving in input a certain number of cell positions for each cell, SGAN 
predicts future positions for that cell (predicted trajectory) taking into account interactions with neighbouring 
cells. (d) Drug/attractiveness of multiple experimental scenarios are evaluated by extracting features from 
predicted trajectories.
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in antitumor e�ective response. For this experiment, the “social” scenes (videos) consisted in Regions of Interest 
(ROIs) centered in tumor cells (see block to the right in Fig. 2b).

Cell-Hunter so�ware was applied on all the videos of both real experiments and the resulting trajectories 
of prostate cancer cells and of immune cells were assumed as the ground truth trajectories, respectively (see 
“Automatic tracking”). For an extensive description of all the experiments, please refer to “Methods” section.

As represented in Fig. 2, the “social” scenes (videos) belonging to each of the four experiments and their 
related trajectories were divided in training and test sets, respectively. Trajectories of both training and test sets 
were split in two temporal parts in accordance with the duration of the video constituting the experiment under 
study. We de�ne such parts as starting and ending paths of the trajectories, respectively. In correspondence of 
each experiment, a SGAN was trained: for each “social” scene in the relative training set, the network took in 

Figure 2.  Summary of simulated and real settings. (a) Phantom videos. (b) Real videos. (a,b) �e division of 
training and test sets, the percentages of predicted tracks, the extracted features and the performed t-tests are 
indicated.
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input the starting cell paths involved in the “social” scene and learned to predict their immediate socially accept-
able future positions (see “Social predictive architecture”).

In the test phase, the trained SGANs were used to obtain a long-term prediction according to an iterative 
procedure (see “Iterative test”). �e total percentage of prediction in each experiment is expressed in Fig. 2. In 
this way, the ending paths of cell trajectories were completely reconstructed by the networks. At this point, we 
distinguished two kinds of ending paths: the ground truth and the predicted ones. From each of them, kinematic 
or interaction descriptors were extracted, according to the experiment under study (see blocks with feature 
extracted in Fig. 2).

�e goodness of prediction was quanti�ed in two ways. �e impact over the motion characterization capabil-
ity was �rst measured using the Student’s t-test to compare the distributions of kinematic and interaction features 
extracted from ground-truth and the related predicted paths (�eoretical vs Predicted in Fig. 2a for phantom 
videos and Real vs Predicted in Fig. 2b for real videos). As second validation proof, in correspondence of the 
real experiments, we performed two massive comparative tests: a drug e�cacy test for the real experiment with 
PC-3 (Drug vs No-drug) and tumor cell attractiveness test (Negative vs Positive) for the real experiment with 
tumor-immune interaction. Both the real distributions of descriptors (in Fig. 2b No-drug vs Drug/Negative vs 
Positive for real distributions) and the predicted distributions of the same descriptors (in Fig. 2b No-drug vs 
Drug/ Negative vs Positive for predicted distributions) were compared by means of the Student’s t-test.

As a result from the two tests, the real distributions successfully discriminated the presence of the treatment 
and the attractive power of the tumor cells in the presence or not of their ligand, respectively. Such signi�cant 
di�erences were maintained when comparing the predicted distributions. �is fact permits to conclude that 
the potential of our approach consists of saving memory storage and reducing the time for the analysis without 
losing the biological information carried in the experiments.

Social approach performance on one population kind videos. Phantom videos. We �rst evalu-
ated the SGAN-based prediction performance on 100 phantom videos (“social” scenes) with one population 
kind. For each video of a duration of 80 min (240 frames), the GAN social approach iteratively forecasted the 
positions composing the tracks of the 16 immune cell trajectories related to the last 120 frames (i.e. the last half 
of the video corresponding to the last 40 min), by initially taking in input the positions of the parts of the same 
cell trajectories lying in the �rst 120 frames (i.e. the �rst half of the video corresponding to the �rst 40 min). We 
globally tested the predictive method over 1600 cell trajectories from 100 phantom videos (Fig. 2a).

Figure 3a shows two examples of prediction. In le� panels, the starting part of the trajectories (green) with 
the predicted track endings (red) and the relative theoretical (ground truth) track endings (blue) are shown. In 
right panels, the entire theoretical (ground truth) cell trajectories are visualized in yellow. Cells which described 
such trajectories are marked with a red dotted circle.

In support of a qualitative similarity between predicted and ground-truth cell trajectories exposed in Fig. 3a, 
we quanti�ed such similarity by comparing some kinematic descriptors extracted from ground truth and the 
relative predicted path endings (see “Statistical analysis”). In this way, we picked up descriptors over only parts 
of trajectories lying in the last half of all 100 phantom videos. For each extracted feature, the distributions 
obtained from ground truth and from predicted track slices of the overall 1600 cell trajectories were compared 
using the Student’s t-test. We called such distributions as �eoretical and Predicted, respectively. From boxplot 
comparison, in Fig. 3b, �eoretical and Predicted distributions exhibited similar means and dispersions. Indeed, 
a statistically signi�cant equality between each couple of distributions (�eoretical vs Predicted) for the chosen 
parameters clearly appeared: p value = 0.7553 for the max distance travelled and p value = 0.9191 for the mean 
straight speed were obtained. In other words, the prediction globally conveyed a good estimation of parameters.

Real videos. Videos (“social” scenes) showing clusters of prostate cancer cells under the e�ect or not of chemo-
therapeutic drug (No-drug vs Drug) were analyzed. Each video had a duration of 6 h (360 frames) and the social 
approach iteratively predicted the cancer cell track slices lying in the last 180 frames of the all videos (i.e. the last 
half of the videos corresponding to 3 h), by initially taking in input the positions that formed the parts of the 
same cell trajectories belonging to the �rst 180 frames (i.e. the �rst half of the videos corresponding to 3 h). A 
total of 498 cell trajectories were involved in the test phase: 215 cells for the no-drug case and 283 cells for the 
drug case (Fig. 2b).

Le� panels in Fig. 4a highlight examples of prediction by reporting ground truth (blue) as well as predicted 
path endings (red), whereas right panels show the total ground-truth trajectory, i.e. trajectory detected by means 
of Cell Hunter tool.

Following the analysis procedure, we collected some kinematic descriptors from ground truth and predicted 
track slices belonging to the last half of the videos, lining up real and predicted distributions. Beyond the mean 
straight-line speed and the max distance travelled, the persistence and the mean angular speed were extracted (see 
“Methods”). Here, in fact, we concerned not only to quantify the robustness of prediction in terms of total direc-
tion and speed but we needed parameters which measured the overall impact of drug on cell  motility15. Panels 
of Fig. 4b depict boxplots in comparison between real and predicted distributions for each of the parameters in 
the control case (No-drug). Boxplots were almost totally overlapped with p values for the Student’s t-test higher 
than the cut-o� 0.05: p value = 0.5267 for max distance travelled, p value = 0.7356 for the main straight speed, p 
value = 0.4845 for the mean angular speed and p value = 0.3540 for the persistence.

Moreover, we implemented a drug e�cacy test by comparing the e�ect of the presence of a chemotherapeutic 
agent vs the control case (drug vs No-Drug) on cancer cell motility either for real trajectories or predicted coun-
terparts. For each of the descriptors mentioned before, we considered comparisons of couple of distributions: 
No-drug vs Drug for real distributions (Fig. 5a) and No-drug vs Drug for predicted distributions (Fig. 5b). We 
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wanted to observe if trends of distributions for the four parameters and their discriminatory power regarding 
the presence of drug were preserved going from real to predicted distributions. In accordance with a previous 
 study15, the descriptors computed for real distributions signi�cantly discriminated the presence of the treat-
ment (p value = 2.17 × 10–10 for the max distance travelled, p value = 1.40 × 10–8 for the mean straight speed, p 
value = 1.30 × 10–5 for the persistence and p value = 3.00 × 10–6 for the mean angular speed were derived from 
the Students’ t-test). Drug administration globally inhibited cell motility, forcing cells to describe trajectories 
of a more con�ned motion. As consequence, cell paths became more returning with smaller displacement and 
speed. Indeed, the treated case recognized lower values of max distance travelled (upper-le� panel in Fig. 5a), of 
mean straight-line speed (lower-le� panel in Fig. 5a) and of persistence (upper-right panel in Fig. 5a) and higher 
values of mean angular speed (lower-right panel in Fig. 5a) respect to the not treated case.

As highlighted in Fig. 5b, the drug e�cacy test for the predicted distributions strongly con�rmed results 
achieved for the real ones (p value = 2.65 × 10–4 for the max distance travelled, p value = 3.25 × 10–5 for the mean 
straight speed, p value = 1.57 × 10–4 for the persistence and p value = 2.28 × 10–4 for the mean angular speed).

Social approach performance on interacting tumor‑immune cells videos in organ‑on‑chip ex‑
periments. Phantom videos. We tested the prediction capability of the social methodology on 100 phan-
tom videos (“social” scenes) with tumor-immune interaction for a total of 1600 immune cells. As in the case of 
phantom videos with one population kind, we predicted trajectories of immune cell trajectories. Here the aim 
was to compute the mean interaction time in order to quantify the tumor-immune interaction (see “Statistical 
analysis”). �e theoretical trajectories of tumor cells were involved in the computation of the mean interaction 
time for �xing the position of the tumor cell around which to de�ne the interaction radius (see “Statistical analy-
sis”). About prediction, the SGAN network initially received in input some positions of immune cells lying in a 
de�ned percentage of the videos and iteratively predicted the future positions up the end of the videos.

Le� panels of Fig. 6a depict two examples of predicted cell path endings lying in the last half (50%) of the 
videos (in blue) compared with the relative theoretical (ground truth) path endings (in red). In right panels, we 
can visualize in yellow the entire theoretical (ground truth) cell trajectories.

Figure 3.  �e social predictive approach e�ectively predicts cell trajectories of phantom videos with one 
population kind. (a) Le� panels represent examples of predicted track endings (red) with the relative ground 
truth track endings (blue) and the ground truth track start (green). Right panels show the entire theoretical 
(ground truth) tracks (yellow) in phantom videos. Red dotted circles denote the cells superimposed on the 
tracks in yellow. (b) Boxplots of the max distance travelled (le�) and the mean straight-line speed (right) 
for theoretical and predicted track endings. �e p values obtained by means of the Student’s t-test are: p 
value = 0.7553 for the max distance travelled, and p value = 0.9191 for the mean straight speed.
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Since the use of phantom videos allowed a performance evaluation under ideal conditions, we made diverse 
length-based predictions in order to �nd a trade-o� between the duration of prediction and the goodness of 
the estimation for the mean interaction time: we started from predicting cell path endings of the 1600 immune 
cells belonging to the last 40%, a�er to the last 50% up to the last 60% of the total video duration. As highlighted 
in Fig. 6b, in all three cases we compared the mean interaction time boxplots extracted from ground truth cell 
trajectories (�eoretical in the legend) with that obtained from trajectories with predicted endings (Predicted in 
the legend). �e median of the predicted distributions decreased at increasing the prediction length. Figure 6c 
reveals how a similar trend characterized p values for the Student’s t-test, each one achieved from comparison 
between the theoretical and one of the three predicted distributions. p value became almost exactly the cut-o� 

Figure 4.  �e social predictive approach e�ectively predicts cell trajectories of real videos with one population 
kind. (a) Le� panels represent examples of predicted track endings (red) with the relative ground truth track 
endings (blue) and the ground truth track start (green). Right panels show the entire detected (ground truth) 
tracks by Cell Hunter (yellow). Red dotted circles denote the detected cells superimposed on the tracks in yellow. 
(b) Boxplots of the max distance travelled (upper-le�), the mean straight-line speed (upper-right), the mean 
angular speed (lower-le�) and the persistence (lower-right) for real and predicted track endings relative to 
the no-drug case. �e p values obtained by means of the Student’s t-test are: p value = 0.5267 for max distance 
travelled, p value = 0.7356 for the main straight speed, p value = 0.4845 for the mean angular speed, and p 
value = 0.3540 for the persistence.
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Figure 5.  Comparison between diverse experimental conditions (no-drug vs drug) for real videos with 
one population kind. (a) Drug e�cacy test for real distributions of motility descriptors. Boxplots of the max 
distance travelled (upper-le�), the mean straight-line speed (lower-le�), the persistence (upper-right) and the 
mean angular speed (lower-right) for the two experimental conditions. �e p values obtained by means of 
the Student’s t-test are: p value = 2.17 × 10–10 for the max distance travelled, p value = 1.40 × 10–8 for the mean 
straight speed, p value = 1.30 × 10–5 for the persistence and p value = 3.00 × 10–6 for the mean angular speed. (b) 
Drug e�cacy test for predicted distributions of motility descriptors. Boxplots of the max distance travelled 
(upper-le�), the mean straight-line speed (lower-le�), the persistence (upper-right), and the mean angular 
speed (lower-right) for the two experimental conditions. �e p values obtained by means of the Student’s t-test 
are: p value = 2.65 × 10–4 for the max distance travelled, p value = 3.25 × 10–5 for the mean straight speed, p 
value = 1.57 × 10–4 for the persistence, and p value = 2.28 × 10–4 for the mean angular speed.
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0.05 when prediction length corresponded to the last 50% of the total video duration, until reaching a value 
under the cut-o� for the prediction of bigger duration (p value = 1.21 × 10–6). In the latter case, even though both 
distributions represented the same scenario, the computed p value indicated a statistically signi�cant di�erence 
between them. So, we found the most reliable result in correspondence of predicting cell path ending in the last 
40% of the videos, i.e. 32 over 80 min.

Real videos. Tumor-immune interaction environment in two diverse experimental conditions, i.e. negative vs 
positive case, was exploited in order to test the social predictive strategy. �e term negative refers to control vid-
eos (“social” scenes) where the tumor cell ligand was absent. �e term positive indicates videos (“social” scenes) 
in which the tumor cell ligand was present, by leading to a more e�ective tumor-immune interaction and then to 
an increase of the mean interaction time values (see “Real experiments”). In compliance with outcomes reached 
for phantom videos, immune cell trajectory endings belonging to the last 40% of the total video duration were 
predicted, by taking in input positions of the same trajectories related to the �rst 60% of the total video. Since 
each video duration was of 240 frames, i.e. 480 min, the last 40% of the entire video corresponds to more than 3 h 
(192 min exactly). A total amount of 804 tracks were used for the test: 365 for the negative case and 495 for the 
positive case. Tumor cell trajectories were detected by Cell Hunter and involved in the computation of the mean 
interaction time only (see “Statistical analysis”).

In le� panels of Fig. 7a, two examples of predicted cell path endings lying in the last 40% of the videos (in 
blue) compared with the relative ground truth path endings (in red) are shown. In right panels, on the real 
experimental background, the entire cell trajectories identi�ed through Cell Hunter are drawn in yellow.

Analogously to phantom videos, we confronted the mean interaction distribution computed from tracks 
with predicted endings (Predicted distribution) with that from ground truth trajectories (Real distribution) in 

Figure 6.  �e social predictive approach e�ectively predicts immune cell trajectories of phantom videos 
with two interacting populations. (a) Le� panels represent examples of predicted track endings (red) with the 
relative ground truth track endings (blue) and the ground truth track start (green). Right panels show the entire 
theoretical (ground truth) tracks (yellow). Red dotted circles denote the cells superimposed on the tracks in 
yellow. (b) Boxplots of the real and predicted mean interaction time at increasing predicted video duration, 40%, 
50% and 60%. (c) Trend of the p values for the Student’s t-test at increasing predicted video duration, 40%, 50% 
and 60%.
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terms of p value for the Student t-test. Figure 7b reports boxplots of real and predicted mean interaction time in 
the negative (le� panel) as well as positive case (right panel). In both cases, the mean interaction time did not 
discriminate the predicted distribution from the real one.

To exhaustively conclude the analysis, we investigated the discriminatory ability of mean interaction time 
between the negative and the positive case and if �ndings drawn for Negative vs Positive real distributions could 
be translated to the predicted counterparts. As expected from a biological point of view, the le� panel of Fig. 7c 
points out that the absence of the tumor ligand (negative case) led to signi�cative lower mean interaction time 

Figure 7.  �e social predictive approach e�ectively predicts immune cell trajectories of real videos with 
two interacting populations. (a) Le� panels represent examples of predicted track endings (red) with the 
relative ground truth track endings (blue) and the ground truth track start (green). Right panels show the 
entire detected (ground truth) tracks by Cell Hunter (yellow). Red dotted circles denote the detected cells 
superimposed on the tracks in yellow. (b) Boxplots of the real and predicted mean interaction time in the 
negative case (le�) and in the positive case (right). �e p values obtained by means of the Student’s t-test are: p 
value = 0.4616 for the mean interaction time in the negative case and p value = 0.3381 for the mean interaction 
time in the positive case. (c) Comparison between real mean interaction time distributions for negative and 
positive cases (le�). Comparison between predicted mean interaction time distributions of negative and positive 
cases (right). �e p values obtained by means of the Student’s t-test are: p value = 1.43 × 10–4 for the mean 
interaction time in the real case and p value = 0.0087 for the mean interaction time in the predicted case.
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values as against values of the interacting descriptor in the positive case, where the presence of the tumor ligand 
promotes the immune response (p value = 1.43 × 10–4). For the predicted counterpart, as highlighted in the right 
panels of Fig. 7c, trends of distributions and the discriminatory capacity of the mean interaction time were still 
valid (p value = 0.0087).

Comparison with competing motility prediction methods. Here we present a pipeline that uses a 
deep neural network to predict positions of a wide variety of cell types in a certain number of frames in movies. 
�e strength of the proposed method may be demonstrated by showing a straightforward comparison of perfor-
mance with the iterative versions of two competing predictive methods: the baseline linear kinematic prediction 
 model16,22, later Baseline model, as well as an alternative deep learning  method16, based on Recurrent Neural 
Networks (RNNs), later RNN prediction model (see “Competing motility prediction methods”).

Such two methods exhibit constraints of applicability in real occurrences that our model e�ectively overcame, 
ensuring its enforceability in disparate complex biological environments.

On the one hand, the assumption of ballistic motion for the Baseline model is not valid for all cell kinds. PC-3 
cancer cells represent an example of a cellular population which violate this assumption because their motility 
is heterogeneous and could evolve as a transition among di�erent motion  kinds26.

On the other hand, the �xed dimension of input cell tracks constitutes the principal drawback for the RNN 
prediction model. Such crucial issue has already been discussed in the state of  art12, where researchers have been 
guaranteed the possibility to analyze cell tracks of the same length through the introduction of ‘dummy points’, 
i.e. hand-made points to repeatedly add to tracks until a pre�xed length equivalent to the experiment duration. 
However, in some scenarios, it does not make physical sense to equalize track lengths, e.g. in the proposed two 
interacting population scenario where immune cells constantly appear and subsequently leave the �eld of view 
in diverse time frames along with the videos. As results, cell trajectories may exhibit widely di�ering lengths.

Under such considerations, to ensure a more equal comparison among the three methods, we only consid-
ered movies from real experiments with one population kind (PC-3 cell line) where the lengths of all cell tracks 
detected by Cell Hunter were not equal too, but the discrepancy among lengths of the involved trajectories was 
drastically lower than the case previously discussed. �us, for the RNN prediction model, we arti�cially inte-
grated cell trajectories with ‘dummy points’ by replicating the missing points, i.e. initial and/or last positions at 
the beginning and/or at the end of the tracks, respectively. �e other commonly used approach is zero-padding, 
but we preferred point repetition to avoid abrupt changes of cell position during video  sequences12. Anyway, 
as we demonstrate later, the presence of such points as complement of cell trajectories dramatically a�ects the 
achieved results.

Moreover, in order to compare results obtained by the three methodologies under the same conditions, we 
implemented iterative versions of the abovementioned competing models on the same rationale of our social 
predictive method (see “Iterative test” and Fig. 9b). We employed the Baseline model on all the tracks of PC-3 test 
set by computing the mean velocity on τ = 9 time steps previous the predicted position, in agreement with the 
optimization for τ by parameter  research16. For the RNN prediction model, we adopted the training parameters 
described in Kimmel et al.16 by considering the same train and test sets of our model.

Predictions of the same track end for the three comparative models are juxtaposed in Fig. 8a, where we can 
observe how our method qualitatively produced a more reliable prediction. �e qualitative result was con�rmed 
in quantitative terms by computing the average mean squared error (MSE) between the predicted and the rela-
tive ground truth track slices. Figure 8b summarizes the average MSEs in log scale for all the three models. �e 
naïve Baseline model reached an average MSE in pixel units of ≈ 1096 . Di�erently from Kimmel et al.16, the 
RNN prediction model performs worse than the Baseline model leading to a very higher MSE of ≈ 2.293 × 10

5 
pixel units. Two factors leveraged such result: undoubtedly the introduction of dummy points but also the loss 
of robustness of the method in receiving in input predicted positions. Anyway, our model outperforms both 
comparative methods providing a signi�cantly lower MSE of ≈ 138.6 (pixel units).

Figure 8.  Motility prediction performance on real videos with one population kind. (a) Example of a predicted 
track end (red) by the proposed model (le�), the Baseline model (center) and the RNN prediction model (right). 
�e ground truth (real) track end and start are also highlighted in blue and green, respectively. (b) Mean 
squared error plot in log scale between ground truth and predicted track endings relative to the proposed 
model, the Baseline model and the RNN prediction model.
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Discussion
�e suggested predictive approach does not only recapitulate state-of-art �ndings on cell motility prediction but 
also discovers new frontiers to long-term predictions with large feasibility of applicability. �e main potential 
of the approach is that no a priori model of motion is required and that cell trajectories of any length can be 
analyzed without any sizing limitations.

Motility prediction may increase the robustness and accuracy in tracking tasks considering the social plan-
ning of cells. Although sophisticated tracking algorithms have been increasingly designed to probe previously 
infeasible scenarios, tracking, by its nature represents a multi-object  problem27, and therefore continues to remain 
a challenging  issue28 especially in crowded environments where “social forces” among cells come into play.

As discussed in Kimmel et al.16 and Yamaguchi et al.29, motion prediction may positively impact the case of 
missed detections, e.g. when a cell or in general an agent can be not detected due to occlusion between multiple 

Figure 9.  (a) A general framework of the social predictive algorithm. �e SGAN architecture deploys the 
generator as an encoder-decoder, linked through a pooling module, and the discriminator as an encoder. 
Generator inputs the past trajectories of cells and outputs predicted trajectories exploiting the pooling module 
to involve social interactions among cells. �e discriminator inputs both real and generated trajectories and 
classi�es them as real or fake. �e generated trajectories are composed by the real input sequence (continuous 
line) and the future prediction (dotted line). Real trajectories are composed by the real input sequence and the 
future ground-truth positions. (b) An overview of the two initial steps for the social predictive algorithm. 
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targets. Additionally, social forces may in�uence more trustworthy trajectory prediction which in turn can take 
advantages for tracking performances. �us, having future information on what we observe may be essential 
for successful tracking.

We also underline that the major relevant aspect of our social method is the ability to predict many steps in 
the future reaching hours of motility prediction by taking in input not only real but also previously predicted 
cell positions. Such a method may be an essential building block of an envisioned potential in silico platform. 
�e synergic contribution of time-lapse microscopy, cell motility prediction and analysis made the platform 
usability and reliability to have fundamental consequences for the biomedical community such as that of reduc-
ing animal experimentation and optimizing pharmacological testing from aesthetic to therapeutic purposes 
towards personalized  medicine30.

Future tasks for long-term cell trajectory prediction are related to the possibility to combine prediction 
and acquisition in a unique pipeline. �is is crucial when observing highly dynamic phenomena in which cell 
kinematics modes change during the experiment thus requiring the alternation of prediction and acquisition 
to adapt to changes.

Forward motility prediction can be also framed in a loop scenario where the parameters of the tracking and 
prediction algorithms are tuned according to the feedback provided by ongoing experimental results. In this 
way, it is possible to foresee the possibility to perform very long-term experiments (in the order of several days) 
enlarging the plethora of biological phenomena that can be investigated.

�e e�ectiveness of the platform in terms of time consuming and �exibility can be also correlated to the 
availability of an online processing of the trajectories during cell prediction. �is possibility can foresee the 
scenario in which memory storage is minimized since video sequences and trajectories analyzed are ongoing 
eliminated a�er decision is taken.

�is facility opens new scenarios, not less relevant, related to the possibility to conduct massive analysis of 
collective cell trajectories with the main task to accelerate the uptake of OoC experiments and to increase the 
trustworthiness of so�ware tools for immediate biological experiments exploitation.

Methods
Social predictive architecture. Our predictive framework is based on a previous design of neural net-
work, the Social Generative Adversarial Network (SGAN), proposed in Gupta et  al.17. We retained the core 
structure of such network for which we give an overview in Fig. 9a. It consisted of a GAN based encoder-decoder 
architecture integrated of a pooling layer with the goal of jointly predicting the future trajectories of all agents 
(cells/humans) in a “social” scene.

A Generative Adversarial Network (GAN) is a generative model characterized by two neural  networks31, 
called generator and discriminator, competing in a min–max game. Essentially, the generator outputs samples 
taking noise as input while discriminator learns to distinguish between samples created from the generator (fake 
samples) and samples drawn from the input data (true samples).

From the primary GAN architecture, generator and discriminator has been widely re-modeled in literature 
to obtain versions of the network suitable to address the most disparate  classi�cation32 or  prediction33 prob-
lems. Among them we focused on prediction of human  positions17,34. Gupta et al.17 modelled generator as an 
RNN encoder-decoder and the discriminator as an RNN encoder. Generator’s encoder took as input the past 
trajectories of all agents individually so that learning the state of agents and encoding their history motion: a 
Multi-Layer Perceptron (MLP) embedded positions of each agent and then such embeddings became input of 
Long-Short-Term Memory (LSTM) networks as many as the number of agents in the scene. LSTMs e�ectively 
learned long-range dependencies without loss of short-time lag  capabilities35 within agent trajectories. To sight 
social reasons among agents, Gupta et al.17 introduced a pooling module by combining social information 
from all the agents and by preventing collisions in short and far distances. To our aim, we accepted far-away 
cell trajectory intersections contrary to immediate collisions, so we were interested in local information about 
the interaction. �us, we replaced this module in favor of the Social Pooling module proposed by Alahi et al.34, 
whereby LSTMs were connected each other and the hidden states of the neighbors within a certain distance were 
pooled. Given an agent, the identi�cation of neighbors addressed a grid centered at the agent position under 
consideration. �is model learned to relocate a trajectory to avert nearby agent-agent impact. Like the encoder, 
the decoder was composed by LSTMs, one for each agent. In this case, each LSTM predicted the future trajectory 
conditioned to the pooled information as well as the agent history motion (see Fig. 9a).

Finally, the last component of the network was a discriminator, modeled as a separate encoder. As shown in 
Fig. 9a, the discriminator received in input either real or generated trajectories and by the implementation of a 
MLP in the last hidden state, it classi�ed trajectories as real or fake. Generated trajectories refer to the sequences 
with input trajectories (continuous line) and the future prediction (dotted line), as highlighted in the legend of 
Fig. 9a. �e future prediction corresponds to the future ground-truth position in the real trajectories. For an 
in-depth discussion, please refer to Gupta et al. and Alahi et al.17,34.

Simulated experiments mimicking cell motility. We arti�cially mimicked two distinct and biologi-
cally relevant motion models involving one population kind and two interacting populations, respectively.

Two atlases of 110 videos each were taken into account: the �rst one with one population kind, meaning a 
collective migration of 16 immune cells per video, and the second one with two interacting populations, where 
16 immune cells per video migrated towards a tumor cell with a consequent tumor-immune interaction. �e 
�rst atlas is a �rst-time adoption. Conversely, the latter one constitutes a data-set already generated in our previ-
ous  work13. For 100 videos of each of the two cases, the migration was modelled with a random walk with dri�, 
constant in modulus, |µ| = 3

µm

min
 and physical interactions among cells of the same population were modelled as 
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repulsive potential forces. Moreover, for the 100 videos of the case of two interacting populations for which we 
imposed |µ| = 3

µm

min
, the tumor-immune interaction consisted of an attractive potential force acting on immune 

cells within an interaction radius in proximity of the tumor cell for a priori imposed time Teff = 8.3 min , called 
the e�ectiveness time. �e motion of the tumor cell was modelled as a pure random walk. Please refer to Comes 
et al.13 for mathematical equations. Geometrical constraints of the models were chosen by inspiring to real 
 experiments25, as expressed in Comes et al.13. Immune theoretical trajectories extracted from such two sets of 
movies formed two distinct test sets for the predictive validation of the social method. In detail, 1600 trajectories 
for the test set of the se of one population kind and 1600 trajectories for the test set of the case of the two inter-
acting populations were globally collected. Each one of the corresponding training sets of the two cases counted 
160 immune theoretical trajectories extracted from 10 videos obtained by varying the dri�, |µ| = 3.4

µm

min
 for 

those of one population kind and the dri� as well as the e�ectiveness time, Teff = 13.3 min for those with two 
interacting populations. Each video was 80 min long, i.e. it counts 240 frames (1 frame every 20 s). �eoretical 
tumor cell trajectories were involved in the computation of the mean interaction time (see “Statistical analysis”).

Real experiments. Two totally diverse setting were examined: experiments with one population kind and 
with two interacting populations, respectively.

One population kind refers to PC-3 prostate cancer cells cultured in 2D Petri dishes and spontaneously 
arranged in  clusters36. Two diverse experimental conditions involving not treated and treated cells with a chemo-
therapeutic drug (etoposide at concentration of 50 μM) were surveyed. We labelled the control scenario as no-
drug and the treated one as drug, respectively. For the test set, we collected a total number of 498 cell tracks over 
23 clusters (10 clusters counting 215 cells for no-drug and 13 clusters counting 283 cells for drug). �e training 
set was composed by 181 cell trajectories over 10 clusters (5 clusters counting 82 cells for no-drug and 5 cluster 
counting 99 cells for drug). Clusters, composed up to 40 cells, were extracted from independent experiments of a 
duration of 6 h. One cluster corresponds to one video. Frame acquisition was conducted every minute for a total 
of 360 frames. Cancer cell trajectories were detected by Cell Hunter tool (see “Automatic tracking”).

Two interacting populations refer to tumor-immune interaction described in Vacchelli et al.25, where anthra-
cycline-treated WT (wild-type) (positive case) or  Anxa1−/− MCA205 �brosarcoma cells (control/negative case) 
were co-cultured with WT splenocytes in micro�uidic devices. To evaluate the e�cacy of anti-tumor immune 
response, two experimental conditions were considered: the control/negative case as the experiment where the 
tumor cell ligand was not present  (Anxa1−/− MCA205 �brosarcoma cells) leading to a defective cross-talk, while 
the positive case as the experiment where the ligand was present (MCA205). For each experimental condition 
we considered 25 Regions of Interest (ROIs) centred in the tumor cells, of which 5 for training and 20 for testing. 
Such movies lasted 480 min, i.e. 240 frames, with acquisition of 1 frame every 2 min. Immune cell trajectories 
were detected by Cell Hunter tool (see “Automatic tracking”). We picked up 457 trajectories for the negative case 
(92 for training and 365 for test) and 588 trajectories for the positive case (149 for training and 439 for test), for 
a total amount of 1045 tracks. We were limited to analyze immune cell dynamics since tumor cells were roughly 
static. However, tumor cell trajectories were detected by Cell Hunter and used for the computation of the mean 
interaction time (see “Statistical analysis”).

Automatic tracking. We applied Cell Hunter tracking  so�ware13,24 for Single Particle Tracking (STP) in 
movies concerning real experiments. Cell Hunter tool implements the segmentation method of the Circular 
Hough Transform (CHT)37, which allows to contemporarily localize cell nuclei in a given frame, by hypoth-
esizing cells as circular-shaped objects. A�er frame-based localization, an upgraded version of the Munkres’ 
algorithm for non-square Optimal Assignment problem was used to sequentially link cell positions along the 
video frames, leading to the �nal layout of cell trajectories. Cell occlusion and overlapping problems were solved 
through the geometrical mechanism behind. Please refer to Comes et  al.13 for a detailed explanation of the 
method.

Iterative test. SGAN approach was previously applied by Gupta et al. to predict human trajectories up to 
4.2 s in the future by observing input trajectories for 3.2 s17. Aware of the power of this method, we innovatively 
transferred the argument to predict cell trajectories in multiple experimental scenarios. Moreover, di�erently 
from Gupta et  al.17, we tempted to predict long-term trajectories. In view of our purpose, we modi�ed the 
method proposed by Gupta et al.17 in an iterative methodology for the test phase. �e �rst two steps are high-
lighted in Fig. 9b.

Let be defined the input positional coordinates of the i  th cell as Xt
i =

(

xti , y
t
i

)

 from time steps 
t = Tstart , . . . ,Tobs , where Tstart and Tobs indicate the starting and the ending times of observation. At the �rst 

stage, the future predicted position for the i th cell was the next position assumed by the cell, Ŷ t
i =

(
x̂ti , ŷ

t
i

)
 , with 

t = Tobs + 1. In the second iterative stage, the previously predicted position was included within the input 
sequence so that the input time steps become t = Tstart + 1, . . . ,Tobs + 1 and the new future predicted position 
corresponded to the position at time step t = Tobs + 2. Basically, at each iterative stage, we predicted the cell 
location at the subsequent time step. �en we upgraded the input sequence for the new iterative stage by includ-
ing the obtained predicted position and by eliminating the �rst input position of the previous stage. �e number 
of inputs, N = Tobs − Tstart , remained unchanged at each iterative stage.

Our enquiry dealt very di�erent simulated and real experiments as videos of various duration by predicting 
cell trajectory slices belonging to their last part. For all the experiments the starting time of observation, Tstart , 
coincides with the �rst video frame. Conversely, the ending time of observation, Tobs , varies according to the 
experiment and represents the last time before the �rst prediction. For a major clari�cation, we give an example. 
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Let us consider real videos with one population kind, where cells were simultaneously disposed in clusters. �ese 
videos were composed by 360 frames and we predicted cell paths in the last half of videos (from frame 181 to 
360). �us, we imposed Tstart = 1 and Tobs = 180.

Implementation details. We trained a number of networks equals to the number of the diverse exper-
iments analyzed in this essay, i.e. two simulated (phantom) and two reals to predict the immediate socially 
acceptable future positions of cells on a “social” scene (video). All training procedures were performed by mini-
mizing the objective function of the min–max game between the generator and the  discriminator17 via Adam 
 optimizer38 with a batch size of 8 for 500 epochs. �e learning rate and the dimensions of the hidden state are 
the same of Gupta et al.17.

�e implementation of our social predictive approach was performed modifying the original codes made 
available from Gupta et al.17 on the following site: https ://githu b.com/agrim gupta 92/sgan, which included the 
implementation of the Social Pooling module of Alahi et al.34.

Statistical analysis. �e analysis aimed to evaluate the predictability of our method for diverse biological 
experiments through the computation of kinematic or interaction descriptors on phantom as well as real videos 
either with one cell population kind or two diverse cell interacting populations. Speci�cally, for videos with one 
population kind, we compared distributions of each parameter collected from the predicted track endings with 
those extracted from the relative ground-truth track endings. �e length of prediction varies experiment to 
experiment, as speci�ed in the section of “Results”. For phantom videos of the latter case, max distance travelled 
and mean straight-line speed were  calculated39 because they provided information about the global behavior of 

track slices in terms of distance and speed. Let be Ŷ t
i =

(
x̂ti , ŷ

t
i

)
 the predicted position and Y t

i =

(

xti , y
t
i

)

 the 

ground truth position of the ith cell at time t  ∈ 
[

tpstart , tpend
]

 where tpstart e tpend denote the starting and the �nal time 

of prediction, respectively. If Zt
i

=
̂
Y
t
i
 or Zt

i
= Y

t
i
 , the mean straight-line speed is de�ned as:

while the mathematical expression of max distance travelled is:

where with T
p
i  the time duration of the ith cell track from tpstart to tpend and d the Euclidean distance.

For real videos, we also extracted other two features from predicted as well as groundtruth track endings, 
i.e. persistence and mean angular speed, because they represented benchmarks for the evaluation of drug e�ect 
on motion  inhibition15. Such descriptors quantify the tortuosity of cell tracks. Persistence ranges in the interval 
[0–1], where 1 corresponds cells moving in a perfect straight line and 0 to a very tortuous, thus con�ned, cell 
movement. Mean angular speed, instead, is proportional to path curvature, which measures how the cell path 
deviates from �atness. �e mathematic expressions of such parameters may be found in Di Giuseppe et al.15.

Concerning the phantom videos as well as real videos showing tumor-immune interaction (two interacting 
populations), the predictive goodness was assessed by comparing the mean interaction time  distributions13 
obtained from ground truth trajectories with those computed from trajectories with predicted ending. Mean 
interaction counts the average of frames in which immune cells remains attracted to the tumor cell within an 
interaction radius,Rint , de�ned as the sum of the tumor and immune cell radii.

For each parameter, we quanti�ed the di�erence between a couple of empirical distribution samples using 
the Student’s t-test. We assumed that a p value lower than 0.05 indicated a statistically signi�cant di�erence 
between the two distributions.

Competing motility prediction methods. 

• Baseline model consists of a linear regressor that estimates a cell path end by averaging the instantaneous 
velocity across the temporal window of τ time points preceding to the path end, where τ is optimized by 
means parameter research. Consult Kimmel et al. and Jaqaman et al.16,22 for mathematical description. �e 
model presumes objects moving of ballistic motion or equivalently maintaining the previous observed motion 
direction.

• RNN prediction model is an architecture obtained by the conjunction of complementary functions of RNN 
units, such as long short-term memory (LSTM) with Convolutional Neural Network (CNN) units in order to 
predict motion: CNN layers may learn motility pattern as feature extractors; RNN units, instead, may learn 
the long-term dependencies within the input sequences.

�e predictive architecture starts with input convolved by four 1D convolutional layers, then passed to an 
LSTM and �nally convolved by other four 1D convolutional layers. All convolutional layers except the �nal one, 
which is paired with a linear activation function, use a ReLU activation. �e model requires cell trajectories in 
input as time series disposed in a (time, x/y coordinate) matrix with a spatial dimension (time) and one channel 

(1)
d
(

Z
tpstart
i ,Z

tpend
i

)

T
p
i

(2)max

(

d
(

Z
tpstart
i ,Z
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i
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https://github.com/agrimgupta92/sgan
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dimension (x/y coordinate). �us, to adopt this method, all cell trajectories should have the same length. Further 
details can be found in Kimmel et al.16.
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