
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. c© 2009 Society for Industrial and Applied Mathematics
Vol. 31, No. 3, pp. 1968–1984

ACCELERATING THE MULTILEVEL FAST MULTIPOLE
ALGORITHM WITH THE SPARSE-APPROXIMATE-INVERSE (SAI)

PRECONDITIONING∗

TAHİR MALAS†
AND LEVENT GÜREL†

Abstract. With the help of the multilevel fast multipole algorithm, integral-equation methods
can be used to solve real-life electromagnetics problems both accurately and efficiently. Increasing
problem dimensions, on the other hand, necessitate effective parallel preconditioners with low setup
costs. In this paper, we consider sparse approximate inverses generated from the sparse near-field
part of the dense coefficient matrix. In particular, we analyze pattern selection strategies that can
make efficient use of the block structure of the near-field matrix, and we propose a load-balancing
method to obtain high scalability during the setup. We also present some implementation details,
which reduce the computational cost of the setup phase. In conclusion, for the open-surface problems
that are modeled by the electric-field integral equation, we have been able to solve ill-conditioned
linear systems involving millions of unknowns with moderate computational requirements. For closed-
surface problems that can be modeled by the combined-field integral equation, we reduce the solution
times significantly compared to the commonly used block-diagonal preconditioner.

Key words. preconditioning, sparse-approximate-inverse preconditioners, integral-equation
methods, computational electromagnetics, parallel computation

AMS subject classifications. 31A10, 65F10, 78A45, 78M05, 65Y05

DOI. 10.1137/070711098

1. Introduction. Iterative solutions of linear systems using Krylov subspace
methods make it possible to solve large-scale scientific problems with modest com-
puting requirements [22]. Krylov subspace methods access the system matrix through
matrix-vector multiplications. Effective parallelization of both the matrix-vector mul-
tiplication and the iterative solvers are possible, allowing even larger systems to be
solved with cost-effective parallel computers [21]. However, iterative solvers usually
require preconditioning in order to be effective. Most preconditioners use methods
similar to direct solution techniques, rendering their parallelization a difficult task.
As a result, preconditioning is currently an important bottleneck for the solution of
large scientific problems [1].

Computational electromagnetics (CEM) is an active research area, while it is
also sufficiently mature to contribute to various industrial applications. For instance,
radar cross section computations of arbitrarily shaped three-dimensional targets and
complicated antenna design calculations benefit from the highly accurate solutions
obtained with the method of moments (MOM). However, MOM produces large and
dense linear systems, whose solutions become viable only with fast methods, such as
the multilevel fast multipole algorithm (MLFMA) [6]. MLFMA reduces the compu-
tational complexity of the matrix-vector product to O(n log n), and recent attempts
have yielded efficient parallelizations of the method [10, 9, 23].

∗Received by the editors December 15, 2007; accepted for publication (in revised form) November
21, 2008; published electronically March 27, 2009. This work was supported by the Scientific and
Technical Research Council of Turkey (TUBITAK) under research grants 105E172 and 107E136, the
Turkish Academy of Sciences in the framework of the Young Scientist Award Program (LG/TUBA-
GEBIP/2002-1-12), and contracts from ASELSAN and SSM.

http://www.siam.org/journals/sisc/31-3/71109.html
†Department of Electrical and Electronics Engineering, Bilkent University, TR-06800, Bilkent,

Ankara, Turkey (tmalas@ee.bilkent.edu.tr, lgurel@bilkent.edu.tr). Computational Electromagnetics
Research Center (BiLCEM), Bilkent University, TR-06800, Bilkent, Ankara, Turkey.

1968



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MLFMA WITH SAI PRECONDITIONING 1969

0 200 400 600 800 930

0

200

400

600

800

930
0 400 800 1200 1600 2076

0

400

800

1200

1600

2076

(a) (b)

Fig. 1.1. Sparsity patterns of the near-field matrices for a sphere geometry with two sizes:

(a) 930-unknown problem with 208,386 nonzero matrix elements and (b) 2,076-unknown problem

with 405,968 nonzero entries.

On the other hand, constructing parallel and efficient preconditioners for CEM
applications can be difficult. MLFMA stores only the near-field matrix, which is com-
posed of the interactions of the neighboring (touching) boxes or clusters in the lowest
level of the tree structure. When the ordering of the unknowns is in accordance with
the cluster membership, the near-field matrix takes a block structure. For example,
in Figure 1.1, we show the near-field patterns of two problems involving sphere ge-
ometries of different sizes. Both the maximum size of the blocks and the maximum
number of the nonzero blocks per row are fixed. Therefore, as the problem size in-
creases, the near-field matrix becomes sparser. Since preconditioners are usually built
from near-field matrices, effective preconditioning of CEM problems may become a
challenge, particularly for large problem sizes.

Nonetheless, effective utilization of the near-field matrix provides strong precondi-
tioners for problems up to certain large sizes. Each element of the matrix represents
the electromagnetic interaction of a basis function and a testing function. Green’s
function used for the computation of the matrix elements decays with 1/R, where R
is the distance between the pair of basis and testing functions under consideration.
Due to this rapid decay of Green’s function, magnitudes of the matrix elements dis-
play a variety. The general trend of this variety obeys physical proximity; i.e., basis
and testing functions that are close to each other are expected to have strong elec-
tromagnetic coupling, resulting in matrix elements with relatively larger magnitudes.
Therefore, the sparse near-field matrix is likely to retain the most relevant contribu-
tions of the dense matrix. The exact inverse of such a sparse matrix is, in general, a
dense matrix. Nevertheless, the inverse matrix also displays a similar variation among
the magnitudes of its elements. Hence, the inverse matrix can also be approximated
by a sparse matrix.

In this work, we consider sparse-approximate-inverse (SAI) preconditioners for
large CEM problems. This is partly because an efficient parallelization of the more
standard incomplete LU (ILU) preconditioners [19] is difficult for matrices with un-
structured sparsity patterns [1]. Application of the SAI preconditioners to CEM
problems in the context of MLFMA has been analyzed by the CERFACS group [5]
and by Lee, Zhang, and Lu [17]. Here, we present an effective construction scheme



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1970 TAHİR MALAS AND LEVENT GÜREL

with an effective load-balancing method that produces high parallel efficiency. We also
propose to use the near-field pattern for the approximate inverse with filtered matrices
and then compare different filtering strategies. Moreover, for conductor problems, the
earlier work [5] considered only the electric-field integral equation (EFIE). However,
for conducting geometries with closed surfaces, the combined-field integral equation
(CFIE) should also be considered. Even though EFIE can also be used in such prob-
lems, this has no practical use since CFIE can solve the closed-surface problems much
faster. Furthermore, we show that CFIE solutions of large real-life problems with
closed surfaces can benefit more from SAI than from simple preconditioners, such as
the block-diagonal preconditioner.

This paper is organized as follows. After presenting a brief summary of the
SAI preconditioners in the next section, we dwell upon the implementation details
in section 3. In particular, we explain pattern selection and filtering strategies. For
a parallel implementation, we present a load-balancing algorithm and show how the
communication in the construction phase can be efficiently performed. The results
section analyzes CFIE and EFIE problems separately. Then, in section 5, we discuss
some conclusions.

2. Brief review of SAI. Commonly used ILU preconditioners approximate
the original matrix in the form of incomplete factors. In each step of an iterative
method, preconditioning is performed by backward and forward solves. In contrast,
SAI preconditioners are based on approximating the inverse of the matrix directly.
For this purpose, an approximate inverse is explicitly constructed and stored. Then,
the preconditioner is applied by a sparse matrix-vector multiplication. In the context

of MLFMA, the n× n dense coefficient matrix is decomposed as A = A
near

+ A
far

,

where A
near

is the available sparse near-field matrix and the application of A
far

to a
vector is computed by MLFMA. Hence, we use A

near
to generate the preconditioner

and our approximation is of the form M ≈ (A
near

)−1.
In this work, we concentrate on the SAI preconditioners derived from the Frobe-

nius norm minimization. There are two other classes of approximate inverses that
have been proposed in the literature [3]. One of the classes involves the factorized
sparse approximate inverses, whose important examples are abbreviated as FSAI [16]
and AINV [2] by different authors. Both FSAI [16] and AINV [2] have already been
tried on CEM problems, and their performances have been discouraging [4]. SAI
preconditioners of the third class are the inverse ILU techniques, which consist of ap-
proximately inverting an incomplete factorization of the matrix. Because of the initial
incomplete factorization phase, the inverse ILU methods have some serious drawbacks
for parallel computing [3].

2.1. Methods derived from the Frobenius norm minimization. For this
class of preconditioners, the approximate inverse of the near-field matrix is computed
by minimizing

(2.1)
∥

∥

∥
I− M · A

near
∥

∥

∥

F
.

The approximation is implemented by forcing M to be sparse. With the Frobenius
norm choice, the minimization can be performed independently for each row by using
the identity

(2.2)
∥

∥

∥
I− M ·A

near
∥

∥

∥

2

F
=

n
∑

i=1

∥

∥

∥
ei − mi · A

near
∥

∥

∥

2

2

,

where ei is the ith unit row vector and mi is the ith row of the preconditioner.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MLFMA WITH SAI PRECONDITIONING 1971

Various preconditioners have been developed with different pattern selection and
minimization techniques. Chow and Saad proposed to solve each equation (A

near

)T ·

mT

i
= eT

i
iteratively and approximately [8]. One way to do this is to use the first few

iterations of the generalized minimal residual (GMRES) solver. However, the cost of
this method is of order O(n2) for sparse matrices, assuming a fixed number of nonzero
elements per row. To avoid this high cost, the authors proposed to keep the iterates
and other vectors sparse, as well as the matrix. This is done by filtering iterates as
they become denser. Then, matrix-vector multiplications are carried out in sparse-
sparse mode. However, such a multiplication scheme is not efficiently implemented
with MLFMA.

Considering the difficulty in finding a suitable nonzero pattern for the approximate
inverse, Grote and Huckle [13] proposed to find the sparsity pattern adaptively starting
with an initial sparsity pattern. Construction time of this preconditioner can be very
high [3], and, hence, it should be used only if simpler methods fail.

On the other hand, the nonzero structure of the near-field matrix itself is a natural
candidate for the nonzero pattern of the SAI preconditioner. The storage scheme used
for the block-sparse matrices consumes less memory than regular sparse matrices.
Moreover, as noted in [5], when using the block structure of the near-field matrix,
QR factorization involved in the least-squares solutions of (2.2) can be done once for
each diagonal block, which corresponds to self-interactions of the last-level clusters
in MLFMA. In this way, construction time of the preconditioner can be reduced
substantially. If filtering is required, however, the block structure is distorted and both
the setup time and memory consumption of the preconditioner can be even higher
than the no-filtering case. Moreover, in a parallel implementation, load balancing
should be ensured and communications in the construction phase should be carefully
performed, since this phase involves all-to-all exchanges of rows. In the next section,
we analyze these issues in more detail.

3. Parallel implementation details. In this work, we adopt K-way rowwise
conformable partitionings of the near-field matrix A

near

, the approximate inverse M,
and the right-hand side (RHS) vector b as

A
near

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A
near

1

...
A

near

k

...
A

near

K

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, M =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M1

...
Mk

...
MK

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, b =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

b1

...
bk

...
bK

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,(3.1)

where A
near

k and Mk are nk×n submatrices, bk is an nk×1 subvector, and

(3.2)

K
∑

k=1

nk = n.

Process Pk holds A
near

k
, bk, and Mk. However, we use a different partitioning for M

during the generation of SAI as explained in section 3.3.
The construction of the SAI preconditioner is accomplished by solving

(3.3) mi · A
near

= ei for i = 1, 2, . . . , n

subject to sparsity conditions. Left preconditioning is consistent with rowwise de-
composition, because in this scheme the computations involve the rows of the original



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1972 TAHİR MALAS AND LEVENT GÜREL

Fig. 3.1. Reduction of a 10× 10 matrix for the generation of the 4th row of SAI.

matrix, and each row block Mk of the approximate inverse is generated by a different
process. However, for the EFIE formulation, which produces symmetric complex ma-
trices, right preconditioning is also viable. This can be accomplished by a transpose
matrix-vector multiplication operation in the application phase as will be detailed in
section 3.5.

In a rowwise decomposition of the matrix, each process Pk solves part of (3.3).
For a given row i ∈ Pk, let I ⊂ {1, 2, . . . , n} denote the set of column indices j for
which mi(j) is nonzero. Then, only the rows of the near-field matrix included in this
set affect the solution. Therefore, the ith minimization problem is reduced to

(3.4) mi(I) · A
near

(I, :) = ei.

This step incurs a communication among the processes, because not all of the rows in
I belong to Pk. Hence, Pk requires some sparse rows (i.e., nonzero values and column
indices) from other processes. Once A

near

(I, :) is formed, because of the sparsity of
the near-field matrix, some of the columns of A

near

(I, :) will be zero. Denoting the
indices of the nonzero columns by J , the n×n problems in (3.3) are reduced to n1×n2

problems

(3.5) mi(I) · A
near

(I, J) = ei(J) for i = 1, 2, . . . , n,

where n1 and n2 are the number of elements in the sets I and J , respectively. An
example of reduction of a 10 × 10 sparse matrix for the 4th row is illustrated in
Figure 3.1. In this example, the sparsity pattern of SAI is the same as that of the
original matrix.

The n2×n1 problems

(3.6) A
near

(I, J)T · mi(I)T = ei(J)T

can be solved by first computing the reduced QR factorization

(3.7) A
near

(I, J)T = Q ·R

and then obtaining the solution as

(3.8) mi(I)T = R
−1

· Q
H

· ei(J)T .

For the near-field matrix, the maximum number of nonzero elements in a row or
a column is fixed for a given problem irrespective of the problem size. Therefore, a



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MLFMA WITH SAI PRECONDITIONING 1973

find the largest entry maxk of A
near

k

global max = reduce all maximum(maxk)

for each aij ∈ A
near

k do

if aij/global max < threshold then

drop aij

endif

endfor

Fig. 3.2. Filtering algorithm.

constant number of rows are involved in (3.4), i.e., n1 = O(1). In A
near

(I, :), each
row again contains a fixed number of nonzero entries. The worst case occurs when
the locations of the nonzero elements do not coincide for all rows i ∈ I. Even in that
case, n2 = O(1)O(1) = O(1). This makes the complexity of the SAI preconditioner
O(n). On the other hand, the QR factorization used in the solution of the n2×n1

least-squares problem requires asymptotically n2n
2

1
flops, causing the setup time of

the SAI preconditioner to be high, even though it has a low complexity.
Because of this possible high construction cost, the implementation of the SAI

preconditioner deserves close attention. The following subsections will detail the main
steps for the generation and application of the preconditioner.

3.1. Pattern selection and filtering. In a Frobenius-norm minimization tech-
nique that depends on a fixed inverse pattern, the main issue for an efficient and
effective preconditioner is the selection of an appropriate sparsity pattern. Because of
the possible high cost of the SAI preconditioner, filtering is used in general. Filtering
refers to dropping small elements from the original matrix. Then, the preconditioner
is constructed from this sparser matrix. In our work, we have used the algorithm
detailed in Figure 3.2 for filtering.

Filtering decreases only n2 if a different pattern from the filtered matrix is used
for the approximate inverse. In that case, n1 is determined by the pattern of the
approximate inverse. However, filtering causes smaller n1 and n2 values if the pattern
of the filtered matrix is used for the approximate inverse.

Considering MLFMA and the special structure of the near-field matrix, we think
that the following pattern selection and filtering strategies are appropriate for low-cost
SAI generation.

3.1.1. No filtering. In this strategy, no filtering is applied to the near-field ma-
trix and the same pattern is used for the approximate inverse. Because of the block
structure of A

near

, all rows of the SAI preconditioner that reside in the same diago-
nal block require the same rows of A

near

for their computation; hence, the reduced
matrices A

near

(I, :) and A
near

(I, J) become the same. Therefore, QR factorization is
done only once for each diagonal block and the least-squares solution is obtained for
multiple RHSs. Since the least-squares solution is dominated by the QR factorization,
substantial savings can be achieved.

3.1.2. Preserving block structure in filtering. Even though the near-field
matrices become sparser as the number of unknowns increases, filtering may be re-
quired. This may be due to the possible high cost of SAI construction or because of
some special problems, such as densely packed metamaterial structures [12], which
produce denser near-field matrices. To be able to use the advantage of the block
structure, we suggest using the near-field pattern for the approximate inverse and



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1974 TAHİR MALAS AND LEVENT GÜREL

for each mij ∈ Mk do

if j is not marked then

p = findProcId(j)
append j into rowRecvList[p]
mark j

endif

endfor

send rowRecvList; receive into rowSendList ! All-to-all communication

Fig. 3.3. The pseudocode that finds the rows to be sent by the process Pk.

for each row i ∈ rowSendList do

append column indices of row i to sendColIndices

endfor

send sendColIndices; receive into recvColIndices ! All-to-all communication

Fig. 3.4. The pseudocode that finds the column indices of the sparse rows to be received by the

process Pk.

filtering only the near-field matrix, from which the approximate inverse is generated.
In this way, the row size n1 does not change, but n2 can be much smaller. Hence, we
expect cheaper construction time compared to the no-filtering case.

3.1.3. Using a filtered pattern for the approximate inverse. If we use the
block structure for the approximate inverse, the memory requirement of the precondi-
tioner will be the same as the near-field matrix, which is the largest data in MLFMA.
One way to reduce the memory cost is to use a filtered pattern for the preconditioner.
On the other hand, with this strategy, we will not be able to use the advantage of the
block structure. Therefore, we have to perform n factorizations instead of n/m, where
m is the average size of the diagonal blocks. Hence, substantial filtering should be
employed in order to decrease the memory and construction costs with this scheme.

3.1.4. Block filtering. Another strategy to take advantage of the block struc-
ture can be to drop an entire block, instead of only the nonzero entries, with the hope
that dropped blocks do not carry significant information. To determine which blocks
to drop, the Frobenius norm of each one is computed; those having a relative norm
smaller than a prescribed tolerance are dropped.

3.2. Communication phase and enlarging the local submatrix. After a
suitable pattern is selected for SAI, each process Pk exchanges some rows of A

near

k

with others. In this way, they enlarge their local submatrix A
near

k
so that no com-

munication is required during the generation of Mk. For this purpose, Pk scans the
nonzero pattern of Mk and decides which rows it needs for the generation of the kth
block. Then, after an all-to-all communication, each process learns the row identities
it has to send. This communication pattern is detailed in Figure 3.3.

However, the information obtained is not sufficient for the exchange of rows be-
cause the processes do not yet know the column indices of the nonzero entries of
the rows to be received. Hence, another scan and exchange of data regarding the
column indices is performed. Finally, the values are exchanged. These two steps are
illustrated in Figures 3.4 and 3.5.

The near-field matrix and SAI are held in compressed sparse row (CSR) format.
This has two advantages. First, access to memory is minimized for the sparse matrix-



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MLFMA WITH SAI PRECONDITIONING 1975

for each row i ∈ rowSendList do

append aij to sendColV alues

endfor

send sendColV alues; receive into recvColV alues ! All-to-all communication

Fig. 3.5. The pseudocode that exchanges the sparse rows.

vector multiplications. More importantly, with CSR storage, the access of the matrix
is done by rows, and, hence, the communications in the last two steps are done in place.

There could be another way to exchange the rows, in which the communication
is done during the construction of the SAI preconditioner. This approach allows
communications and computations to overlap by exchanging data for the next row
while computing the current row. However, in this method, a row can be exchanged
many times. Moreover, as shown in section 4.1, our implementation produces superior
parallel performance; hence, we did not need to try this alternative strategy.

3.3. Load balancing of SAI.

3.3.1. Load balancing for the generation phase. The computation of the
nonzero elements of the near-field matrix constitutes an expensive part of the setup
phase in MLFMA. In this part, the cost of a row is proportional to the number of
nonzero elements in that row. To ensure load balancing, the rows of the near-field
matrix are distributed among the processes so that each process acquires approxi-
mately an equal number of nonzero elements. Since the application of the near-field
matrix in the iterative phase is also proportional to the number of nonzero elements
in a submatrix, this approach serves the load balancing of the near-field matrix-vector
multiplication as well.

On the other hand, the cost of the generation of the ith row mi of SAI is pro-
portional to n2n

2

1
, where n1 and n2 are the dimensions of the reduced matrix. Note

that n1 is the number of the nonzero elements in that row if filtering is not applied.
If the near-field partitioning is also used for SAI, this high cost can cause the SAI
generation to be unbalanced. For this reason, we repartition the near-field matrix in
accordance with the load-balancing scheme of the SAI setup.

After the pattern of SAI is decided, we can quickly determine the cost of each
row by finding n1 and n2 values. Then, the workload of SAI is distributed among the
processes so that each process has approximately an equal amount of work. Alter-
natively, it is also possible to apply an incremental partitioning to existing near-field
partitioning to decrease the overhead of repartitioning as detailed in [7]. We follow the
former approach, where we use a separate partitioning for the SAI generation that is
different from the partitioning of the near-field matrix. This way, we obtain a better
load balance, and we can still limit the overhead of repartitioning by overlapping the
communications with computations as explained in the next section.

3.3.2. Load balancing for the SAI application. To ensure load balancing for
the application phase, we have to redistribute the rows of SAI according to the near-
field partitioning. The overhead of this data transfer can be eliminated by overlapping
communications with computations as detailed in Figure 3.6. In the first loop, all
processes initiate the receptions of the rows that they should have with respect to
the near-field partitioning, but they do not generate. Then, all processes generate
those rows in their SAI partitioning that do not belong to themselves and initiate
their transfers to appropriate processes. While the communications take place, local



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1976 TAHİR MALAS AND LEVENT GÜREL

for each row i ∈ Rnear

k do

if row i /∈ RSAI

k then

p = findProcId(i)
start the reception of mi from p ! Nonblocking communication

endif

endfor

for each row i ∈ RSAI

k do

if row i /∈ Rnear

k then

p = findProcId(i)
generate mi and start the transfer to p ! Nonblocking communication

endif

endfor

for each row i ∈ RSAI

k do

if row i ∈ Rnear

k then

generate mi

endif

endfor

finish all nonblocking communications

Fig. 3.6. Redistribution of the SAI rows according to the near-field partitioning. Rnear

k
and

RSAI

k
denote the row indices of process k with respect to the near-field and SAI partitionings,

respectively.

computations, i.e., the generation of the rows that belong to process k with respect
to both near-field and SAI partitionings, are performed. Finally, all processes wait
for the nonblocking communications to finish.

3.4. Construction of the preconditioner. For the generation of the ith row
mi, first a map of length n is prepared to map the sets I and J to Ī = {1, 2, . . . , n1}
and J̄ = {1, 2, . . . , n2}, respectively. Then, we form the n2×n1 dense matrix

(3.9) A
near (

Ī , J̄
)T

= A
near (

J̄ , Ī
)

.

Finally, we solve the least-squares problem

(3.10) A
near (

J̄ , Ī
)

·mi(I)T = ei(J)T

via QR factorization and generate the ith row of Mk.

3.5. Application of the preconditioner. The application of the precondi-
tioner is performed with the sparse matrix-vector multiplication yk = Mk · x. Since
Pk computes xk, an expand operation, i.e., x = expand(xk) (also known as “gather
all”), is required before the multiplication so that all processes possess the entire x

vector.
For EFIE, using the symmetry of the near-field matrix, we have

(3.11)
∥

∥

∥
I − M ·A

near
∥

∥

∥

F

=

∥

∥

∥

∥

I−
(

M · A
near

)T
∥

∥

∥

∥

F

=
∥

∥

∥
I − A

near

·M
T
∥

∥

∥

F

.

Therefore, right preconditioning can be achieved with the operation yk = (Mk)T · xk

or equivalently (yk)T = (xk)T · Mk, where y =
∑

K

k=1
yk. This multiplication can

be done in CSR format using the outer product form of matrix-vector multiplication,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MLFMA WITH SAI PRECONDITIONING 1977

yk = 0
for i = 1 to nk do

xval = xk(i)
kStart = IA(i); kEnd = IA(i + 1) − 1
for k = kStart to kEnd do

j = JA(k)

yk(j) = yk(j) + xval ∗VA(k)
endfor

endfor

Fig. 3.7. The pseudocode for the sparse matrix-vector multiplication used for right precon-

ditioning. IA, JA, and VA are, respectively, row-index, column-index, and value arrays of Mk,

which is stored in CSR format.

i.e.,

(3.12) yk =

nk∑

i=1

xk(i)Mk(i, :).

We outline this operation in Figure 3.7. Finally, a fold operation, i.e., yk = fold(yk)
(also known as “reduce scatter”), is required so that partial sums yk are summed
across the processes, and each process Pk ends up with the kth subvector yk of y.

4. Results. In this section, we present the parallel performance of the generation
phase of the SAI preconditioner. Then, for EFIE and CFIE formulations, we compare
different versions of SAI with other preconditioners.

The solutions presented in this section are obtained on a 16-node cluster connected
with an Infiniband network. Each node includes two quad-core Intel Xeon processes
and 16 GB of RAM. All of the results are obtained on 32 cores (4 processes on
each node). For robustness, we use the GMRES method with no restart as the solver.
Contrary to results presented in [5], the orthogonalization cost of GMRES is negligible,
compared to the time spent on the matrix-vector multiplications. For example, the
largest problem shown in this study involves 3,838,496 unknowns. For the solution of
this problem, the time spent on GMRES orthogonalization is only 2.3% of the time
spent on matrix-vector multiplications by MLFMA. We use zero as the initial guess
and set the stopping criteria as a six order of magnitude relative decay in the initial
residual or a maximum of 1,000 iterations. In our MLFMA implementation, we use
the Rao–Wilton–Glisson functions [20] for both basis and testing functions. We set the
size of the smallest clusters to 0.25λ and the number of accurate digits to three. Three
digits of accuracy have proven to yield accurate results, as shown in [15] by comparing
the numerical results with the analytical ones for the sphere problem formulated with
CFIE. For the patch problem formulated with EFIE, accuracy is demonstrated by
comparing the numerical solution with a physical optics solution that gives accurate
results at some specific observation angles for high frequencies [18].

4.1. Parallel performance of the construction phase. In Figure 4.1, we
show the speedup curves for the construction of SAI with no filtering for a patch
geometry with 344,000 unknowns, a half-sphere with 408,064 unknowns, and the
stealth target Flamme [14], which has 312,120 unknowns. To show the worst-case
performance, the processes are distributed so that the internode communications are
maximized. Thanks to our efficient parallelization scheme and the load-balancing
method, we obtain superior speedups for all problems.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1978 TAHİR MALAS AND LEVENT GÜREL

1 16 32 48 64 80 96 112 128
1

16

32

48

64

80

96

112

128
Speedup for SAI

Processors

S
p

e
e

d
u

p

 

 

Ideal

Patch

Half Sphere

Flamme

Fig. 4.1. Speedup curves for the patch, half-sphere, and Flamme problems.

1 4 8 12 16 20 24 28 32

0

20

40

60

Unbalanced Setup

Processors

L
o
a
d
 I
m

b
a
la

n
c
e
 (

%
)

(a)

1 4 8 12 16 20 24 28 32

0

2

4
Balanced Setup

Processors

L
o

a
d

 I
m

b
a

la
n

c
e

 (
%

)

(b)

Fig. 4.2. Load imbalance of the Flamme problem for (a) unbalanced and (b) balanced cases.

The effect of the load-balancing algorithm is demonstrated in Figure 4.2 on the
Flamme problem. The load imbalance εk of process k is defined as

(4.1) εk =
timek − timeavg

timeavg

.

In (4.1), timek is the setup time of SAI for process k and timeavg is the average
setup time. Particularly for complex geometries, such as Flamme, adopting the same
partitioning of the near-field matrix for SAI can cause significant imbalance and inef-
ficiency. Using the proposed load-balancing method, we reduce the average imbalance
of 18.5% to 1.5% and achieve high efficiency.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MLFMA WITH SAI PRECONDITIONING 1979

Patch (P) Half Sphere (HS)

Reflector Antenna (RA)

Fig. 4.3. Open geometries used in EFIE problems.

Table 4.1

Quantitative features of the open geometries.

Frequency Size MLFMA
Problem (GHz) (λ) levels n

P1 16 16 7 85,840
P2 32 32 8 344,000
P3 64 64 9 1,377,280
P4 96 96 10 3,062,400

HS1 16 32 8 101,888
HS2 32 64 9 408,064
HS3 64 96 10 1,633,280
HS4 96 192 10 3,838,496

RA1 4 13 7 47,870
RA2 8 27 8 187,144
RA3 16 53 9 748,024
RA4 32 107 10 2,991,067

4.2. EFIE results. The sample geometries that are solved with EFIE in this
paper are illustrated in Figure 4.3, and their quantitative features are listed in Table
4.1. Only open geometries are solved with EFIE since closed geometries can be solved
more easily with CFIE. In Table 4.1, patch is abbreviated with P, half-sphere with
HS, and reflector antenna with RA. The “size” value stands for the diameter of the
half-sphere and the reflector antenna, and it is the length of one side for the square
patch. Mesh lengths are chosen as one-tenth of the corresponding wavelength.

The experimental results indicate that there is no significant difference between
left and right preconditioning of SAI. For consistency with the CFIE results, we
prefer left preconditioning with EFIE. The results for the no-preconditioning case
and comparisons of the three types of SAI preconditioners are shown in Tables 4.2
and 4.3, respectively. We omit the results with the block-filtering version of SAI,
because it performs worse than other SAI preconditioners. We also omit the results
with the block-diagonal preconditioner (BDP), because it deteriorates the convergence
rate, compared to no preconditioning. In Table 4.3, “ratio” stands for the ratio of



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1980 TAHİR MALAS AND LEVENT GÜREL

Table 4.2

The solutions with no preconditioning for open geometries formulated by EFIE.

Problem Iterations Time (s)

P1 814 346
P2 > 1, 000 -
P3 > 1, 000 -
P4 > 1, 000 -

HS1 913 1,363
HS2 > 1, 000 -
HS3 > 1, 000 -
HS4 > 1, 000 -

RA1 795 446
RA2 > 1, 000 -
RA3 > 1, 000 -
RA4 > 1, 000 -

Table 4.3

Comparison of SAI preconditioners for open geometries formulated by EFIE.

Filtered pattern Near-field pattern No filtering
Problem Ratio Setup Iter Time Setup Iter Time Setup Iter Time

P1 51% 14 94 41 2 91 38 2 74 31
P2 50% 62 139 224 10 132 209 10 109 174
P3 49% 370 194 1,431 45 190 1,384 48 157 1,147
P4 50% 1,495 243 7,849 129 231 7,368 132 194 6,225

HS1 73% 32 159 246 4 146 217 5 132 196
HS2 73% 133 266 1,762 19 246 1,583 20 221 1,424
HS3 71% 703 426 12,382 87 392 11,235 92 351 10,046
HS4 59% 2,512 599 30,828 343 570 28,295 350 480 23,458

RA1 6% 0 599 336 1 228 127 2 63 36
RA2 7% 1 859 1,890 9 557 1,230 9 93 204
RA3 36% 80 171 1,539 33 173 1,552 37 139 1,266
RA4 13% 1,142 598 22,269 148 303 11,144 201 200 7,276

Notes: “Ratio” is the ratio of the sparsity of the SAI to that of the near-field matrix.
“Setup” and “time” denote the setup and solution times, respectively, given in seconds.
“Iter” denotes the number of iterations.

the sparsity of the filtered near-field matrix to the original near-field matrix. “Setup”
stands for the generation time of SAI and “time” for the solution time, both in seconds.

For EFIE, we set the threshold of filtering at 0.5%.

We outline our observations as follows:
• Without an effective preconditioner, EFIE solutions converge only for small

problems. On the other hand, SAI preconditioners solve all problems within
reasonable iteration counts. Even for those that converge without precondi-

tioning, SAI with no filtering decreases the iteration counts by an order of

magnitude for the patch and the reflector antenna and by six times for the
half-sphere.

• When we apply filtering, using the block structure of the near-field matrix

for the approximate inverse decreases setup times significantly. Even for the
reflector antenna, for which 90% of the near-field entries are dropped with

filtering, setup times of SAI preconditioners that use the near-field pattern
are much smaller. However, for large simulations, memory savings can be

an important motivation to use the filtered pattern. For example, for RA4,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MLFMA WITH SAI PRECONDITIONING 1981

0.1 0 0.1 0.2 0.3 0.4

0

0.2

0.4

No Preconditoner

0.01 0 0.01

0

0.01

0 5 10 15

0

2

4

6

Filtered Pattern

0.2 0 0.4

0

0.4

0 5 10 15

0

2

4

6

0.2 0 0.4

0

0.4

0 5 10 15

0

2

4

6

No Filtering

0.2 0 0.4

0

0.4

Fig. 4.4. Approximate eigenvalues of the RA4 problem on the complex plane.

SAI with a filtered pattern requires 840 MB of RAM, whereas SAI with the
near-field pattern and SAI with no filtering require 4.2 GB of RAM. How-
ever, we note that there should be considerable filtering to provide memory
gain, because the format used in a block-structured sparse matrix is more
economical than regular sparse matrices.

• In terms of the solution times, SAI with no filtering produces the best results
for all geometries. The setup times of the filtered SAI that uses the near-
field pattern are the lowest, except for RA1 and RA2; however, SAI with
no filtering is more successful in reducing the iteration counts and solution
times.

• We observe superior algebraic scalability for the unfiltered SAI precondi-
tioner. For all targets, the largest problem is approximately 64 times larger
than the smallest, whereas the iteration count of the P4 is only 2.6 times that
of P1, HS4 is 3.6 times that of HS1, and RA4 is only 3.2 times that of RA1.

Finally, in Figure 4.4, we demonstrate the Arnoldi estimates for the eigenvalues
of the RA4 problem. These estimates are found as a byproduct of the GMRES
solver, and they are known to approximate the bounding eigenvalues of the spectrum
[22]. SAI with the filtered pattern leaves some of the eigenvalues in the left half-
plane, and there are many small eigenvalues around the origin, accounting for its slow
convergence. If the filtered pattern is used for the approximate inverse or filtering
is not applied at all, then all of the eigenvalues are clustered in the right half-plane.
However, SAI with no filtering produces also a smaller radius for the spectrum and,
hence, converges faster.

4.3. CFIE results. Many real-life problems confronted in CEM involve com-
plicated structures enclosing a volume. Due to its favorable properties, CFIE is the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1982 TAHİR MALAS AND LEVENT GÜREL

Flamme (F) Helicopter (H)

Fig. 4.5. Closed-surface geometries used in CFIE problems.

Table 4.4

Quantitative features of the closed geometries.

Frequency Size MLFMA
Problem (GHz) (λ) levels n

F1 10 20 8 78,030
F2 20 40 9 312,120
F3 40 80 10 1,248,480
F4 60 120 10 3,166,272

H1 0.3 14 8 46,383
H2 0.6 28 9 185,532
H3 1.2 56 10 742,128
H4 2.4 112 11 2,968,512

Table 4.5

The solutions with BDP for closed-surface problems formulated by CFIE.

Problem Iterations Time (s)

F1 116 122
F2 122 563
F3 211 4,451
F4 347 11,734

H1 99 73
H2 109 391
H3 121 1,939
H4 138 10,192

preferred integral-equation formulation for those targets with closed surfaces. In Fig-
ure 4.5, we illustrate two such geometries: a helicopter (H) and the Flamme (F). We
solve these problems at increasing frequencies as detailed in Table 4.4.

Contrary to EFIE, BDP is the commonly used preconditioner for CFIE problems.
BDP has negligible setup time and is easily parallelized. In addition, BDP enables
fast convergence for a variety of problems due to the diagonal-dominance behavior
of CFIE matrices to some extent [11]. Hence, we first provide the solutions of the
closed-surface problems with BDP in Table 4.5 and then compare different versions
of SAI preconditioners in Table 4.6. With CFIE, we use a smaller threshold value for
filtering, i.e., 0.05%, because such a small threshold causes significant filtering due to
the diagonal-dominance feature of CFIE matrices.

We summarize our observations and comments about the CFIE results as follows:
• We observe that both the filtered SAI that uses the near-field pattern and

the unfiltered SAI decrease the number of iterations and total solution times



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MLFMA WITH SAI PRECONDITIONING 1983

Table 4.6

Comparison of SAI preconditioners for closed-surface problems formulated by CFIE.

Prob- Filtered pattern Near-field pattern No filtering
lem Ratio Setup Iter Time Setup Iter Time Setup Iter Time

F1 25% 31 99 133 14 81 95 17 76 90
F2 21% 55 113 583 43 96 490 53 97 493
F3 19% 196 198 4,253 124 181 3,916 163 174 3,836
F4 33% 1,889 318 10,767 328 297 9,112 374 316 9,530

H1 11% 7 93 76 8 51 45 12 51 48
H2 6% 3 110 391 20 84 326 41 59 241
H3 6% 43 123 2,019 78 97 1,619 152 80 1,403
H4 6% 1,176 152 11,701 366 114 8,649 644 97 7,515

Notes: “Ratio” is the ratio of the sparsity of the SAI to that of the near-field matrix.
“Setup” and “time” denote the setup and solution times, respectively, given in seconds.
“Iter” denotes the number of iterations.

with respect to BDP for both problems. For instance, if we compare the

largest targets, the solution times of F4 and H4 are shortened by 20% and

26%, respectively.
• In terms of the solution time, the unfiltered SAI is the most successful precon-

ditioner, except for F2 and F4. Surprisingly, for these problems, obtaining

the preconditioner from a sparser matrix instead of the original near-field
matrix improves performance.

5. Conclusion. In this paper, we analyze SAI preconditioning for dense linear
systems arising from the discretization of integral equations. We describe in detail

practical issues, such as pattern selection, filtering, and load balancing, to obtain a

highly parallel and efficient preconditioner.
For large open-surface problems that are modeled by EFIE, linear systems can

be challenging to solve. We conclude that, for such problems, it is better to avoid

filtering and to construct an SAI preconditioner that has the same block structure
as the near-field matrix. The use of the block structure has advantages in reducing

the setup cost and memory requirement of the preconditioner. However, if filtering is
required for further memory saving, we show that our filtering strategy is robust.

For complex closed-surface problems that can make use of the well-conditioned

CFIE, we show that SAI is more beneficial than the commonly used BDP. The benefit
will be even more dominant for the computation of backscattering with different

incident angles, which requires the solution of linear systems involving many right-

hand sides.

REFERENCES

[1] M. Benzi, Preconditioning techniques for large linear systems: A survey, J. Comput. Phys.,
182 (2002), pp. 418–477.

[2] M. Benzi and M. Tuma, A sparse approximate inverse preconditioner for nonsymmetric linear

systems, SIAM J. Sci. Comput., 19 (1998), pp. 968–994.
[3] M. Benzi and M. Tuma, A comparative study of sparse approximate inverse preconditioners,

Appl. Numer. Math., 30 (1999), pp. 305–340.
[4] B. Carpentieri, I. S. Duff, and L. Giraud, Experiments with Sparse Preconditioning of

Dense Problems from Electromagnetic Applications, Technical report TR/PA/00/04, CER-
FACS, Toulouse, France, 1999.

[5] B. Carpentieri, I. S. Duff, L. Giraud, and G. Sylvand, Combining fast multipole techniques

and an approximate inverse preconditioner for large electromagnetism calculations, SIAM
J. Sci. Comput., 27 (2005), pp. 774–792.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1984 TAHİR MALAS AND LEVENT GÜREL

[6] W. C. Chew, J.-M. Jin, E. Michielssen, and J. Song, eds., Fast and Efficient Algorithms

in Computational Electromagnetics, Artech House, Norwood, MA, 2001.
[7] E. Chow, Parallel implementation and practical use of sparse approximate inverse precondi-

tioners with a priori sparsity patterns, Int. J. High Perform. Comput. Appl., 15 (2001),
pp. 56–74.

[8] E. Chow and Y. Saad, Approximate inverse preconditioners via sparse-sparse iterations,
SIAM J. Sci. Comput., 19 (1998), pp. 995–1023.

[9] Ö. Ergül and L. Gürel, Fast and accurate solutions of large-scale scattering problems with

parallel multilevel fast multipole algorithm, in Proceedings of the IEEE Antennas and
Propagation Society International Symposium, Honolulu, HI, 2007, pp. 3436–3439.

[10] Ö. Ergül and L. Gürel, Efficient parallelization of the multilevel fast multipole algorithm for

the solution of large-scale scattering problems, IEEE Trans. Antennas and Propagation, 56
(2008), pp. 2335–2345.

[11] Ö. Ergül and L. Gürel, Comparisons of FMM implementations employing different formula-

tions and iterative solvers, in Proceedings of the 2002 IEEE AP-S International Symposium
and USNC/CNC/URSI National Radio Science Meeting, Columbus, OH, 2003, pp. 19–22.

[12] Ö. Ergül, A. Ünal, and L. Gürel, MLFMA solutions of transmission problems involving

realistic metamaterial walls, in Proceedings of the 2007 Computational Electromagnetics
Workshop, İzmir, Turkey, IEEE, 2007, pp. 79–82.

[13] M. J. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses, SIAM
J. Sci. Comput., 18 (1997), pp. 838–853.

[14] L. Gürel, H. Bag̃cı, J.-C. Castelli, A. Cheraly, and F. Tardivel, Validation through

comparison: Measurement and calculation of the bistatic radar cross section of a stealth

target, Radio Sci., 38 (2003), pp. 1046–1058.
[15] L. Gürel and Ö. Ergül, Fast and accurate solutions of integral-equation formulations dis-

cretised with tens of millions of unknowns, Electron. Lett., 43 (2007), pp. 499–500.
[16] L. Yu. Kolotilina and A. Yu. Yeremin, Factorized sparse approximate inverse precondition-

ings I. Theory, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 45–58.
[17] J. Lee, J. Zhang, and C.-C. Lu, Sparse inverse preconditioning of multilevel fast multipole

algorithm for hybrid integral equations in electromagnetics, IEEE Trans. Antennas and
Propagation, 52 (2004), pp. 158–175.

[18] T. Malas, Ö. Ergül, and L. Gürel, Sequential and parallel preconditioners for large-scale

integral-equation problems, in Proceedings of the 2007 Computational Electromagnetics
Workshop, İzmir, Turkey, IEEE, 2007, pp. 35–43.

[19] T. Malas and L. Gürel, Incomplete LU preconditioning with the multilevel fast multipole

algorithm for electromagnetic scattering, SIAM J. Sci. Comput., 29 (2007), pp. 1476–1494.
[20] S. Rao, D. R. Wilton, and A. W. Glisson, Electromagnetic scattering by surfaces of arbitrary

shape, IEEE Trans. Antennas and Propagation, AP-30 (1982), pp. 409–418.
[21] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
[22] L. N. Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[23] S. Velamparambil and W. C. Chew, Analysis and performance of a distributed memory

multilevel fast multipole algorithm, IEEE Trans. Antennas and Propagation, 53 (2005),
pp. 2719–2727.


