
Accelerating the Numerical Generation of Aerodynamic Models
for Flight Simulation

M. Ghoreyshi,∗ K. J. Badcock,† and M. A. Woodgate‡

University of Liverpool, Liverpool, England L69 3GH, United Kingdom

DOI: 10.2514/1.39626

The generation of a tabular aerodynamic model for design-related flight dynamics studies, based on simulation

generated data, is considered. The framework described accommodates two design scenarios. The first emphasizes

the representation of the aerodynamic nonlinearities and is based on sampling. The second assumes an incremental

change from an initial geometry, for which a high-fidelity model from the first scenario is available. In this case, data

fusion is used to update the model. In both cases, Kriging is used to interpolate the samples computed using

simulation.A commercial jet test case, usingDATCOMas a source of data, is computed to illustrate the sampling and

fusion. Future application using computational fluid dynamics as the source of data is considered.

Nomenclature

CL, CD, Cm = lift, drag, and pitching moment coefficients
CLmax = maximum lift coefficient
CLmax 0 = maximum lift coefficient of original geometry
CL� = lift slope with respect to angle of attack
CL�0 = lift slope of the original geometry
Cm� = pitching moment coefficient slope with respect

to angle of attack
Cm�0 = pitching moment slope of the original geometry
Cp = pressure coefficient
Croll, Cn = rolling and yawing moment coefficients
Cy� = side force coefficient slope with respect to angle

of sideslip
Cy�0 = side force slope of the original geometry
d = distance function to define the correlation matrix
E� � = expected value
F = matrix of regression function evaluations at

samples
f = vector of regression function evaluations
fi�x� = regression functions
n = number of samples
pq = parameters in the distance function definition
R = correlation matrix in the Kriging formulation
r = vector of correlations in the Kriging formulation
s2 = mean squared error of the Kriging predictor
x=c = distance normalized by chord length
xi = sample location (k-dimensional vector with jth

component xij)
ŷ = Kriging estimator of y
ymin = minimum of the function values at sample points
yi = observation at sample point xi

� = vector of regression coefficients
�i = regression coefficients
� = error term (difference of target function from the

mean)
� = cheap observation in cokriging

� = mean value
�q = parameter in distance function definition
� = cheap sample location in cokriging
� = weighting factor for cheap samples in cokriging
�2 = variance for Kriging error term
�, 	 = normal distribution and density functions

Introduction

T HERE is increasing interest in using physics-based modelling
in aircraft design. For example, the design of unstable aircraft

configurations would be helped by the early availability of high-
qualitymodels to allow control laws to be defined.One component of
the required model arises from the aerodynamics. Stability and
control analysis over the flight envelope traditionally uses a lookup
table of forces and moments, measured from wind-tunnel tests
relatively late in the design cycle. An alternative is to use simulation
based data early in the design cycle. Computational fluid dynamics
(CFD) has the predictive capability to generate the raw data for
the lookup table. A problem is the computational cost involved,
particularly if this is viewed as a brute-force calculation for every
entry in the table.

Fortunately, methods are available that can reduce the com-
putational cost. There are essentially three issues. First, a range of
modelling levels are available, from Reynolds-averaged Navier–
Stokes down to potential flow models and semi-empirical methods.
Each of the levels has a range of validity and cost. Data fusion can be
used for data from different methods, with low-cost data indicating
trends and a small number of high-cost simulations correcting values.
Second, reconstruction methods can significantly reduce the number
of data points that actually need to be computed tofill the table. Third,
the identification of parameter regions inwhich the aerodynamics are
nonlinear and, hence, inwhich data are urgently needed is a sampling
problem. The current paper considers these three elements.

Some studies [1–3] using Kriging for the generation of aero-
dynamic data have been published. The application of an expert
system to reduce the required number of CFD simulations required
was studied [1]. Different fidelity results were fused to generate the
aerodynamic database for a crew transfer vehicle. The results showed
that a reduction in the number of Navier–Stokes simulations from 90
to 20 was possible, saving 30% of the computational time without
sacrificing accuracy. The fusion of results from different low-fidelity
methods (DATCOM and vortex lattice methods) for a small
unmanned vehicle was studied [2], along with the benefits of using
these data to reduce the number of CFD computations. The effects of
sampling methods and modeling techniques for building a response
surface of an aerodynamic function of a deforming aerofoil was
studied in [3].
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The current paper aims to develop methodology based on Kriging
and sampling for the generation of aerodynamic tables for flight
simulation. The logical progression is from initial sampling (which
provides a first view of the aerodynamic forces and moments), to
Kriging (which interpolates the data), to sampling for finding
nonlinearities and, finally, tomethods of data fusion (combining data
from low- and high-fidelity sources). Following the discussion of
these stages, the requirements for aerodynamic models are con-
sidered and an approach for model generation in two different
scenarios is proposed. Results are then computed using DATCOM,
which is used because the function evaluations are cheap but
representative of the relevant aerodynamics, allowing focus to be
kept on the performance of the Kriging and the sampling. Finally,
conclusions are drawn. The overall aim is to demonstrate a
methodology that can be applied to CFD-generated data.

Initial Sampling

Ideally, observations of a function (in this case, aerodynamic
forces and moments) would be available at many points, but in
practice the number can be limited by computational cost. This is
particularly true if computational fluid dynamics is used to generate
observations of the function. The observed locations are referred to
as samples.

The task of the initial sampling [4] is to provide an informative
picture of the function at minimum cost. A good initial sampling
tends to fill the parameter space [5]. Monte Carlo sampling is the
most widely used method for a computer design of experiments. For
random sampling, each sample is generated independently, but
samples may not provide significant additional information [6].

Latin hypercube sampling (LHS) is amodification ofMonte Carlo
sampling for the generation of random samples. To generate Latin
hypercube samples, the range of each design variable is divided into
bins of equal probability. Then, samples are randomly selected with
the following restrictions: a) each sample is randomly placed inside a
bin, and b) for all one-dimensional projections of the samples onto
bins, there will be one and only one sample in each bin. The
technique was first described byMcKay et al. [7] in 1979 and further
elaborated by Iman et al. [8]. In the current paper, LHS is used to give
an initial view of the aerodynamic forces andmoments, which is then
refined by other sampling techniques that exploit the observations
that have already been generated. All initial samples inside the
parameter space are generated using the LHS method.

Kriging Predictor

Assume that n samples are available for a function of k
independent variables. Each sample is denoted as x�i��
�x�i�1 ; . . . ; x

�i�
k � with corresponding observations (responses) y�i� �

y�x�i�� for i� 1; . . . ; n. A Kriging function is used to approximate
the target function as

ŷ�x�� � �� � (1)

where � is the mean value, and � is the normally distributed error
term with zero mean and variance �2. Different Kriging methods
have been introduced by Goovaerts [9]. Universal Kriging, which is
used in this paper, assumes that the mean value � is a linear
combination of known functions f0�x�; . . . ; fk�x� [10]. In the current
paper, the linear functions are used where f0�x� � 1 and fj�x� � xj
for j� 1; . . . ; k. Thus, a universal Kriging model with linear
regression functions is written as

ŷ�x�� �
Xk
h�0

�hfh�x�� � � (2)

To estimate the correlation for the error term, define a spatially
weighted distance formula between samples x�i� and x�j� as

d�x�i�; x�j�� �
Xk
q�1


qjx�i�q � x�j�q jpq�
q 	 0; pq��1; 2�� (3)

The parameter 
q expresses the importance of the qth component,
and the exponent pq is related to the smoothness of the function in
coordinate direction q. A correlation matrix R is then defined by

R�

exp��d�x1; x1�� exp��d�x1; x2�� . . . exp��d�x1; xn��
exp��d�x2; x1�� exp��d�x2; x2�� . . . exp��d�x2; xn��

..

. ..
. ..

.

exp��d�xn; x1�� exp��d�xn; x2�� . . . exp��d�xn; xn��

2
6664

3
7775

To compute the Kriging model, values must be estimated for �0s
and � in conjunction with 
1; . . . ; 
k and p1; . . . ; pk. This results in
3k� 2 parameters to be calculated for a linear regressionmodel. The
parameters can be quantified using the maximum likelihood
estimator, as described by Jones et al. [11].

The predictions at an unsampled location, x�,can then be obtained
from Eq. (1). Let r denote the n vector of correlations between the
new point x� and the previous n sample points, based on the distance
formula, giving

r �

exp��d�x�; x1��
exp��d�x�; x2��

..

.

exp��d�x�; xn��

2
6664

3
7775

Then the Kriging estimate is given by

ŷ�x�� �
Xk
h�0

�hfh�x�� � rTR�1�y � F�� (4)

where �� ��0; �1; . . . ; �k� is the k� 1 dimensional vector of
regression coefficients and

F�

f0�x�i�1 � f1�x�i�1 � . . . fk�x�i�1 �
f0�x�i�2 � f1�x�i�2 � . . . fk�x�i�2 �

..

. ..
. ..

.

f0�x�i�n � f1�x�i�n � . . . fk�x�i�n �

2
6664

3
7775

A confidence interval can be calculated for this prediction. If x� is
close to sample points, there is a high level of confidence in the
prediction. This is reflected by the expression for the mean squared
error (MSE) of the predictor [5]:

s2�x�� � �2 � rTR�1r� �f�x�� � rTR�1F��FTR�1F��1


 �f�x�� � rTR�1F�T (5)

where f�x�� � �f0�x��; f1�x��; . . . ; fk�x��� is the vector of
regression coefficients corresponding to x�.

Sampling for Improved Kriging Predictor

The sampling quality depends both on the number and distribution
of the samples. An effective pattern puts samples in regions of
nonlinear behavior. In general, we need a systematic method for the
generation of samples for Kriging that ensures that the uncertainty in
the prediction of the target function is minimized. To minimize this
uncertainty, we exploit for sample generation the Kriging predicted
mean squared error. A second function, the expected improvement
function, is defined to generate dense samples at the global minimum
or maximum. In both cases, the information available in previous
samples is exploited to drive the sampling.

TheKriging predictor provides an estimation of theMSE, given in
Eq. (5). TheMSE is zero at observed points, increases as the distance
between samples increases, and can be used as the criterion for
sample generation. A sample is generated at the location where the
MSE is maximum.

To illustrate this approach, the pressure distribution over an
aerofoil is used as the unknown function. In this case, the
independent variable is the normalized distance from the leading
edge (x=c) and is in the range of [0,1]. Starting with three samples,
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two are located at the borders of the parameter space and the third is at
a random location in the range. Samples at the borders eliminate the
need for extrapolation. Kriging is applied to these three samples, and
the location of the MSE is maximized to locate a new sample. This
procedure is repeated until themaximum error falls below a specified
tolerance, and then the sampling stops. The Kriging function and the
MSE are shown in Fig. 1 for varying numbers of samples. This shows
that, by increasing the number of samples from three to 15, with new
samples positioned at the location of maximum MSE, Kriging
produces an accurate representation of the target function. The
samples are spread over the parameter space (in contrast to being
concentrated around maxima or minima when using the expected
improvement function, as discussed next).

In applications in which themaximum andminimum values of the
function are needed, new samples must be introduced in nonlinear
regions. Sampling based on theMSE puts all of the effort on a global
search of the function, driven by the weighted distance correlation
for the error terms. In practice, a combined global and local search is
needed [11]. To illustrate, an estimate of the minimum value
of the function is first based on the available samples, that is,

ymin �min�y�1�; y�2�; . . . ; y�n��. The Kriging predictor at any point
can be regarded as a random variable with mean given by the
predictor and variance given by the mean standard error. Viewed in
this way, a probability can be computed that the value at any point
will fall below the current minimum. The expected improvement
function (EIF) is obtained by weighting the possible improvements
by these probability densities and is written as

E�I�x�� �
�
�ymin � ŷ���ymin�ŷ

s
� � s	�ymin�ŷ

s
� s > 0

0 s� 0
(6)

where 	 and� are the normal density and distribution functions. The
new samples are located where the expected improvement function
has a maximum. A similar formulation can be used to search for
global maxima. Note that local maxima, local minima, and inflection
points will not be found by this sampling method.

To illustrate the performance of this sampling technique, the
aerofoil test case is again considered. The example shown aims to
capture the global minimum point using EIF sampling. The Kriging
approximation and the EIF are both shown in Fig. 2 for varying
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Fig. 1 Kriging approximation of the aerofoil pressure distribution based on samples generated using the MSE.
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numbers of samples. The location of samples in Fig. 2 can be
contrasted with those shown in Fig. 1. TheMSE sample locations are
strongly influenced by the consideration of reducing uncertainty
generated by gaps in the parameter space (i.e., large distances
between samples). In contrast, the EIF uses the emerging approxi-
mation of the function to locate samples where the global minimum
may be reduced. The global minimum is sharply defined using a
small number of EIF samples. A similar approach could be used to
locate the global maximum. The magnitude of the MSE and EIF is
used to terminate the sampling.

Data Fusion

Data fusion combines samples from different sources. It is
assumed that data are available from two sources that are,
respectively, expensive and cheap to evaluate. The cheap samples
are considered to provide information at least about the trend of the
target function, whereas the expensive samples give quantitative
information. The formulation used builds on theKriging formulation
described earlier and is called cokriging.

To explain the approach, first consider the cheap samples. A
Kriging function �̂ is calculated using just these samples. This
Kriging function is then evaluated at the location of the expensive
samples, �̂�xi�. As a second stage, the expensive samples are
augmented by this evaluation of the Kriging function for the cheap
samples, that is, the sample locations are now k� 1 dimensional

vectors x�i� � �x�i�1 ; . . . ; x
�i�
k ; �̂�xi�� with corresponding observations

y�i� � y�x�i�� for i� 1; . . . ; n. A Kriging function is calculated for
these augmented samples, with the extra component �̂�xi� bringing
information to the correlation calculation from the cheap samples.

To illustrate cokriging, the aerofoil pressure distribution example
is again used. Three samples of the expensive function are generated
(see Fig. 3). Two samples are positioned at the borders of the
parameter space to avoid extrapolation. The third sample is located
randomly in the interior.Many cheap predictionswere generated that
had the correct trend of the target function, butwith erroneous values.
The cheap samples were actually based on the expensive samples
with an applied (known) error. The cokriging of the cheap and
expensive data produces an excellent approximation of the target
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Fig. 2 Kriging approximation of the aerofoil pressure distribution based on samples generated using the EIF.
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function using only three expensive samples. The role of these
samples is to correct the values of the cheap samples, which
nonetheless provide valuable information about the trend of the
target function. In contrast, Kriging applied to the three expensive
samples alone provides a poor representation of the target function.

Aerodynamic Model Requirements

In this paper, the aerodynamic inputs to conceptual design and
flight simulation are considered together to cater to a requirement to
include improved stability and control analysis in design. For flight
simulation, a tabular model is commonly used. To illustrate this,
twelve variables are included in the tables: 1) the state variables of
angle of attack,Mach number, sideslip angle, pitch rate, yaw rate, roll

rate, time rates of angles of attack, and sideslip; and 2) the control
variables of the deflection angles of the elevator, aileron, rudder, and
wing inboard flaps.

With three forces and three moments depending on these
parameters, a very large table is required for the general case (the size
of the table risingwith a power of 12). This is unfeasible from storage
and calculation viewpoints (to illustrate, if five values are used to
provide a very coarse resolution for each parameter in the table, the
total number of entries in the table would be 512, which is already of
magnitude 100 
 106). It is also probably unnecessary. The main
aerodynamic variables are taken to be the angle of attack and the
Mach number. All forces and moments are assumed to depend on
these variables in combination with each of the remaining variables
separately. Hence, there are ten tables for each force and moment,
which are then each three dimensional. The sampling and fusion
framework is applied next to generate tables of this type. However,
the framework is also applicable to higher-dimension tables, if this is
required.

Two modes of data generation are considered. These are based
on the following scenarios. First, it is assumed that the requirement
is for a model based on high-fidelity CFD data, and that this can
be generated offline (i.e., the calculation can perhaps be done
overnight without a user waiting for the model during an inter-
active session). In this scenario, the emphasis is on finding non-
linearities in the forces and moments. The second scenario is when
a designer is involved in an interactive session. It is assumed that
the aircraft geometry is incremented from an initial design, perhaps
selected from a library of designs, and that a high-fidelity model is
available for the initial design from the first scenario. Data fusion is
then used to update this initial model, based on a small number of
calculations at an acceptable cost. In this scenario, it is assumed
that the flow topology resulting from the initial geometry does not
change due to the geometry increments. If this is not the case
(e.g., the wing sweep angle increases so that vortical flow starts to
dominate at high angles of attack), then either a new initial geo-
metry/table needs to be selected or the interactive session needs to
be suspended so that a new high-fidelity model can be generated
under the first scenario.

Results

Overview

The application of the methods described herein to the initial
generation and incrementing of aerodynamic tables is considered in
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Fig. 3 Cokriging approximation of the aerofoil pressure distribution
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Fig. 4 Passenger jet aircraft model.
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Fig. 5 Final location of the samples for the Mach number/angle of attack/pitch rate table.
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this section. The methods have been implemented in MATLAB®.§

The geometry used is based on a passenger jet wind-tunnel model,
shown in Fig. 4, and is representative of a civil transport. DATCOM
[12] is used to calculate the aerodynamic forces and moments to
allow a comprehensive testing of the sampling, Kriging, and data
fusion. It is expected that DATCOM will give representative
aerodynamic behavior at a low cost. The objective of the exercise is
to establish an approach that can be practically used with CFD-
generated data. This is evaluated in terms of the number of samples
required to accurately resolve the forces and moments.

High-Fidelity Model

The tables are generated for Mach number, angle of attack, and
one other variable at a time. For the purposes of illustration, results
are shown for sideslip and the pitch, roll and yaw rates. Each table has
2080 entries to resolve the force andmoment variations. Thefirst step
was to generate all entries using brute-force calculation. The
objective of the generation based on sampling and Kriging is to
reproduce this table with a small number of samples. Note that the
sampling is terminated in the examples presented when the
magnitude of the EIF is driven down 6 orders of magnitude from the
initial value.

The approach is illustrated using theMach number/angle of attack/
pitch rate table, because the longitudinal forces and moments in
DATCOM are a function of all three parameters. First, 10 samples
are generated along the borders of the parameter space to avoid
extrapolation by the Kriging function and inside the parameter space

using the LHS method. The initial samples are shown by circles in
Fig. 5. To build up a better picture of the behavior of the forces and
moments, MSE sampling was used to define the next nine samples
(shown by squares in Fig. 5). MSE sampling looks for samples at the
maximumof themean squared error. For each added sample,Kriging
is again used to approximate the function with all available samples
and theMSE is updated. The results show that the additional samples
are located along the border of the parameter spacewith respect to the
angle of attack and fill in the gaps between the initial samples. For
Mach number and pitch rate, the generated samples are mainly
toward theminimumandmaximumvalues (i.e., 0.1 and 0.8 forMach
number and�15 and 15 deg =s for pitch rate). In the target function,
themain nonlinearity is from the angle of attack and theEIF sampling
places samples around the stall angle over the range of Mach
numbers. The influence of pitch rate is weak, and the samples are
placed at the extrema and the zero value.

The EIF sampling was then used to refine the Kriging approxi-
mation. The version to locate the maxima and minima were used in
turn. The locations of these samples are shown by stars in Fig. 5, and
they cluster in the interior of the parameter space, toward higher
angles of attack,where, for example, the lift curve has amaximum. In
total, 35 samples were generated to approximate the behavior of the
forces andmoments, with themagnitude of the EIF used to terminate
the sampling.

Next, a selection of predicted forces and moments are compared
with the brute-force-generated tables in Fig. 6. This shows that all the
features in the lift, drag, and pitching moment curves are essentially
captured with the Kriging based on 35 samples.

A similar sampling approach was applied to the table of Mach
number/angle of attack/roll rate and the results are shown in Fig. 7.
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Fig. 6 Comparison of brute force (marked “target”) and Kriging predictions of force and moment coefficients for the Mach number/angle of attack/

pitch rate table. The label “q” is the pitch rate and is in degrees per second.

§Data about MATLAB® V2008a from The MathWorks, Inc., is available
at http://www.mathworks.com [retrieved 27 February 2009].
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Again, a small number of samples can reproduce the brute-force
results.

The conclusion from this study is that we can generate the tables to
good accuracy based on 35 samples generated using MSE and EIF
sampling. This would allow CFD to be used as a source of the data.

Model Increment

Next, we illustrate how the aerodynamic tables can be derived, for
an incremented design, from an initial high-fidelity table. The

geometry increments are assumed not to change the flow regimes
captured in the initial table, and the task is to exploit the trends in this
table while updating values. The aim is to replicate the brute-force-
generated table for the new geometry using a very small number of
additional samples. To test the approach, a number of geometry
increments for the passenger jet were defined and are shown in Fig. 8.

The high-fidelity aerodynamic model for the original geometry
was generated using the sampling techniques, as described in the
previous section. Assuming that the trend of aerodynamic forces and
moments remains unchanged for each incremented geometry, we

1-Original 2-AR=7.0 3-AR=5.0 4-AR=11.0

5-AR=15.0 6-Λ = 25 0 7-Λ = 200 8-Λ = 150

9-Λ = 5 0 10-Λ = 42 0 11-Λ = 50 0 12-Xw=0.3

13-Xw=0.28 14-Xw=0.25 15-Xw=0.35 17-Xw=0.4

18-Dihedral=5 0 19-Dihedral= − 50 20-HT apex=0.82 21-HT apex=0.75

22-HT AR=3 23-HT AR=7 24-VT AR=3 25-VT apex=0.75

26-Fus. diameter=0.23 27-Fus. diameter=0.15 28-Fus. length= 2.5 29-Fus. length=1.5

Fig. 8 Geometry increments used to test the data fusion approach. AR: aspect ratio; �: wing sweep; Xw: location of the wing down the fuselage;
Dihedral: dihedral of the wing; VTAR: aspect ratio of the vertical tail; VT apex: apex of the vertical tail; HTAR: aspect ration of the horizontal tail; HT

apex: apex of the horizontal tail; Fus. diameter: diameter of fuselage; Fus. length: fuselage length. Note that in cases 18, 19, 24, and 25 the outline of the

original geometry is included to emphasize the geometry increment involved.
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attempt to generate new tables using cokrigingwith evaluations from
the original table as the cheap observation and a very small number of
simulations as the expensive evaluations.

The first example considers the high-fidelity table including angle
of attack, Mach number, and angle of sideslip. This table again has
2080 entries. For data fusion, we limit the number of simulations to
only 10 cases. The samples are located at the high-angle-of-attack
border and the angles of attack in the original table that produce the
maximum lift coefficient. These samples are expected to be located
in the regions of most nonlinearity in the updated tables.

The quantitative comparison ofmaximum lift coefficient atM1 �
0:1 is shown in Fig. 9. There is a sharper stall at low speed within the
range of angles of attack; hence, the low speed was chosen for the
comparison. The bar chart shows the percentage of variation from the
original geometry value of CLmax from both the target and fusion
values for all test cases. Here the target values are evaluated from the
full brute-force table. Figure 9 shows that there is a close agreement
between the predicted values from cokriging and those simulated
from brute-force calculation. Predicted values are closer for small
increments or those parameters that have little influence on the
dependent variable as expected. Note that all cokriging predictions
have the same sign for the change as the target.

Likewise, the plots of the lift curve slope at high speed are
presented in Fig. 10. The figure shows that the predicted values from
fusion match favorably with the target values. For the pitching
moment comparison, the change inCm� is illustrated in Fig. 11. This
parameter is frequently used for aircraft stability and control. The
results again show a close match of cokriging and target values.
Results for the lateral force are presented in Fig. 12. The predictions
are very close to the target values. The agreement of Cy� is close for
all cases. This is not strictly a hard case for the method because
DATCOM provides a simple lateral side force correlation that only
varies linearly with flight speed and does not vary with angles of
attack and sideslip.

Conclusions

A framework based on sampling and data fusion has been
presented for the generation of aerodynamic tables for flight
simulation. Twomodes of use are anticipated. In thefirst, sampling is
used to generate high-fidelity tables (in the sense that nonlinearities
are represented). In the second, interactive geometry changes (such
as those shown thatmight be applied during an interactive conceptual
design session) are assumed from the initial geometry, and data
fusion with the initial aerodynamic tables is used. The brute-force
development of a three-dimensional table requires around 2000
evaluations of the aerodynamic forces and moments (in this case,
usingDATCOM). The sampling for the high-fidelity table allows the
same result to be obtained using 35 evaluations. The fusion allows
the table for the incremented geometry to be obtained in 10 samples.
This level of performance makes it conceivable to apply CFD as the
source of the aerodynamic data.

Future work will include the following: 1) the use of CFD-
generated data, requiring sampling to be run on a desktop machine,
with the calculation of the observations on remote clusters; 2) the
investigation of data fusion for aerofoil section changes; and 3) the
testing of the data fusion for different aircraft topologies, giving rise
to different aerodynamic regimes.

The most important research topic is the development of a
sampling approach that can locate nonlinearities away from the
global extrema.Methods that exploit flowfield information are being
investigated.
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