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Abstract 

 

Ensemble Kalman Filter (EnKF) has that disadvantage that the spin-up time needed to 

reach its asymptotic level of accuracy is longer than the corresponding spin-up time in 

variational methods (3D-Var or 4D-Var). This is because the ensemble has to fulfill two 

independent requirements, namely that the mean be close to the true state, and that the 

ensemble perturbations represent the “errors of the day”. As a result, there are cases such 

as radar observations of a severe storm, where EnKF may spin-up too slowly to be useful. 

A scheme is proposed to accelerate the spin-up of EnKF applying a no-cost Ensemble 

Kalman Smoother, and using the observations more than once in each assimilation 

window in order to maximize the initial extraction of information. The performance of 

this scheme is tested with the Local Ensemble Transform Kalman Filter (LETKF) 

implemented in a Quasi-geostrophic model, which requires a very long spin-up time 

when initialized from a cold start. Results show that with the new “running in place” 

scheme the LETKF spins-up and converges to the optimal level of error at least as fast as 

3D-Var or 4D-Var. Additional computations (2-4 iterations for each window) are only 

required during the initial spin-up, since the scheme naturally returns to the original 

LETKF after spin-up is achieved. 

 

 

1. Introduction 

 

The relative advantages and disadvantages of 4-dimensional Variational Data 

Assimilation (4D-Var), already operational in several numerical forecasting centers, and 

Ensemble Kalman Filter (EnKF), a newer approach that does not require the adjoint of 

the model, are the focus of considerable current research (e.g., Lorenc, 2003, Kalnay et 

al, 2007a, Gustafson, 2007, Kalnay et al., 2007b, Miyoshi and Yamane, 2007).  

 

One area where 4D-Var seems to have a clear advantage over EnKF is in the initial spin-

up, since the evidence thus far is that 4D-Var converges faster than EnKF to its 

asymptotic level of accuracy. For example, Caya et al. (2005) compared 4D-Var and 

EnKF for a storm simulating the development in a sounding corresponding to 00UTC 25 

May 1999. They found that “Overall, both assimilation schemes perform well and are 

able to recover the supercell with comparable accuracy, given radial-velocity and 

reflectivity observations where rain was present. 4DVAR produces generally better 

analyses than the EnKF given observations limited to a period of 10 min (or three volume 

scans), particularly for the wind components. In contrast, the EnKF typically produces 

better analyses than 4DVAR after several assimilation cycles, especially for model 

variables not functionally related to the observations.” In other words, for the severe 
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storm problem the EnKF eventually yields better results than 4D-Var, presumably 

because of the assumptions made on the 4D-Var background error covariance, but during 

the crucial initial time of storm development, when radar data starts to become available, 

EnKF provides a worse analysis. For a global shallow water model, which is only mildly 

chaotic, Zupanski et al. (2006) found that initial perturbations that had horizontally 

correlated errors converged faster and to a lower level of error than perturbations created 

with white noise. In agreement with these results, Liu (2007) found using the SPEEDY 

global primitive equations model that perturbations obtained from differences between 

randomly chosen states (which are naturally balanced and have horizontal correlations of 

the order of the Rossby radius of deformation) converged faster than white noise 

perturbations.  

 

Yang et al (2008a) compared 4D-Var and the Local Ensemble Transform Kalman Filter 

(LETKF, Hunt et al., 2007) within a quasi-geostrophic channel model.  They found that if 

the LETKF is initialized from randomly chosen fields, it takes more than 100 days before 

it converges to the optimal level of error. If, on the other hand, the ensemble mean is 

initialized from an existent 3D-Var analysis, which is already close to the true state, the 

LETKF converges to its optimal level very quickly, within about 3-5 days. However, 3D-

Var and 4D-Var converge fast without needing a good initial guess. This has also been 

observed for severe storm simulations (Caya et al., 2005), especially when using real 

radar observations (Jidong Gao, 2008, personal communication). It is not surprising that 

EnKF spins-up more slowly than 3D-Var or 4D-Var because in order to be optimal the 

ensemble has to satisfy two independent requirements, namely that the mean be close to 

the true state of the system, and that the ensemble perturbations represent the 

characteristics of the “errors of the day” in order to estimate the evolving background 

error covariance B . In both 3D-Var and 4D-Var, by contrast, B  is assumed to be 

constant.  

 

The option of initializing the EnKF from a state close enough to the optimal analysis, 

such an existent 3D-Var analysis, with balanced perturbations having realistic horizontal 

correlations, is feasible within a global operational system, and as a result spin-up is not a 

serious problem for EnKF. However, there are other situations, such as the storm 

development discussed above, where radar information is not available before the storm 

starts, so that no information is available to guide the EnKF in the spin-up towards the 

optimal analysis. The system may start from an unperturbed state without precipitation, 

and if a severe storm develops within a few minutes and the EnKF takes considerable real 

time to spin-up from the observations, it will “miss the train” and give results that are less 

useful for severe storm forecasting than 4D-Var or even 3D-Var. 

  

In this note we propose a new method to accelerate the spin-up of the EnKF by “running 

in place” during the spin-up phase and using the observations more than once in order to 

extract maximum information. We find that it is possible to accelerate the convergence of 

the EnKF so that (in terms of real time) it spins-up even faster than 3D or 4D-Var. 

Section 2 contains a brief theoretical motivation and discussion of the method, results are 

presented in Section 3 and a discussion is given in Section 4. 
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2. Spin-up, no-cost smoothing and “running in place” in EnKF 

 

Hunt et al. (2007) provided a new derivation of the linear Kalman Filter equations by 

showing that in the cost function 
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the background term represents the Gaussian distribution of a state with the maximum 

likelihood trajectory (history), i.e., the analysis/forecast trajectory that best fits the data 

from t = t
1
,...,t

n!1
. This state is obtained by using the forecast model M

t
n!1 ,tn

to advance 

the previous maximum likelihood analysis x
n!1

a and the corresponding analysis error 

covariance P
n!1

a  to the new analysis time t
n
.  In other words, the following relationship is 

satisfied for some constant c: 
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After the cost function in (1) is minimized finding the analysis x
n

a and its corresponding 

covariance P
n

a , a similar relationship holds for the analysis at t
n
 for some constant c’: 
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Equating the terms in (4) that are linear and quadratic in x , the linear Kalman Filter 

equations for a perfect model are obtained. 

 

This derivation makes clear that Kalman Filter yields the maximum likelihood estimate 

x
n

a with the corresponding error covariance P
n

a  at time t
n
if the model is linear and perfect 

and if the previous analysis x
n!1

a at t
n!1

is also the maximum likelihood state estimate at 

the previous analysis time. Hunt et al. (2007) also indicate that a system can be initialized 

with a limited number of observations at the initial time t
1
by assuming that the initial 

background error covariance is large but not infinitely large. Although this introduces 

into the cost function an additional quadratic term, they point out that “with sufficient 

observations over time, the effect of this term [on the background error covariance] at 

time t
n
decreases in significance as n increases”. In other words, with sufficient 

observations, the Kalman Filter spins-up and eventually converges and yields the 

maximum likelihood solution and its error covariance. 

 

The EnKF, like the Kalman Filter, also provides a maximum likelihood analysis, except 

that the background and analysis error covariances are estimated from an ensemble of K 

generally nonlinear forecasts: 
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where X
n

b is a matrix whose columns or the background (forecast) perturbations x
n,k

b
! x

n

b  

and x
n

b
=
1

K
x
n

b

k=1

K

! is the most likely forecast state, i.e., the ensemble average. Similar 

equations are valid for the analysis mean x
n

a  and the analysis error covariance P
n

a . Thus, 

EnKF, like the original Kalman Filter, is a sequential data assimilation system where, 

after the new data is used at the analysis time it should be discarded (Ide et al., 1997), but 

this is true only if the previous analysis and the new background are the most likely states 

given the past observations. In other words, if the system has converged after the initial 

spin-up, all the information from past observations is already included in the 

background. In contrast, 4D-Var is a smoother that best fits all the observations (even 

asynoptic data) within an assimilation window. We note that EnKF can be also easily 

extended to 4-dimensions as in 4D-Var, allowing for the assimilation of asynoptic 

observations made between two analyses (e.g., Hunt et al., 2004). In EnKF only the 

observational increments that project on the subspace of the ensemble forecasts can be 

assimilated. Therefore the observational increments computed at the observation time, 

which are linear combinations of the ensemble forecasts, can be shifted either forward or 

backward to the analysis time by simply using the same linear combination of the 

ensemble forecasts obtained at the observation time. 

 

In summary, after the initial spin-up, all the information from past observations is already 

included in the background field, so that the observations should be used only once and 

then discarded. However, there is no theoretical reason why this constraint should also be 

applied when EnKF is “cold-started”, and the initial ensemble is not representative of the 

most likely state and its uncertainty. In practical applications, nevertheless, the rule of 

using the data only once is usually applied (e.g., Zupanski et al. 2006), and a slow EnKF 

spin-up observed. In this note we suggest that when a quick EnKF spin-up (in real time) 

is needed in order to make useful short-range forecasts for fast weather instabilities, the 

initial observations can be used more than once in order to extract more information from 

them, and that this procedure leads to a much faster spin-up of the initial ensemble in real 

time. This “running in place” algorithm is made possible by the use of a “no-cost” 

Ensemble Kalman Smoother (EnKS) (Kalnay et al., 2007b, Yang et al., 2008a).   

 

The no-cost EnKS is easy to implement. Consider an assimilation window t
n!1
,t
n[ ]within 

a Square-Root type of EnKF (e.g., Tippett et al. 2003, Whitaker and Hamill, 2002, Ott et 

al., 2004). The analysis ensemble members at time t
n
are each a weighted average (linear 

combination) of the ensemble forecasts at t
n
 (Hunt et al., 2007)

1
. Since the ensemble 

                                                
1
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fields and found that they vary smoothly on large scales. As a result, if the analysis (i.e., 

the computation of the weights) is carried out on a very sparse analysis grid and then 
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analysis estimates the linear combination of the trajectories that best fits the observations 

within an assimilation window, not just at the end of the interval, the no-cost EnKS valid 

at the beginning of the window is obtained by simply applying the same weights obtained 

at analysis time t
n
 to the initial ensemble at t

n!1
. Yang et al. (2008a) tested this scheme 

and found that indeed, the no-cost EnKS smoothed ensemble at t
n!1

is more accurate than 

the analysis ensemble valid at t
n!1

, as could be expected from the fact that the smoothed 

ensemble at the beginning of the window has benefited from the information provided by 

the “future” observations in the window t
n!1
,t
n[ ] . Although the no-cost smoothing 

improves the initial analysis at t
n!1

, it does not improve the final analysis at t
n
, since the 

forecasts started from the new initial analysis ensemble will end as the final analysis 

ensemble (at least in a linear sense). 

 

With the no-cost EnKS it is then possible to go backwards in time within an assimilation 

window, and then advance with the regular EnKF using the initial observations 

repeatedly in order to extract maximum information from them. This improves the 

quality (likelihood) of the initial ensemble mean faster, and leads the ensemble-based 

background error covariance to be more representative of the true forecast error statistics.  

 

The algorithm that we have tested (not necessarily the best) is as follows: We start the 

EnKF from a randomly chosen initial ensemble mean and random perturbations at t
0
, 

and integrate the initial ensemble to t
1
. Then the “running in place” loop with n = 1 , is: 

 

a) Perform a standard EnKF analysis and obtain the analysis weights at t
n
, saving the 

mean square observations minus forecast (OMF) computed by the EnKF. 

 

b) Apply the no-cost smoother to obtain the smoothed analysis ensemble at t
n!1

by using 

the same weights obtained at t
n
.  

 

c) Perturb the smoothed analysis ensemble with a small amount of random Gaussian 

perturbations, a method similar to additive inflation. These added perturbations have two 

purposes: they avoid the problem of otherwise reaching the same final analysis at t
n
as in 

the previous iteration, and they allow the ensemble perturbations to evolve into fast 

growing directions that may not have been included in the unperturbed ensemble 

subspace.  

 

d) Integrate the perturbed smoothed ensemble to t
n
. If the forecast fit to the observations 

is smaller than in the previous iteration according to a criterion such as 

 

OMF
2
(iter) !OMF

2
(iter +1)

OMF
2
(iter)

> " ,     (6) 

                                                                                                                                            

interpolated to the in-between grid points, the interpolated weight analysis is not only 

computationally more efficient, but the interpolation does not degrade and may actually 

improve upon the full resolution analysis. 
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go to a) and perform another iteration. If not, let t
n!1

" t
n
and proceed to the next 

assimilation window. 

 

3. Results  

 

Figure 1 shows the RMS error of the analysis obtained during spin-up, using several 

methods over 200 analysis cycles of 12 hours each (corresponding to a total of 100 days). 

All the methods started from the same a randomly chosen mean state and in the case of 

LETKF, from perturbations created as Gaussian noise. 3D-Var (dashed blue line) takes 

about 60 cycles to spin-up, and 4D-var (full blue line) takes about 80 cycles, but 

converges to a much lower RMS error than 3D-Var. The standard LETKF (black line) 

using the observations once and discarding them takes much longer, a total of 170 cycles. 

During the first 120 cycles the ensemble perturbations develop into the “errors of the 

day”, and between 120 and 170 cycles the LETKF converges rather quickly to the 

optimal level of error. After they attain convergence, LETKF and 4D-Var RMS errors are 

similar.  

 

A preliminary experiment with the LETKF “running in place” algorithm allowing for 

repeated use of the observations but fixing the number of iterations at 10 is shown with a 

dashed black line. The LETKF with 10 iterations spins-down even faster than 4D-Var 

and converges in only about 50 cycles but to a higher level of error, close to 3D-Var. This 

is not surprising, since once the system is close to the maximum likelihood solution, as 

indicated by the theoretical arguments discussed above, observations should be used only 

once and then discarded. By using 10 iterations after the spin-up, the EnKF analysis fits 

the data too closely and this increases the analysis errors. 

 

The adaptive approach (6) tests whether the system is optimal by checking whether 

iterations reduce the ensemble forecast error, and stops iterating when the relative 

improvement is less than ! . A low value of ! = 0.01 (not shown) leads to a faster initial 

reduction of errors but requires a large number of iterations (Figure 2). Values of ! within 

a range of 0.02-0.05 give optimal results, leading to a spin-down of the initial errors 

similar to 3D-Var and faster than 4D-Var, and converging to and error level at least as 

good as that of 4D-Var (see red line in Figure 1 corresponding to ! = 0.05 ). 

 

We also tested whether the use of additive inflation with perturbations that are 

horizontally correlated would accelerate the spin-up, as found by Zupanski et al. (2006) 

for the initial perturbations. Figure 1 shows with a green line the result of the LETKF 

with ! = 0.05 , as in the red line, but with the additive perturbations chosen so that their 

background error covariance is the 3D-Var covariance, i.e., the columns of the matrix 

B
3D!Var

E , where E is a matrix whose columns are random Gaussian numbers such that 

EE
T
= I . Since B

3D!Var
was obtained using the NMC method (Parrish and Derber, 1992, 

Yang et al., 2008a), the additive perturbations based on B
3D!Var

have horizontal correlation 
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lengths with synoptic scales, whereas the additive Gaussian perturbations used for the 

other experiments discussed before have very small correlation lengths. The green line in 

Figure 1 shows that when the additive perturbations are horizontally correlated, 

convergence takes place faster than with the Gaussian additive perturbations, even when 

the same criterion ! = 0.05 is used for both. This agrees with the conclusion of Zupanski 

et al. (2006) that horizontal correlation of the perturbations accelerates spin-up. 

Nevertheless, once convergence has been achieved, the accuracy of the system with noisy 

perturbations (red) is slightly better than the system with B
3D!Var

perturbations. 

 

Figure 2 compares the number of iterations required by “running in place” schemes. It 

shows that with ! = 0.01 the number of iterations required starts at about 50, and remains 

at a range of 2-10 iterations even after convergence, suggesting that the criterion is too 

strict, leading to inefficient spin-up. With ! = 0.05  the system with synoptic scale 

(B
3D!Var

-based) additive perturbations converges faster, reaching 1-2 iterations after only 

about 30 data assimilation cycles, and then oscillates between 1 and 2 iterations. The 

system with uncorrelated Gaussian additive inflation (also with ! = 0.05 ) takes about 50 

data assimilation cycles to reach a single iteration (i.e., using the data only once). During 

the spin-up period the number of iterations is 2-4, and after convergence it automatically 

returns to the regular LETKF. 

 

4 Discussion 

 

The results obtained are very encouraging: it is possible to spin-up the LETKF (and other 

EnKF algorithms) when a cold-start and fast convergence to the optimal level of error (in 

terms of real or physical time) are required, by simply using the initial observations 

several times rather than only once. The no-cost Ensemble Kalman Smoother, with the 

smoothed analysis ensemble at the beginning of an assimilation window given by using 

the analysis weights of the ensemble forecast at the end of the window enables this 

algorithm to extract the maximum information from the initial observations. It is necessary 

to add small perturbations to the ensemble, in a procedure akin to additive inflation. The 

number of iterations needed is estimated by checking whether the smoothed analysis 

reduces the forecast error (OMF). A level of relative reduction !  of about 2-5% was 

found to work well in this quasi-geostrophic model, leading to about 2-4 iterations during 

spin-up, and when the system converges it naturally returns to the original LETKF.  

 

In the case of a developing storm, it would be possible to use the weight interpolation 

algorithm of Yang et al (2008b) to perform the additional iterations locally, “where the 

action is”, rather than throughout the whole domain. We found that additive inflation 

with horizontal correlations accelerates the initial spin-up, in agreement with Zupanski et 

al. (2006), but later is slightly worse than uncorrelated errors. These exploratory 

experiments are encouraging, agree with a similar acceleration found by Anna Trevisan 

(personal communication, 2008) using initial bred vectors, and may be applicable to other 

problems such as ocean data assimilation where a fast spin-up is desirable.  
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Figure 1 Time series of RMS analysis errors in potential temperature at the bottom level 

of the original LETKF (black line), 4D-Var (blue line) and 3D-Var (dashed blue line). 

The dashed black line represents the LETKF “running in place” algorithm with Gaussian 

additive inflation but with a fixed number of iterations (10). The red line is for an 

adaptive number of iterations with ! = 0.05 and Gaussian additive inflation, and the green 

line is as the red one, but with correlated additive inflation (see text). 
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Figure 2 Number of iterations required by the spin-up LETKF with Gaussian additive 

inflation using ! = 0.05  (red line), ! = 0.01 (thin grey line), and ! = 0.05  (red line) but 

correlated additive (green line). The dashed black line is as the red line but fixing the 

number of iterations at 10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


