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ABSTRACT

Aims. To study the possibility of the appearance of an accelerated universe in scalar tensor cosmological models.
Methods. We consider scalar tensor theories of gravity assuming that the scalar field is not minimally coupled with gravity. We use
this theory to study evolution of a flat homogeneous and isotropic universe. In this case the dynamical equations can be derived form a
point-like Lagrangian. We study the general properties of dynamics of this system and show that for a wide range of initial conditions
such models lead in a natural way to an accelerated phase of expansion of the universe. Assuming that the point-like Lagrangian
admits a Noether symmetry, we are able to explicitly solve the dynamical equations.
Results. We study one particular model and show that its predictions are compatible with observational data, namely the publicly
available data on type Ia supernovae, the parameters of large scale structure determined by the 2-degree Field Galaxy Redshift
Survey (2dFGRS), the measurements of cosmological distances with the Sunyaev-Zel’dovich effect and the rate of growth of density
perturbations. This model produces in a natural way an epoch of accelerated expansion. With an appropriate choice of parameters our
model is fully compatible with several observed characteristics of the universe.
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1. Introduction

Recent observations of type Ia supernovae, Gamma Ray Bursts
and CMB anisotropy indicate that the total matter-energy density
of the universe is now dominated by some kind of dark energy
(Riess et al. 1998; Riess 2000; Riess et al. 2004). The origin and
nature of this dark energy is not yet known (Zeldovich 1967;
Weinberg 1989).

In the last several years a new class of cosmological mod-
els has been proposed. In these models the standard cosmologi-
cal constant Λ-term is replaced by a dynamical, time-dependent
component – quintessence or dark energy – that is added to
baryons, cold dark matter (CDM), photons and neutrinos. The
equation of state of the dark energy is given by wφ ≡ pφ/ρφ,
where pφ and ρφ are, respectively, the pressure and energy den-
sity, and −1 ≤ wφ < 0, that implies a negative contribution to the
total pressure of the cosmic fluid. When wφ = −1, we recover
a constant Λ-term. One of the possible physical realizations
of quintessence is a cosmic scalar field (Caldwell et al. 1998),
which dynamically induces a repulsive gravitational force, caus-
ing an accelerated expansion of the Universe, as recently dis-
covered by observations of distant type Ia supernovae (SNIa)
(Riess et al. 1998, 2004) and confirmed by the WMAP observa-
tions (Spergel et al. 2003).

The existence of a considerable amount of dark energy leads
to at least two theoretical problems: 1) why only recently did
dark energy start to dominate over matter; and 2) why during
the radiation epoch the density of dark energy is vanishingly
small in comparison with the energy density of radiation and

matter (fine tuning problem). The fine tuning problem can be
alleviated by considering models of dark energy that admit so-
called tracking behavior (Steinhardt et al. 1999). In such mod-
els, for a wide class of initial conditions, the equation of state of
dark energy tracks the equation of state of the background mat-
ter and radiation (Steinhardt et al. 1999; Zlatev et al. 1999). All
these circumstances stimulated a renewed interest in the general-
ized gravity theories, and prompted consideration of a variableΛ
term in more general classes of theories, such as the scalar tensor
theories of gravity (Perrotta et al. 2000). One of the additional
advantages of these theories is that they open new perspectives
in the scenario of a decaying dark energy, since the same field
that causes the time (and space) variation of the dark energy also
causes the Newton’s constant to vary.

In this paper we consider cosmological models in a non min-
imally coupled scalar tensor theory of gravitation. We assume
that the universe is homogeneous and isotropic and its geome-
try is described by the Friedman-Robertson-Walker line element.
For simplicity we consider only the case of a flat universe. In this
case the scalar field depends only on time and the dynamical
equations that describe evolution of the geometry and the scalar
field can be derived from a point-like Lagrangian. We derive the
general set of dynamical equations and discuss their basic prop-
erties. When we require that the pointlike Lagrangian admits an
additional Noether symmetry the dynamical equations can be ex-
plicitly integrated. In particular we consider a model with the
scalar field potential of the form V(φ) = V0φ

4 and we analyze
its dynamics. Finally to compare predictions of our model with
observations we concentrate on the following data: the publicly
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available data on type Ia supernovae, the parameters of large
scale structure determined by the 2-degree Field Galaxy Redshift
Survey (2dFGRS), and measurements of cosmological distances
with the Sunyaev-Zel’dovich effect. We show that our model is
compatible with these observational data.

Our paper is organized as follows: in Sect. 2 we present our
model and discuss its basic properties. In Sect. 3 we compare
predictions of our model with observational data, Sect. 4 is de-
voted to the discussion of evolution of density perturbations in
our model and in Sect. 5 we present our conclusions.

2. Model description

Let us consider the general action of a scalar field φ non mini-
mally coupled with gravity when there is no coupling between
matter and φ

A =
∫

T

√−g
(
F(φ)R +

1
2
gµνφ,µφ,ν − V(φ) +Lm

)
d4x, (1)

where F(φ), V(φ) are two generic functions representing the
coupling of the scalar field with geometry and its potential en-

ergy density respectively, R is the curvature scalar,
1
2
gµνφ,µφ,ν is

the kinetic energy of the scalar field φ andLm describes the stan-
dard matter content. In units such that 8πGN = � = c = 1, where
GN is the Newtonian constant, we recover the standard grav-

ity when F = −1
2

, while in general the effective gravitational

coupling Geff = − 1
2F . Here we would like to study the simple

case of a homogeneous and isotropic universe, that implies that
the scalar field φ depends only on time. In the flat Friedman-
Robertson-Walker cosmologies, Eq. (1) reduces to the pointlike
Lagrangian1

L = 6Faȧ2 + 6F′φ̇a2ȧ + a3

(
1
2
φ̇2 − V(φ)

)
− Da−3(γ−1), (2)

where a is the scale factor and the prime denotes a derivative
with respect to φ, while the dot denotes a derivative with respect
to time. Moreover, the constant D is defined in such a way that
the matter density ρm is expressed as ρm = D(ao/a)3γ, where
1 ≤ γ ≤ 2. The effective pressure and energy density of the
φ-field are given by

pφ =
1
2
φ̇2 − V(φ) − 2(F̈ + 2HḞ), (3)

ρφ =
1
2
φ̇2 + V(φ) + 6HḞ, (4)

where H =
ȧ
a

is the Hubble constant. These two expressions,

even if not pertaining to a conserved energy-momentum tensor,

define an effective equation of state wφ =
pφ
ρφ

, which drives the

late time behavior of the model. The field equations derived from
Eq. (2) are the same ones that would come from the field equa-
tions derived from Eq. (1) when homogeneity and isotropy are
imposed, that is

H2 = − 1
2F

(ρφ
3
+
ρm

3

)
, (5)

1 We use the expression pointlike to stress that the field Lagrangian
obtained from Eq. (1) can be considered as defined in the minisuper-
space where the remaining two variables (a, φ) depend only on the cos-
mological time t and so they can be considered as describing a mechan-
ical system with two degrees of freedom.

2Ḣ + 3H2 =
1

2F
(pφ + pm), (6)

and

φ̈ + 3Hφ̇ + 6(Ḣ + 2H2)F′ + V ′ = 0. (7)

The scalar tensor theory with the scalar field non minimally cou-
pled to gravity provides a wide framework to study cosmological
models. The function F(φ) that describes the coupling between
the scalar field and gravity influences not only the evolution of
the cosmological scale factor and the scalar field itself but also
determines the strength of gravitational interactions. In this pa-
per we consider only the simple case of a homogeneous and
isotropic flat universe filled in with a scalar field (quintessence)
and pressureless matter, i.e., pm = 0 (dust). Thus, our model de-
scribes the evolution of the universe only after matter-radiation
decoupling. The scalar field that appears in our model is treated
as quintessence. To discuss the changing influence of the scalar
field on the evolution of the universe and the effective equation

of state of quintessence, we set x ≡ φ̇
2

2V
, and x1 ≡ Ḟ

V
, we find

that

wφ =
pφ
ρφ
=

x − 1 + 2x1

(
V̇
V + 2H

)
− 2ẋ1

x + 1 + 6Hx1
· (8)

The parameter x measures the ratio of the kinetic energy relative
to the potential energy of the scalar field. In the non minimally
coupled case it is possible to invert the Eq. (8) and we get that

x =
ρφ(1 + wφ) + 2

(
F̈ − HḞ

)
ρφ(1 − wφ) − 2

(
F̈ + 5HḞ

) · (9)

When the coupling function F is a constant we recover the rela-

tion x =
1 + wφ
1 − wφ that holds in the minimally coupled case. When

wφ < 0 the quintessence contributes negative pressure, this oc-
curs when

x < 1 + 2

[
ẋ1 − x1

(
V̇
V
+ 2H

)]
, (10)

while the inequalities

x ≥ ẋ1 − x1

(
V̇
V
+ 5H

)
, (11)

x < ẋ1 − x1

(
V̇
V
+ 5H

)
(12)

correspond to the standard quintessence (wφ ≥ −1) and su-
perquintessence respectively (wφ < −1). If both F(φ) and V(φ)
are known, it is possible to describe, in the parameter space, the
transition between standard quintessence and superquintessence.
Let us now introduce the concept of an effective cosmological
constant Λeff . Using Eq. (5) it is natural to define the effective

cosmological constant as Λeff = − ρφ2F
. With this definition we

can rewrite Eq. (5) as

3H2 = Geffρm + Λeff. (13)

Introducing the standard Omega parameters by

Ωm = − ρm

6FH2
, Ωφ =

Λeff

3H2
= − ρφ

6FH2
,
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Fig. 1. Rate of change of the equation of state as measured by ẇφ versus
the wφ parameter. We see that together with the superquintessence re-
gion wφ < −1, (SQ), there appears also a superquintessence connected
region (SQC) with an equation of state wφ > 0. The blue straight line
corresponds, indeed, to values of parameters such that we observe nei-
ther a superquintessence expansion, nor a stiff matter behaviour.

we get that as usual

Ωm + Ωφ = 1. (14)

From the definition of ρφ and pφ and the generalized Klein-
Gordon equation it follows that

ρ̇φ + 3H
(
pφ + ρφ

)
= −6H2Ḟ, (15)

and

Λ̇eff + Ġeffρm = −3HGeff

(
pφ + ρφ

)
. (16)

These equations play the role of the continuity equations for ρφ
and Λeff .

We will show later on that asymptotically for large times Ġeff
tends to zero, then wφ determines the late time scaling of Λeff ,
and actually

Λ̇eff

Λeff
≈ −3H̃

(
1 + wφ

)
, (17)

where H̃ is the asymptotic value of H. If at large t, H̃ is con-
stant and �0, then asymptotically wφ → −1. Such a transition
to the asymptotic value is responsible for the accelerated expan-
sion. Even if we start from a dust or other stiff equation of state,
wφ converges towards −1, as shown in Fig. 1. Together with the
superquintessence region wφ < −1, (SQ), there exists also a su-
perquintessence connected region (SQC) with an equation of
state wφ > 0. The blue straight line corresponds to the values
of parameters such that we observe neither a superquintessence
expansion, or a stiff matter behaviour.

2.1. Exact solutions through the Noether theorem

To find exact solutions in the framework of the non minimally
coupled models we assume that the pointlike Lagrangian pos-
sesses a Noether symmetry (for a detailed exposition of this tech-
nique which we closely follow here and interesting examples
see Capozziello et al. 1996). This means that we require the ex-
istence of a Noether vector field along which the Lie derivative
of the Lagrangian is zero. This requirement restricts the possi-
ble coupling and the form of the potential. In fact the additional
Noether symmetry exists when

V = V0(F(φ))p(s), (18)

where V0 is a constant and

p(s) =
3(s + 1)
2s + 3

, (19)

where s is a real number, and when the coupling F(φ) satisfies
the following differential equation

d1F′′F2 + d2F′4 + d3F′2F + d4F2 = 0, (20)

and the coefficients are functions of the parameter s,

d1 =
2s + 3

2
, (21)

d2 = 3s(s + 1)(s + 2), (22)

d3 = −1
4

(s + 1)(8s2 + 16s + 3), (23)

d4 =
s(2s + 3)2

12
· (24)

A particular solution is

F = ξ(s)(φ + φ0)2, (25)

where

ξ(s) =
(2s + 3)2

48(s + 1)(s + 2)
, (26)

and φ0 is a constant. The parameter s labels then the class of
Lagrangians that admit a Noether symmetry. The form of the
coupling given by (25) is relevant from the point of view of
fundamental physics. Not all the values of s are allowed how-
ever. From the expressions (18) and (26) it follows that the cases
when s = −1, s = −3/2, s = −2 are special and they should
be treated independently. Through Eq. (18) it is possible to re-
cover the inverse power-law potentials, while the case s = 0
as we will see later is special and it corresponds to the square
hyperbolic sine potential. Both these potentials are usually as-
sumed ad hoc to have a certain asymptotic behavior of the en-
ergy density of the quintessence field (Peebles & Ratra 1988;
Urena-Lopez & Matos 2000), while here they emerge naturally
from the imposed Noether symmetry. Once the general solution
of Eq. (20) is found, that automatically specifies the form of the
potential, and a generic value of s is considered, it is possible to
explicitly find the Noether symmetry and to introduce new dy-
namical variables associated with this symmetry (for details see
Capozziello et al. 1996). Using the new dynamical variables it is
then possible to solve the corresponding Lagrange equations and
finally by inverting them we obtain the sought after a(t) and φ(t).
The final result can be written in the form

a(t) = A(s)

(
B(s)

(s + 3)2

6(s + 6)
t

3
s+3 +

D
Σ0

) s+1
s

t
2s2+6s+3

s(s+3) , (27)

φ(t) = C(s)

(
− V0

γ(s)
B(s)t

3
s+3 +

D
Σ0

)− 2s+3
2s

t−
(2s+3)2

2s(s+3) − φ0, (28)

where D is the matter density constant, Σ0 is a constant of the
motion resulting from the Noether symmetry, V0 is the constant
that determines the scale of the potential, φ0 is a constant that
determines the initial value of the scalar field and the other con-
stants A(s), B(s), C(s), and γ(s) are given in the Appendix. As it
is apparent from Eqs. (27) and (28) for a generic value of s both
the scale factor a(t) and the scalar field φ(t) have a power law
dependence on time. It is also clear that there are two additional
particular values of s, namely s = 0 and s = −3 which should be
treated independently. In this paper we concentrate on the case
s = −3 which provides, as will be shown shortly, an interesting
class of models.
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Fig. 2. Plot of log10δGeff = log10
Geff

Geff(t0)
versus log10 a. The vertical bar

marks log10 a0.

2.1.1. The case of quartic potentials: analysis
of the solution

When s = −3 the general solutions given by (27) and (28)
lose their meaning. To find a(t) and φ(t) in this case it is nec-
essary to use the general procedure as described in Capozziello
et al. (1996). From Eqs. (18) and (25) it follows that in this case
F = 3

32φ
2, and V(φ) = V0φ

4 where we have set φ0 = 0 and
V0 denotes a constant. This case is particularly interesting since
the resulting self-interaction potential is used in finite temper-
ature field theory. The quartic form of the potential is required
to implement the symmetry restoration in several Grand Unified
Theories. Therefore we limit our analysis to this special case,
and we will show that it provides an accelerated expansion of
the universe. We reserve for a forthcoming paper the study of
the other cases. As in the general case, once we have the func-
tions F(φ) and V(φ) that allow a Noether symmetry it is possible
to explicitly find it and effectively solve the Lagrange equations.
Performing this procedure we finally get

a(t) = α0e
−α1 t

3

[(
eα1 t − 1

)
+ α2 t + α3

] 2
3 , (29)

φ(t) = φ0

√
eα1t

(eα1 t − 1) + α2 t + α3
, (30)

where α0, α1, α2 α3 and φ0 are integration constants. They are
related to the initial matter density, D, and the scale of the po-
tential V0 by D = V0

16α
3
0φ

2
0α1α2, which implies that they cannot

be zero. The case V0 = 0 has to be treated separately. The con-
stants α3, φ0 and α0 have an immediate physical interpretation:
α0, and α3 are connected to the value of the scale factor at t = 0,
actually a(0) = (α3)

2
3α0. Moreover α3 can be selected in such a

way that at a sufficiently early epoch the universe is matter dom-
inated. This requires that α3 be sufficiently small, for example,
that α3 ∈ [0.001, 0.01]. The constants α3 and φ0 are connected

to the initial value of the scalar field φ(0) =
φ0√
α3

and therefore

they determine the initial value of the effective gravitational con-

stant Geff(0) = −16α3

3φ2
0

. An attractive gravity is recovered when

φ0 is a pure imaginary number. Without compromising the gen-
eral nature of the problem we can set, for example φ0 = ı. This
choice does not violate the positivity of the energy density of the
scalar field or the weak energy condition. To determine the inte-
gration constants α1, α2, α3 and φ0 we follow the procedure used
in Demianski et al. (2005), and we set the present time t0 = 1.
That is to say that we are using the age of the universe, t0, as a

unit of time. Because of our choice of time unit the expansion
rate H(t) is dimensionless, so that our Hubble constant is not the
same as the H0 that appears in the standard FRW model, mea-
sured in km s−1 Mpc−1: we then set Ĥ0 = H(1). Using (29) we
get

H(1) = Ĥ0 = −α1

3
+

2
3

α1eα1 + α2

eα1 + α2 + α3 − 1
,

which we use to find α2 in the form

α2 =
eα1 (α1 − 3Ĥ0) + (α3 − 1)(3Ĥ0 + α1)

3Ĥ0 + α1 − 2
·

With this choice of time the scale factor, the scalar field and the
expansion rate assume the final form

a(t) = a0e−
α1 t

3 (31)

×
⎛⎜⎜⎜⎜⎝eα1 t +

eα1 (α1 − 3Ĥ0) + (α3 − 1)(3Ĥ0 + α1)

3Ĥ0 + α1 − 2
t + α3 − 1

⎞⎟⎟⎟⎟⎠2/3

,

φ(t) = φ0

√√√√ eα1t

eα1t − eα1
(
α1−3Ĥ0

)
+(α3−1)

(
3Ĥ0+α1

)
3Ĥ0+α1−2

t + α3 − 1
, (32)

H(t) =
{
α1 (α1 + 2eα1) + eα1tα1

(
3Ĥ0 + α1 − 2

)
+3Ĥ0

(
α1 − 2eα1 + 2

)
−

(
α2

1 + 3Ĥ0 (α1 + 2)
)
α3

+
[(
−1 − eα1

)
α2

1 + α3α
2
1 + 3

(
−1 + eα1 + α3

)
Ĥ0α1

]
t
}

×
{
{3eα1t

(
3Ĥ0 + α1 − 2

)
− (α3 − 1) (33)

×
(
3Ĥ0(t − 1) + α1(t − 1) + 2

)
+ eα1

(
α1 − 3Ĥ0

)
t
}−1
.

t now varies from 0 to 1 and t = 1 corresponds to the present
moment. The parameters Ĥ0 and α1 admit a simple physical in-
terpretation. Ĥ0 is the present value of the Hubble constant mea-
sured in our unit of time, while α1 drives the early time and the
asymptotic behavior of a(t) and φ(t). For t 
 1

α1
we have

a(t) ∼
[(
α1 + α2 − α1α2

2

)
t + α3

] 2
3

(34)

φ(t) ∼ [(α1 + α2 − α1α3)t + α3]−
1
2 . (35)

Later at larger t, a(t) reaches an intermediate stage, when it
evolves as a(t) ∼ t

2
3 e−

α1t
3 (dumped dust), and has a de Sitter be-

havior a(t) ∼ e
α1t
3 for t → ∞.

wφ represents an equation of state2, in the usual sense, of the
effective cosmological constant Λeff.. In Figs. 3−5 we show the
time dependence of wφ: we see that this equation of state can
admit a superquintessence behavior (w < −1), as an effect of the
transition toward w→ −1.

In the remote past as in the far future wφ is constant: it
mimics an almost dust equation of state (wφ ≈ 0) in the far
past and asymptotically behaves as a bare cosmological constant
(wφ → −1) as t → ∞. Since both ρφ and pφ depend on F(φ)

2 Moreover, we will show in the following that in order to fit the
observational data H̃ = α1

3 has to be of the same order of magnitude as

Ĥ0, i.e. roughly α1 ≈ 3Ĥ0. This implies that this model even if formally
depending on two parameters is very sturdy and depends mainly on the
Hubble constant.
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Fig. 3. Time dependence of wφ, for two different values of the parame-
ters. The solid curve corresponds to α1 = 2.5, and Ĥ0 = 0.95, while the
dashed one corresponds to α1 = 3, and Ĥ0 = 1. We see that even though
they both produce accelerated expansion, only the second one gives rise
to super acceleration.

Fig. 4. Parametric plot of wφ as a function of the acceleration; we see
the transition from the accelerated to the decelerated expansion.

Fig. 5. Parametric plot of wφ with respect to the deceleration parame-
ter q = − äȧ

a2 ; again we see the transition from the accelerated to the
decelerated expansion. Moreover, we see that if we consider the value
q  −0.68 obtained from the SNIa Gold Sample (Riess et al. 2004) we
obtain wφ ≤ −0.65.

through its time derivative and asymptotically φ(t) ∼ const. we
asymptotically recover the minimally coupled case, with

ρφ∞ =
1
2
φ̇2
∞ + V∞(φ) = V0φ

4
0 +

1
8
φ2

0e−2α1 t, (36)

pφ∞ =
1
2
φ̇2
∞ − V∞(φ) = −V0φ

4
0 +

1
8
φ2

0e−2α1t. (37)

However, before reaching this asymptotic regime the total en-
ergy density ρφ is dominated by the coupling term 6HḞ. We
present the traditional plot log ρφ− log a compared with the mat-
ter density (see Fig. 6). We see that ρφ tracks the matter during
the matter-dominated era (actually a(t) ∝ t

2
3 , and wφ ∼ 0), and

becomes dominant at late time. In Fig. 7 we plot the redshift
behavior of the quintessence sound velocity; we see that cs < 1.

2.1.2. A special case: asymptotic freedom at t  0

In this section we consider a special case when limt→0 Geff = 0,
that is when limt→0 φ = ∞ we have a sort of asymptotic freedom

Fig. 6. Plot of log10 ρφ versus log10 a. The vertical bar marks log10 a0.
The solid blue straight line indicates the log−log plot of ρm versus a.

Fig. 7. The redshift behavior of the quintessence sound velocity cs.

Fig. 8. Plot of log10 ρφ versus log10 a when there is asymptotic freedom
at t  0. The vertical line marks log10 a0. The solid blue straight line
indicates the log−log plot of ρm versus a.

at t = 0. Such a case can be reached by setting α3 = 0, which also
implies that a(t = 0) = 0, and the expressions for a(t) and φ(t)
become simpler. In comparison with the case α3 � 0 the main
difference is the behavior of the density ρφ with respect to the
matter density, as shown in Fig. 8. The coupling F(φ) diverges
as t → 0, with its derivatives, more rapidly than ρm. However ρm
always dominates over the scalar field contribution to the den-
sity, that is over ρφ. The early epoch t ≈ 0 does not belong to
the physical time domain of our model, since we are neglect-
ing the contribution of radiation, and therefore the time behavior
of Geff during the intermediate period is unknown. This is also
the reason why we do not use any constraint on Geff from the
nucleosynthesis. With respect to the other characteristic features
this case is similar to that discussed above, as shown in the Fig. 9.

3. Observational data and predictions
of our models

Above we discussed some general properties of our scalar field
model of quintessence, stressing how it provides a natural mech-
anism for the observed accelerated expansion of the universe.
To test the viability of our model we compare its predictions
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Fig. 9. The same as in Figs. 4, 5 when there is asymptotic freedom at
t  0.

with the available observational data. We concentrate mainly
on two different kinds of observational data: some of them are
based on distance measurements, as the publicly available data
on type Ia supernovae, the measurements of cosmological dis-
tances with the Sunyaev-Zel’dovich effect and radio-galaxies
data, other treat the large scale structure, such as the parameters
of large scale structure determined by the 2-degree Field Galaxy
Redshift Survey (2dFGRS), and the gas fraction in clusters. In
Fig. 12 for our model the transition redshift from a decelerat-
ing to an accelerating phase in the evolution of the universe falls
very close to z = 0.5, in agreement with recent results coming
from SNIa observations (Riess et al. 2004).

3.1. Constraints from recent SNIa observations

In recent years the confidence in type Ia supernovae as standard
candles has been steadily growing. It was the SNIa observations
that gave the first strong indication of an accelerating expan-
sion of the universe, which can be explained by assuming the
existence of dark energy or a nonzero cosmological constant
(Schmidt et al. 1998). Since 1995 two teams of astronomers
have been discovering type Ia supernovae at high redshifts. The
first results of both teams were published by Schmidt et al.
(1998) and Perlmutter et al. (1999). Recently the High-Z SN
Search Team reported discovery of 8 new supernovae in the red-
shift interval 0.3 ≤ z ≤ 1.2 and they compiled data on 230 previ-
ously discovered type Ia supernovae (Tonry et al. 2001). Later
Barris et al. (2004) announced the discovery of twenty-three
high-redshift supernovae spanning the range of z = 0.34−1.03,
including 15 SNIa at z ≥ 0.7.

More recently Riess et al. (2004) announced the discovery
of 16 type Ia supernovae with the Hubble Space Telescope. This
new sample includes 6 of the 7 most distant (z > 1.25) type Ia su-
pernovae. They determined the luminosity distance to these su-
pernovae and to 170 previously reported ones using the same set
of algorithms, obtaining in this way a uniform “Gold Sample”
of type Ia supernovae containing 157 objects. The Supernova
Legacy Survey (SNLS) team presented the data collected dur-
ing the first year of the SNLS program. It consists of 71 high
redshift supernovae in the redshift range z ∈ [0.2, 1]. This new
SNLS sample is characterized by precise distance measurements
of all the 71 supernovae, so it can be used to build the Hubble
diagram extending to z = 1. The purpose of this section is to
test our scalar field quintessence model by using the best SNIa

data sets presently available. As a starting point we consider the
gold sample compiled by Riess et al. (2004) to which we add
the SNLS dataset. To constrain our model we compare through
a χ2 analysis the redshift dependence of the observational esti-
mates of the distance modulus, µ = m−M, to the corresponding
theoretical values. The distance modulus is generally defined by

m − M = 5 log DL(z) + 5 log

(
c

H0

)
+ 25, (38)

where H0 is the standard Hubble constant, measured in
km s−1 Mpc−1, m is the appropriately corrected apparent mag-
nitude including reddening, K correction etc., M is the corre-
sponding absolute magnitude, and DL is the luminosity distance
in Mpc. However, in scalar tensor theories of gravity it is im-
portant also to include in Eq. (38) corrections, that describe the
effect of the time variation of the effective gravitational con-
stant Geff on the luminosity of high redshift supernovae. If the
local value of Geff at the space time position of the most dis-
tant supernovae differs from GN, this could in principle induce
a change in the Chandrasekhar mass Mch ∝ G−

3
2 . Some ana-

lytical models of the supernovae light curves predict that the
peak luminosity is proportional to the mass of nickel produced
during the explosion, which is a fraction of the Chandrasekhar
mass. The actual fraction varies in different scenarios, but al-
ways the physical mechanism of type Ia supernovae explosion
relates the energy yield to the Chadrasehkar mass. Assuming
that the same mechanism for the ignition and the propagation
of the burning front is valid for SNIa at high and low redshifts,
the predicted apparent magnitude will be fainter by a quantity
(Gaztañaga et al. 2002)

∆MG =
15
4

log

(
Geff

Geff0

)
· (39)

Taking this into account the distance modulus becomes

m − M = 5 log DL(z) + 5 log

(
c

H0

)
+ 25 + ∆MG. (40)

The presence of this correction allows one to test the scalar ten-
sor theories of gravity (Gaztañaga et al. 2002; Uzan 2003) using
the SNIa data. For a general flat and homogeneous cosmological
model the luminosity distance can be expressed as an integral of
the Hubble function as follows:

DL(z) =
c

H0
(1 + z)

∫ z

0

1
H(ζ)

dζ, (41)

where H(z) is the Hubble function expressed in terms of z =
a0/a(t) − 1. Using Eqs. (39) and (41), which in our case can be
integrated only numerically, we construct the distance modulus
and perform the χ2 analysis on the complete data set. We obtain
χ2

red = 1.7 for 230 data points, and the best fit value is Ĥ0 =

1.0+0.03
−0.04, α1 = 2.9+0.2

−0.3, which corresponds to ΩΛeff = 0.73+0.06
−0.07.

We also get h = 0.68+.05
−.03. Moreover we checked that any value

of α3 ∈ [0.001, 0.01] does not affect the determination of dis-
tances, so that in the following we set α3 = 0.001, being confi-
dent that such a choice does not alter the main results. In Fig. 10
we compare the best fit curve with the observational data sets.

3.1.1. Dimensionless coordinate distance test

After having explored the Hubble diagram of SNIa, that is the
plot of the distance modulus as a function of the redshift z,
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Fig. 10. Observational data of the Gold Sample of SNIa (Riess et al.
2004) and the SNLS dataset (Astier et al. 2005) fitted to our model. The
solid curve is the best fit curve with Ĥ0 = 1.0+0.03

−0.04, α1 = 2.9+0.2
−0.3, which

corresponds to ΩΛeff = 0.84+0.06
−0.07. We also obtain h = 0.68+.05

−.03.

Fig. 11. The same as in Fig. 10, but zooming on the high redshift SNIa.

Fig. 12. Behavior of the second derivative of the scale factor. The tran-
sition from a decelerating to an accelerating expansion occurs close to
z = 0.5, as predicted by recent observations of SNIa zt = 0.46 ± 0.13
(Riess et al. 2004).

we want here to follow a very similar, but more general ap-
proach, considering as a cosmological observable the dimen-
sionless coordinate distance defined as:

y(z) =
∫ z

0

1
H(ζ)

dζ. (42)

y(z) does not depend explicitly on h so that any choice of h does
not alter the main result. Daly & Djorgovski (Daly & Djorgovski
2004) have determined y(z) for the SNIa in the Gold Sample of
Riess et al. (Riess et al. 2004) which represents the most homo-
geneous SNIa sample available today. Since SNIa allows one to
estimate DL rather than y, a value of h has to be set. Fitting the
Hubble law to a large set of low redshift (z < 0.1) SNIa, Daly &
Djorgovski (2004) have found that:

h = 0.66 ± 0.08 km s−1 Mpc−1,

which is consistent with our fitted value h = 0.66+.05
−.03. To en-

large the sample, Daly & Djorgovski added 20 further points

Fig. 13. Observational Daly & Djorgovski database (Daly & Djorgovski
2004) fitted to our model. The solid curve is the best fit curve with
χ2

red = 1.19 for 186 data points, and the best fit value is Ĥ0 = 1.00+0.05
−0.03,

α1 = 2.5+0.3
−0.2.

on the y(z) diagram using a technique of distance determina-
tion based on the angular dimension of radiogalaxies (Daly &
Djorgovski 2004). This extended sample that spans the red-
shift range (0.1, 1.8) has been obtained by homogenizing dif-
ferent kinds of measurements, affected by different systematics,
so that the full sample may be used without introducing spu-
rious features in the y(z) diagram. However before using the
dimensionless coordinate distance test we do not use the Daly
& Djorgovski database directly, but, for the supernovae Gold
Sample we first converted the distance modulus into y(zi) using
the Eq. (40) and the relation

DL =
c

H0
(1 + z)y(z).

Here again H0 is the standard FRW Hubble constant. To deter-
mine the best fit parameters, we define the following merit func-
tion:

χ2(α1, Ĥ0) =
1

N − 3

N∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎣y
(
zi;α1, Ĥ0

)
− yi

σi

⎤⎥⎥⎥⎥⎥⎥⎦
2

· (43)

We obtain χ2
red = 1.19 for 186 data points, and the best fit value

is Ĥ0 = 0.98+0.05
−0.03, α1 = 2.5+0.3

−0.2. In Fig. 13 we compare the best fit
curve with the observational data set. Daly & Djorgovski (2004)
developed a numerical method for a direct determination of the
expansion and acceleration rates, H(z) and q(z), from the data,
using the dimensionless coordinate distance y(z), without mak-
ing any assumptions about the nature or evolution of the dark
energy. They use the equation

−q(z) ≡ äa/ȧ2 = 1 + (1 + z) (dy/dz)−1(d2y/dz2), (44)

valid for k = 0. Equation (44) depends only upon the Friedman-
Robertson-Walker line element and the relation (1+z) = a0/a(t).
Thus, this expression for q(z) is valid for any homogeneous and
isotropic universe in which (1 + z) = a0/a(t), and is therefore
quite general and can be compared with any model to account
for the acceleration of the universe. This new approach has the
advantage of being model independent, but it introduces larger
errors in the estimation of q(z), because the numerical derivation
is very sensitive to the size and quality of the data. An addi-
tional problem is posed by the sparse and not complete coverage
of the z-range of interest. Measurement errors are propagated in
the standard way leading to estimated uncertainties of the fit-
ted values. In Fig. 14 we compare the q(z) obtained by Daly &
Djorgovski from their full data set with our best fit model.
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Fig. 14. A first look at the allowed region for q(z), obtained by Daly
& Djorgovski from the full data set (shadow area). An approximated
polynomial corresponding to a z-window ∆z = 0.6 is shown with the
black thin solid line, with the black thick dashed lines are shown the
approximated polynomial fitted to the smoothed data at ±1σ range, and
corresponding to a z-window ∆z = 0.4. The blue solid line shows the
deceleration function, q(z), for our model corresponding to the the best
fit values Ĥ0 = 1.00+0.05

−0.03, α1 = 2.5+0.3
−0.2. It is compared to the correspond-

ing function for the standard ΛCDM model with ΩM = 0.3, ΩΛ = 0.7.

3.2. The Sunyaev-Zeldovich/X-ray method

In this section we discuss how the parameters of our model can
be also constrained by the angular diameter distance DA as mea-
sured using the Sunyaev-Zeldovich effect (SZE) and the thermal
bremsstrahlung (X-ray brightness data) for galaxy clusters. In a
homogenous and isotropic cosmological model the angular di-
ameter distance can be easily related to the coordinate distance
leading to

DA =
c

H0

1
(1 + z)

∫ z

0

1
H(ζ)

dζ. (45)

Distance measurements using SZE and X-ray emission from the
intracluster medium are based on the fact that these processes de-
pend on different combinations of some parameters of the clus-
ters (see Birkinshaw 1999, and references therein). The SZE is
a result of the inverse Compton scattering of the CMB photons
on hot electrons of the intracluster gas. The number of photons
is preserved, but photons gain energy and thus a decrement of
the temperature is generated in the Rayleigh-Jeans part of the
black-body spectrum while an increment appears in the Wien
region. We limit our analysis to the so-called thermal or static
SZE, which is present in all the clusters, neglecting the kinematic
effect, which is present only in clusters with a nonzero peculiar
velocity with respect to the Hubble flow along the line of sight.
Typically the thermal SZE is an order of magnitude larger than
the kinematic one. The shift of temperature is:

∆T
T0
= y

[
x coth

( x
2

)
− 4

]
, (46)

where x =
hν

kBT
is a dimensionless variable, T is the shifted radi-

ation temperature, T0 is the unperturbed CMB temperature and y
is the so called Compton parameter, defined as the optical depth
τ = σT

∫
nedl times the energy gain per scattering:

y =

∫
kBTe

mec2
neσTdl. (47)

In Eq. (47), Te is the temperature of the electrons in the intra-
cluster gas, me is the electron mass, ne is the number density of
the electrons, and σT is the cross section of Thompson electron
scattering. We have used the condition Te � T0 (Te is of the
order of 107 K and T0, is the CMB temperature 2.7 K) and we
assumed that the CMB temperature varies linearly with redshift

that implies that after recombination the CMB radiation cools
adiabatically with no injection of energy in the form of photons.
In the low frequency regime of the Rayleigh-Jeans approxima-
tion we obtain

∆TRJ

T0
 −2y. (48)

The next step to quantify the SZE decrement is to specify
the model for the intracluster electron density and temperature
distribution. The most commonly used model is the so called
isothermal β model of Cavaliere & Fusco Femiano (1976). In
this model

ne(r) = ne0

⎛⎜⎜⎜⎜⎜⎝1 + (
r
re

)2⎞⎟⎟⎟⎟⎟⎠−
3β
2

, (49)

Te(r) = Te0 , (50)

where ne0 and Te0 are respectively the central electron number
density and temperature of the intracluster electron gas, re and β
are fitting parameters connected with the model (Sarazin 1988).
The relative temperature shift is given by

∆T
T0
= −2kBσTTe0 ne0

mec2
·Σ, (51)

where

Σ =

∫ ∞

0

⎛⎜⎜⎜⎜⎜⎝1 + (
r
rc

)2⎞⎟⎟⎟⎟⎟⎠−
3β
2

dl, (52)

which depends only on the geometry and the extension of the
cluster along the line of sight. In Eq. (52), l is the coordinate
along the line of sight, r2 = l2 + R2, and R2 = x2 + y2. A simple
geometrical argument converts the integral in Eq. (52) into an
angular form. Introducing the angular diameter distance, dA, to
the cluster we can rewrite (51) as

∆T (θ = 0)
T0

= −2
σTkBTene0

me

√
π
Γ
(

3β
4

)
Γ
(

3β
2

) c
H0

dA, (53)

where Te is the gas temperature. The factor
c

H0
dA in Eq. (53)

carries the dependence of the thermal SZE on the cosmological
models (for a discussion of the dependence of dA on the stan-
dard ΛCDM model see Demianski et al. 2003). From Eq. (53),
we also note that the central electron number density is propor-
tional to the inverse of the angular diameter distance,

nSZ
e0 ∝

∆TSZ

T0

1
dA
· (54)

Independently the central number density of electrons can be
also measured by fitting the X-ray surface brightness profile,
S X ∝

∫
n2

eΛ(Te)dl, where the integration is along the line of
sight and Λ(Te) is the X-ray emissivity at the electron tempera-
ture Te. It turns out that

nX
e0 ∝

√
S X

dA
· (55)

By eliminating ne0 from Eqs. (55) and (54), one can solve for the
angular diameter distance, yielding

dA ∝ (∆TSZ)2

S X
· (56)
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Fig. 15. Observational SZE data fitted to our model with the best fit
values Ĥ0 = 0.97+0.04

−0.03, α1 = 3.2+0.1
−0.1, and h = 0.75 ± 0.05.

Recently distances to 18 clusters with redshift ranging from
z ∼ 0.14 to z ∼ 0.78 have been determined from a likelihood
joint analysis of SZE and X-ray observations (see Table 7 in
Reese et al. 2002). We perform our analysis using angular diam-
eter distance measurements for a sample of 44 clusters, contain-
ing the 18 above mentioned clusters and an other 24 that we
known previously (see Birkinshaw 1999). We perform a statisti-
cal analysis on the SZE data defining the following merit func-
tion:

χ2(α1, Ĥ0) =
1

M − 3

M∑
i=1

[
(DA(zi;α1,H0) − Di)

σi

]2

· (57)

We obtain χ2
red = 1.14 for 44 data points, and the best fit values

are Ĥ0 = 0.97+0.04
−0.03, α1 = 3.2+0.1

−0.1. We also get h = 0.75 ± 0.05.
In Fig. 15 we compare the best fit curve with the observational
SZE data.

3.3. Gamma-ray burst Hubble diagram

Gamma-ray bursts (GRBs) are bright explosions visible across
most of the Universe, certainly out to redshifts of z = 4.5 and
likely out to z ∼ 10. Recent studies have pointed out that GRBs
may be used as standard cosmological candles. The prompt en-
ergy released during the burst spans nearly three orders of mag-
nitude, and the distribution of the opening angles of the emis-
sion, as deduced from the timing of the achromatic steepening
of the afterglow emission, spans a similar wide range of values.
However, when the apparently isotropic energy release and the
conic opening of the emission are combined to infer the intrinsic,
true energy release, the resulting distribution does not widen, as
is expected for uncorrelated data, but shrinks to a very well deter-
mined value (Frail & Kulkarni 2003), with a remarkably small
(one-sided) scattering, corresponding to about a factor of 2 in
total energy. Similar studies in the X-ray band have reproduced
the same results. It is thus very tempting to study to what extent
this property of GRBs makes them suitable cosmological stan-
dard candles. Schaefer (Schaefer 2003) proposed using two well
known correlations of the GRBs luminosity (with variability,
and with time delay) to the same end, while other exploited the
recently reported relationship between the beaming-corrected
γ-ray energy and the locally observed peak energy of GRBs (see
for instance Dai et al. 2004). As for the possible variation of am-
bient density from burst to burst, which may widen the distribu-
tion of bursts energies, Frail & Kulkarni (2003) remarked that
this spread is already contained in their data sample, and yet the
distribution of energy released is still very narrow. There are at
least two reasons why GRBs are better than type Ia supernovae
as cosmological candles. On the one hand, GRBs are easy to
find and locate: even 1980s technology allowed BATSE to lo-
cate ∼1 GRB per day, despite an incompleteness of about 1/3,

Fig. 16. Hubble diagram for the BATSE gamma ray bursts
(Schaefer 2003) up to z = 4.5.

making the build-up of a 300-object database a one-year enter-
prise. The Swift satellite launched on 20 November 2004 is ex-
pected to detect GRBs at about the same rate as BATSE, but with
a nearly perfect capacity for identifying their redshifts simulta-
neously with the afterglow observations3. Second, GRBs have
been detected out to very high redshifts: even the current sample
of about 40 objects contains several events with z > 3, with one
(GRB 000131) at z = 4.5. This should be contrasted with the
difficulty of locating SN at z > 1, and the absolute lack of any
SN with z > 2. On the other hand, the distribution of luminosi-
ties of SNIa is narrower than the distribution of energy released
by GRBs, corresponding to a magnitude dispersion σM = 0.18
rather than σM = 0.75. Thus GRBs may provide a complemen-
tary standard candle, out to distances which cannot be probed
by SNIa, their major limitation being the larger intrinsic scat-
ter of the energy released, as compared to the small scatter in
peak luminosities of SNIa. There currently exists enough infor-
mation to calibrate luminosity distances and independent red-
shifts for nine bursts (Schaefer 2003). These bursts were all de-
tected by BATSE with redshifts measured from optical spectra
of either the afterglow or the host galaxy. The highly unusual
GRB 980425 (associated with supernova SN1998bw) is not in-
cluded because it is likely to be qualitatively different from the
classical GRBs. Bursts with red shifts that were not recorded by
BATSE cannot yet have their observed parameters converted to
energies and fluxes that are comparable with BATSE data. We
perform our analysis using the data shown in Fig. 16 with the
distance modulus µ, given by Eq. (40). To this aim, the only dif-
ference with respect to the SNIa is that we slightly modify the
correction term of Eq. (39), into

∆mGeff = 2.5γ
∆Geff(t)

(ln 10) Geff
· (58)

We expect that γ is of order unity, so that the G-correction would
be roughly half a magnitude. We obtain χ2

red = 1.09, and the best

fit value is Ĥ0 = 1+0.05
−0.04, α1 = 2.8+0.1

−0.2, and h = 0.66 ± 0.05,
which are compatible with the SNIa results. We also confirm
that γ = 1.5 as in Eq. (39). In Fig. 17 we compare the best fit
curve with both the GRBs and the SNIa Gold Sample.

3.4. The gas fraction in clusters

In this section we consider a recently proposed test based on
the gas mass fraction in galaxy clusters (Allen et al. 2002). Both
theoretical arguments and numerical simulations predict that
the baryonic mass fraction in the largest relaxed galaxy clus-
ters should not depend on the redshift, and should provide an

3 http://swift.gsfc.nasa.gov/docs/swift/proposals/
appendix_f.html
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Fig. 17. Observational Hubble diagram for the SNIa Gold Sample
(Riess et al. 2004), the SNLS data (Astier et al. 2005) (filled boxes),
and the BATSE GRBs data (Schaefer 2003) (empty boxes) fitted to
our model. The solid curve is the best fit curve with Ĥ0 = 1+0.05

−0.04,
α1 = 2.8+0.1

−0.2, and h = 0.68 ± 0.05.

Fig. 18. The same as in the Eq. (17), but zooming on the high redshift
GRBs.

estimate of the cosmological baryonic density parameter Ωb
(Eke et al. 1998). The baryonic content in galaxy clusters is
dominated by the hot X-ray emitting intra-cluster gas so that
what is actually measured is the gas mass fraction fgas and it
is this quantity that should not depend on the redshift. Moreover,
it is expected that the baryonic mass fraction in clusters equals
the universal ratio Ωb/ΩM so that fgas should indeed be given by
b× (Ωb/ΩM), where ΩM is the matter density parameter, and the
multiplicative factor b is motivated by simulations that suggest
that the gas fraction is lower than the universal ratio because of
processes that convert part of the gas into stars or eject it out
of the cluster altogether. Following the procedure described in
(Allen et al. 2002, 2004), we adopt the SCDM model (i.e., a flat
universe with ΩM = 1 and h = 0.5, where h is the Hubble con-
stant in units of 100 km s−1 Mpc−1) as a reference cosmology in
making the measurements so that the theoretical expectation for
the apparent variation of fgas with the redshift is:

fgas(z) =
bΩb

(1 + 0.19
√

h)ΩM

⎡⎢⎢⎢⎢⎣DSCDM
A (z)

Dmod
A (z)

⎤⎥⎥⎥⎥⎦1.5

, (59)

where DSCDM
A and Dmod

A is the angular diameter distance for the
SCDM and our model respectively. Allen et al. (2002) have ex-
tensively analyzed the set of simulations in Eke et al. (1998) to
get b = 0.824±0.089, so in our analysis below, we set b = 0.824.
We have checked that, for values in the 2σ range quoted above,
the main results do not depend on b, but also on α3. Moreover
we have defined the following merit function:

χ2=χ2
gas+

(
Ωbh2 − 0.0214

0.0020

)2

+

(
h − 0.72

0.08

)2

+

(
b − 0.824

0.089

)2

, (60)

where we substitute the appropriate expression of ΩM for our
model

χ2
gas =

Ngas∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎣ fgas(zi, α1, Ĥ0) − f obs
gas (zi)

σgi

⎤⎥⎥⎥⎥⎥⎥⎦
2

· (61)

Here f obs
gas (zi) is the measured gas fraction in galaxy clusters at

redshift zi with an error σgi and the sum is over the Ngas clusters
considered. To estimate the gas fraction, it is necessary to eval-
uate the total cluster mass given by Mtot ≡ Mgas

fgas
. Generally the

standard assumption used to derive clusters masses from X-ray
data is that the system is in hydrostatic equilibrium. This allows
one to obtain a mass estimator through the gas dynamical equi-
librium equation:

M(<r) = − rkBT
Gµmp

[
dρgas

dln r

]
, (62)

where kB is the Boltzmann constant, T the cluster gas tempera-
ture, µ the mean molecular weight, mp the proton mass, and ρgas
the gas mass density profile. Allen et al. (2004) have released a
catalog of 26 large relaxed clusters with a precise measurement
of both the gas mass fraction fgas and the redshift z. To avoid
possible systematic errors in the fgas measurement, it is desirable
that the cluster is both highly luminous (so that the S/N ratio is
high) and relaxed, so that both merging processes and cooling
flows are absent. We use these data to perform our likelihood
analysis, getting χ2 = 1.17 for 26 data points, and α1 = 2.5+0.4

−0.1,

Ĥ0 = 0.98 ± 0.04, h = 0.72 ± 0.05, and wφ = −0.82 ± 0.1. To
complete our analysis we carry out a brief comparison of our re-
sults with similar recent results of Lima et al. (Lima et al. 2003),
where the equation of state characterizing the dark energy com-
ponent is constrained by using galaxy cluster X-ray data. In their
analysis, however, they consider quintessence models in stan-
dard gravity theories, with a non evolving equation of state, but
they allow the so-called phantom dark energy with w < −1, that
violates the null energy condition. As a best fit value of w to
the data of Allen et al. (2002) they obtain w = −1.29+0.686

−0.792. In
order to directly compare this result with our analysis we first
fit the model considered in Lima et al. (2003) to the updated
and wider dataset of Allen et al. (2004), used in our analysis.
We also refer to the model function fgas(z), and the merit func-
tion χ2, defined in the Eqs. (59), and (60) respectively. We get
χ2 = 1.175 for 26 data points, andΩM = 0.23+0.05

−0.03, h = 0.76+0.04
−0.09,

and w = −1.11 ± 0.35, so w < −1, that corresponds to phantom
energy. We note that our model, instead, gives wφ = −0.82± 0.1,
that does not violate the null energy condition. In Fig. 19 we
compare the best fit curves for our and the Lima et al. model
with the observational data.

4. Growth of density perturbations

In this section we consider the behavior of scalar density per-
turbations in the longitudinal gauge ds2 = −(1 + 2Φ)dt2 +
a2(1 − 2Φ)dx2. While in the framework of the minimally cou-
pled theory we have to deal with a fully relativistic component,
which becomes homogeneous on scales smaller than the hori-
zon so that standard quintessence cannot cluster on such scales.
In the non-minimally coupled quintessence theories it is pos-
sible to separate a pure gravitational term both in the stress-
energy tensor Tµν, and in the energy density ρφ, so the situa-
tion changes, and it is necessary to consider also fluctuations of
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Fig. 19. In the diagram we plot the best fit curve to the fgas data for
our nmc model (green thin line) and for the quintessence model (black
thick line) considered in (Lima et al. 2003). It is interesting to note the
different behaviour of the two curves, even if the statistical significance
of the best fit procedure for these two models is comparable: the best
fit relative to our nmc model seems to be dominated by smaller redshift
data, while the one relative to the Lima et al. model seems dominated
by higher redshift data.

the scalar field. However, the equation for dustlike matter den-
sity perturbations inside the horizon can be written as follows
(Boisseau et al. 2000; Riazuelo & Uzan 2002):

δ̈m + 2Hδ̇m − 1
2

GCav ρm δm  0, (63)

with GCav the effective gravitational constant between two test
masses and defined by

GCav =
1
F

(
2F + 4(dF/dφ)2

2F + 3(dF/dφ)2

)
· (64)

Equation (63) describes in the non-minimally coupled models
evolution of the CDM density contrast, δm ≡ δρm/ρm, for per-
turbations inside the horizon. In our model the Eq. (63) is com-
plicated and takes the form

δ̈m +
2
(
2α2 + α1

(−α3eα1t − α2t + 1
))

3 (α3 + eα1 t + α2t − 1)
δ̇m

−
eα1

(
α1α2 + eα1

(
α2

1 − 16V0

))
6 (α2 + eα1 + α3 − 1)2 (α3 + eα1t + α2t − 1) a3

i

δm = 0, (65)

where

α2 =
α1 (−α3 + eα1 + 1) − 3Ĥ0 (α1 + eα1 − 1)

3Ĥ0 + α1 − 2
· (66)

Equation (65) does not admit exact solutions, and can be solved
only numerically. However, with our choice of normalization the
whole history of the Universe is confined to the range t ∈ [0, 1]
and therefore to study the behavior of the solution for t  0 we
can expand the exponential functions in Eq. (65) in series around
t = 0. We obtain an integrable Fuchsian differential equation,
which is a hypergeometric equation. We then use the obtained
exact solution to set the initial conditions at t = 0 to numerically
integrate Eq. (65) in the whole range [0, 1]. We use the growing
mode δ+ to construct the growth index f as

f ≡ dln δ+
dln a

, (67)

where a is the scale factor. Once we know how the growth in-
dex f evolves with redshift and how it depends on our model pa-
rameters, we can use the available observational data to estimate

Fig. 20. The growth index f in different cosmological models: the solid
line corresponds to our non minimally coupled model. The dashed
curves correspond to a more standard quintessence model with an ex-
ponential potential (described in Demianski et al. 2005).

the values of such parameters, and the present value ofΩM0. The
2dFGRS team has recently collected positions and redshifts of
about 220 000 galaxies and presented a detailed analysis of the
two-point correlation function. They measured the redshift dis-

tortion parameter β =
f
b

, where b is the bias parameter describ-

ing the difference in the distribution of galaxies and mass, and
obtained that β|z→0.15 = 0.49 ± 0.09 and b = 1.04 ± 0.11. From
the observationally determined β and b it is now straightforward
to get the value of the growth index at z = 0.15 corresponding to
the effective depth of the survey. Verde et al. (2001) used the bis-
pectrum of 2dFGRS galaxies, and Lahav et al. (2002) combined
the 2dFGRS data with CMB data, and they obtained

bverde = 1.04 ± 0.11, (68)

blahav = 1.19 ± 0.09. (69)

Using these two values for b we calculated the value of the
growth index f at z = 0.15, we get respectively

f1 = 0.51 ± 0.1, (70)

f2 = 0.58 ± 0.11. (71)

To evaluate the growth index at z = 0.15 we first have to invert
the z − t relation and find t0.15. Then, substituting z = 0.15 and
the two values of f1 and f2 we calculate Ĥ0 and α1. Actually the
z − t relation is rather involved and cannot be exactly inverted,
so we apply this procedure numerically. We get α1 = 3.3± 0.05,
Ĥ0 = 0.98+0.05

−0.02, V0 = 0.5 ± 0.06 which corresponds to ΩΛ0 =
0.65±0.08. In Fig. 20 we show how the growth index is changing
with redshift in our non minimally coupled model as compared
with a standard quintessence model namely the minimally cou-
pled exponential model described in Demianski et al. (2005). We
note that at low redshift theoretical predictions of these different
models are not distinguishable; independent measurements from
large redshift surveys at different depths can disentangle this de-
generacy.

5. Conclusions

In this paper we have shown that in the framework of the non
minimally coupled scalar tensor theory of gravitation it is possi-
ble to consider homogeneous and isotropic cosmological mod-
els with a time dependent dark energy component. These models
have the very interesting feature of producing in a natural way an
epoch of accelerated expansion. In these models the over all den-
sity of the universe is initially dominated by matter (for the sake
of simplicity we do not include radiation in our consideration)
and later on the energy density of the scalar field becomes domi-
nant and the universe enters an accelerated phase of its evolution.
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Table 1. The basic cosmological parameters derived from our model compared with observational data.

α1 ̂H0 ΩΛ0 w dataset

2.9+0.3
−0.2 1.0+0.03

−0.04 0.84+0.06
−0.07 −0.86 ± 0.06 Gold SNIa + SNLS

3.2+0.1
−0.09 0.97+0.04

−0.07 0.62 ± 0.08 −1.1 ± 0.15 SZe
2.5+0.3
−0.2 1+0.05

−0.03 0.8 ± 0.15 −0.76 ± 0.1 dimensionless coordinate
2.8+0.1
−0.2 1+0.05

−0.04 0.84 ± 0.05 −0.81 ± 0.07 GRBs
2.5+0.4
−0.1 0.98 ± 0.04 0.76 ± 0.06 −0.82 ± 0.1 gas fraction in clusters

3.3 ± 0.05 0.98+0.05
−0.02 0.65 ± 0.08 −1.1 ± 0.07 galaxies peculiar velocity

3.2 ± 0.04 0.99 ± +0.02 0.77 ± 0.03 −0.9 ± 0.04 averaged mean

At large t asymptotically wφ → −1, and such a transition to the
asymptotical value is responsible for the accelerated expansion.
The equation of state can admit a superquintessence behavior
(w < −1), without violating the weak energy condition, as an ef-
fect of the transition toward w → −1. The energy density of the
scalar field decreases with time but before the present epoch it
starts to dominate the expansion rate of the universe and asymp-
totically for t → ∞ the universe reaches a de Sitter stage. To
check the viability of our model we have compared its predic-
tions with the available observational data. With an appropriate
choice of parameters our model reproduces the observed charac-
teristics of the universe. Since in order to exactly solve the dy-
namical equations we have not included radiation into our con-
sideration, we do not use CMB data and observed abundances
of light elements in the comparison of theoretical predictions of
our model with observational data.

In Table 1 we present the results of our analysis, they show
that the predictions of our model are fully compatible with the
recent observational data.

Acknowledgements. This work was supported in part by the grant of Polish
Ministry of Science and Information Society Technologies 1-P03D-014-26,
INFN Na12 and the PRIN DRACO. The authors are very grateful to Prof.
Djorgovski for providing the data that we used in Sect. 3.1.1.

Appendix A

As was already noted the solution of the coupled system of the
Einstein equations and generalized Klein-Gordon equation de-
scribing our model can be written in the form

a(t) = A(s)

(
B(s)t

3
s+3 +

D
Σ0

) s+1
s

t
2s2+6s+3

s(s+3) , (A.1)

φ(t) = C(s)

(
− V0

γ(s)
B(s)t

3
s+3 +

D
Σ0

)− 2s+3
2s

t−
(2s+3)2

2s(s+3) − φ0, (A.2)

where A(s), B(s), C(s), γ(s) and χ(s) are given by

A(s) = (χ(s))
s+1

s

(
(s + 3)Σ

3γ(s)

) s+2
s+3

, (A.3)

B(s) =

(
(s + 3)Σ

3γ(s)

)− 3
(s+3) (s + 3)2

s + 6
, (A.4)

C(s) = (χ(s))−
(2s+3)

2s

(
(s + 3)Σ

3γ(s)

)− (3+2s)
2(s+3)

, (A.5)

and

γ(s) =
2s + 3

12(s + 1)(s + 2)
, (A.6)

χ(s) = − 2s
2s + 3

· (A.7)
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