
✐

✐

“jgt” — 2009/2/11 — 10:24 — page 1 — #1
✐

✐

✐

✐

✐

✐

Vol. 14, No. 1: 1–15

Accelerating Unstructured Volume

Rendering with Joint Bilateral

Upsampling

Steven P. Callahan and Cláudio T. Silva

Scientific Computing and Imaging Institute, University of Utah

Abstract. We present an image-space acceleration technique that allows real-time

direct volume rendering of large unstructured volumes. Our algorithm operates as

a simple post-process and can be used to improve the performance of any existing

volume renderer that is sensitive to image size. A joint bilateral upsampling filter

allows images to be rendered efficiently at a fraction of their original size, then up-

sampled at a high quality using properties that can be quickly computed from the

volume. We show how our acceleration technique can be efficiently implemented

with current GPUs and used as a post-process for a wide range of volume rendering

algorithms and volumetric datasets.

1. Introduction

A major challenge for the visualization community is to develop methods that
allow users to explore large amounts of data interactively. Direct volume ren-
dering has become an important technique for visualizing 3D scalar data, and
much research has been devoted to interactive techniques [Engel et al. 06, Silva
et al. 05]. Acceleration techniques that approximate full-quality images are
common to provide interactivity with volumes too large or complex to han-
dle otherwise. The general idea is to switch to a reduced representation of
the rendering during interaction but still allow a full-quality representation

© A K Peters, Ltd.

1 1086-7651/09 $0.50 per page

✐

✐

“jgt” — 2009/2/11 — 10:24 — page 2 — #2
✐

✐

✐

✐

✐

✐

2 journal of graphics, gpu, & game tools

to be rendered if desired. Approximation strategies for both structured and
unstructured volumes fall into two categories: those that operate in object
space and those that operate in image space. Whereas object-space methods
involve simplifying or downsampling the volume to reduce the amount of data
rendered [Garland and Zhou 05, Cignoni et al. 04, Callahan et al. 05a], image-
space methods usually involve reducing the number of pixels that are ren-
dered [Levoy 90c, Levoy 90b, Levoy 90a, Danskin and Hanrahan 92, Roettger
et al. 03, Krüger and Westermann 03]. The result is a fast approximation
to the full-quality image that contains either low-frequency error, such as
blurring, or high-frequency error, such as “jaggies” caused by aliasing, from
object-space and image-space methods, respectively.

We present an image-space approach that downsamples for efficient render-
ing then upsamples for display using a joint bilateral filter to remove aliasing
artifacts while still preserving sharp features. Our upsampling algorithm is
a post-process that can be used independently of or in combination with ex-
isting object-space and image-space acceleration approaches with very little
computation or implementation overhead.

2. Overview

The bilateral filter [Tomasi and Manduchi 98] was first introduced as a method
for denoising images and works by combining a linear kernel, such as a Gaus-
sian, with a nonlinear, feature-preserving term that weights the pixels based

(a) Original. (b) Bilateral. (c) Linear.

Figure 1. The dragon dataset rendered (a) normally at full opacity at 5122, (b)
upsampled from a 1282 rendering using our joint bilateral filter that combines a
low-resolution color buffer with a high-resolution depth buffer, and (c) upsampled
linearly from a 1282 rendering. When applied to volumes, our bilateral upsam-
pling technique is an acceleration method that removes unwanted aliasing while still
preserving sharp features.

✐

✐

“jgt” — 2009/2/11 — 10:24 — page 3 — #3
✐

✐

✐

✐

✐

✐

Callahan and Silva: Accelerating Volume Rendering with Joint Bilateral Upsampling 3

on intensities. The introduction of a separate reference image for performing
the feature preservation is useful in some cases and is termed joint (or cross)
bilateral filtering [Petschnigg et al. 04, Eisemann and Durand 04]. This has
recently been shown to be useful for enhancing images with solutions that
have been computed over downsampled images [Kopf et al. 07]. We build on
this latter approach to improve volume rendering performance by rendering
normally into a downsampled image and combining that with a low-cost ref-
erence image computed at full size. Instead of pixel intensities, our reference
image contains depth information that can be used to encode the shape of the
volume in a full-size image. The result is an image that preserves the color
of the downsampled image with the sharp features of the reference image.
For opaque renderings, this has the appearance of smoothing the geometry
in object space, though it happens entirely in image space. Figure 1 shows
an example of the effect of our algorithm applied to an opaque rendering of a
triangle mesh.

3. The Technique

Our acceleration technique is briefly summarized by the following steps:

1. Render the volume into a small offscreen image I using an existing
volume rendering algorithm.

2. Render the boundary geometry of the volume at full size and capture
the depths of the fragments in a reference image R.

3. Upsample the offscreen image I to full size using texturing hardware and
combine it with the reference image R using the joint bilateral filter.

Figure 2 shows the visual effect of our algorithm on a volume. The details
of each step in our method are described in the remainder of this section.

3.1. The Joint Bilateral Upsampling Filter

The original bilateral filter uses both a domain (spatial) and a range filter
kernel on the input image to produce a denoised output image. For some
position p, the filtered result is

Jp =
1

kp

∑

q∈Ω

Iqf(‖ p − q ‖)g(‖ Ip − Iq ‖),

where f is the spatial filter, such as a low-pass filter that operates on pixel
colors centered over p, g is the range filter kernel, such as a low-pass filter

✐

✐

“jgt” — 2009/2/11 — 10:24 — page 4 — #4
✐

✐

✐

✐

✐

✐

4 journal of graphics, gpu, & game tools

(a) Original. (b) Bilateral.

(c) Linear. (d) Nearest.

Figure 2. The SPX dataset rendered using a software ray caster (a) normally at
a 10242 resolution at one frame per second, and upsampled from a 1282 image at
ten frames per second using (b) our feature-preserving joint bilateral upsampling,
(c) linear interpolation, and (d) nearest neighbor interpolation (similar to a method
that casts one ray per 82 pixel grid). Only the original and our bilateral method
preserve the diagonal edge that appears in the center of the inset images.

that operates on pixel intensities centered over p, Ω is the spatial support of
the kernels f and g, and kp is the normalization computed as the sum of f
and g filter weights. Intuitively, f · g is just a new filter kernel that changes
per pixel to respect intensity boundaries:

The joint bilateral upsampling filter uses separate images at different reso-
lutions for the domain and range to compute an upsampled solution S from

✐

✐

“jgt” — 2009/2/11 — 10:24 — page 5 — #5
✐

✐

✐

✐

✐

✐

Callahan and Silva: Accelerating Volume Rendering with Joint Bilateral Upsampling 5

a given high-resolution image I and a low-resolution solution R that is used
as a reference image:

Sp =
1

kp

∑

q↓∈Ω

Rq↓f(‖ p↓ − q↓ ‖)g(‖ Ip − Iq ‖),

where p and q denote coordinates in I, and p↓ and q↓ denote the corresponding
coordinates in the low-resolution reference image R. This formulation is used
to compute costly solutions for high-resolution images at less costly lower
resolutions. Our algorithm is different, as an inexpensive solution R at high
resolution is used to upsample a low-resolution image I. In the same notation,
our filter could be expressed as

Sp =
1

kp

∑

q∈Ω

Iq↓f(‖ p↓ − q↓ ‖)g(‖ Rp − Rq ‖),

where p and q denote integer coordinates in the high-resolution reference image
R, and p↓ and q↓ denote the corresponding fractional coordinates in the low-
resolution image I. Note that in this formulation, the domain of the filter
becomes dependent on the final image size desired, not the size of the reference
image, as was the case previously.

3.2. Computing the Reference Image

To preserve features in our upsampled version, a full-resolution reference im-
age is needed for the range component of the bilateral filter. This reference
image needs to be fast to compute and general enough to apply to a vari-
ety of volume renderers. For unstructured grids, it is common to represent
the domain (or boundaries) of the volume to facilitate the understanding of
the features that are contained therein. Fortunately, the boundaries are easy
to capture—they are often already used by volume rendering algorithms as
starting points for ray traversal [Bunyk et al. 97, Weiler et al. 03] or as the
base case for object-space LOD [Callahan et al. 05a]. Other sharp boundaries
within the volume could be used as well, such as those provided by isosurfaces,
if they are readily available.

For our bilateral upsampling to faithfully preserve the features of the vol-
ume’s domain, more than just the frontmost boundary needs to be captured.
Multiple depth layers are already used by many volume renderers to handle
nonconvex meshes either in software [Bunyk et al. 97] by creating a sorted
depth list for each pixel, or in hardware [Bernardon et al. 06, Weiler et al. 04]
using depth peeling [Everitt 99]. Depth peeling is a multipass algorithm that

✐

✐

“jgt” — 2009/2/11 — 10:24 — page 6 — #6
✐

✐

✐

✐

✐

✐

6 journal of graphics, gpu, & game tools

captures one layer of depth on each pass, starting with the nearest fragment
per pixel, then the second nearest, third nearest, and so on. This can be per-
formed efficiently in hardware by rendering the first pass normally, resulting
in a depth buffer of the nearest surface. In subsequent passes, the depth buffer
computed in the previous pass is used to peel away depths less than or equal
to those already captured in previous passes. These depth peeling passes can
even be reduced to a single pass using stencil routing [Bavoil and Myers 08].

To compute the reference image in an existing volume rendering algorithm,
we leverage the framework already in place for capturing depths whenever
possible. If depths are not already captured, we simply add a depth peeling
pass to the renderer that uses shaders and fragment tests to collect the depth
layers in a fixed number of offscreen textures. The number of depth passes
that are used is dependent on the volume being rendered and the opacity at
which it is being rendered. In our experience, two or three layers are sufficient
for most unstructured volumes to capture the visible boundary features.

3.3. Implementation

Our joint bilateral upsampling is implemented with minimal changes to an
existing algorithm. The low-resolution image I and the reference image R
are rendered offscreen. Then in a final pass, a full-resolution, screen-aligned
quadrilateral is drawn that binds both images as textures and uses a frag-
ment shader to perform the joint bilateral filter. Texturing hardware will
upsample the small resolution to full resolution to be used in the shader. This
upsampling can be as simple as a nearest neighbor interpolant, as we noticed
little difference in the final image between that and a linear interpolant. In
the shader, the I and R textures are accessed using the same coordinates to
retrieve color and depth information used in the joint bilateral filter.

For each pixel p in the final image, the joint bilateral filter is a low-pass
filter that blurs a fixed neighborhood around p to remove noise. Choosing
the spatial support Ω for the filter should be based on the amount of upsam-
pling that is being performed on I, i.e., more blurring is required for higher
upsampling factors. We match the spatial support for the joint bilateral filter
with the spatial support for the linear interpolation performed by texturing
hardware: if upsampling to 10242, a 5122 image will use Ω = 4, a 2562 image
will use a Ω = 8, etc.

For domain and range filters, f and g, we use Gaussian low-pass filters:

f(x, y) = g(x, y) = e−D(x,y)2/2σ2

.

For the domain filter f operating on the low-resolution image I, D(x, y) is
the distance between (x, y) and the origin of the filter p, and σ is the spread

✐

✐

“jgt” — 2009/2/11 — 10:24 — page 7 — #7
✐

✐

✐

✐

✐

✐

Callahan and Silva: Accelerating Volume Rendering with Joint Bilateral Upsampling 7

of the Gaussian, or Ω/2. For the range filter g operating on the reference
image R, D(x, y) is the difference between the depth value at (x, y) and the
depth value at p. For multiple depth layers, this simply becomes the dis-
tance between the vectors defined at (x, y) and p. The range σ is the value
that expresses the resolution of the depth features that should be preserved.
Thus, the range σ is dependent on the resolution of the depth buffer and
should be as low as possible to capture depth changes, without causing arti-
facts due to depth precision. We have found a σ = 0.01 for the range to be
adequate.

4. Performance

To demonstrate the flexibility of our joint bilateral upsampling algorithm for
unstructured grids, we show how adding it to existing source code for three
popular algorithms can improve the interactivity and quality of renderings.

4.1. Improving Interactivity

The fragment shader for bilateral sampling itself is relatively inexpensive; for
a 10242 image, kernel sizes of 4, 8, and 16 achieve framerates of 100 fps, 50 fps,
and 15 fps, respectively, on an NVIDIA Quadro FX 5600 graphics card. To
demonstrate the improvements due to our technique, we used the SPX (13K
tetrahedra), Blunt Fin (187K tetrahedra), F117 (240K tetrahedra), and SPX2
(828K tetrahedra) datasets to gather statistics for upsampling to 10242 from
5122 with a kernel size of 4, 2562 with a kernel size of 8, and 1282 with a kernel
size of 16. The upsampled times were compared with the original rendering
times for a 10242 image. At each resolution, we rendered the dataset from 14
viewpoints, defined by the corners and faces of a cube around the dataset, and
averaged the times. All of these statistics were rendered on a machine with 2
Dual Opteron 2.25 GHz processors, 4 GB RAM, and an NVIDIA Quadro FX
5600 graphics card with 1.5 GB RAM.

The first algorithm that we modified is a software ray caster from Bunyk et
al. [Bunyk et al. 97] that has freely available source code and runs completely
on the CPU. The algorithm first rasterizes boundary triangles to capture
starting and ending points for the rays at each pixel. It then marches rays
through the volume cell to cell by exploiting connectivity of cell faces. To make
the modification, we perform the ray casting as normal, except into a small
image. We then use the existing depth capturing code to find the boundary
depths in a large image. These two images are then bound as textures and
rendered to the screen using our fragment shader written in OpenGL. Table 1
shows results for several datasets, comparing times for the varying resolutions.

✐

✐

“jgt” — 2009/2/11 — 10:24 — page 8 — #8
✐

✐

✐

✐

✐

✐

8 journal of graphics, gpu, & game tools

Software Ray Caster

Dataset I Res I (ms) R (ms) U (ms) Total (ms) Speedup

SPX

1024 1134 N/A N/A 1134 ×1.0
512 283 21 1 305 ×3.7
256 68 21 2 91 ×12.5
128 16 21 7 44 ×25.8

Blunt Fin

1024 3137 N/A N/A 3137 ×1.0
512 915 30 1 946 ×3.3
256 291 30 2 323 ×9.7
128 131 30 7 168 ×18.7

F117

1024 1531 N/A N/A 1531 ×1.0
512 431 39 1 471 ×3.3
256 133 39 2 174 ×8.8
128 51 39 7 97 ×15.8

Hardware Ray Caster

Dataset I Res I (ms) R (ms) U (ms) Total (ms) Speedup

Blunt Fin

1024 109 N/A N/A 109 ×1.0
512 30 0 1 31 ×3.5
256 15 0 2 17 ×6.4
128 13 0 7 20 ×5.5

F117

1024 169 N/A N/A 169 ×1.0
512 54 0 1 55 ×3.1
256 25 0 2 27 ×6.3
128 20 0 7 27 ×6.3

SPX2

1024 481 N/A N/A 481 ×1.0
512 143 0 1 144 ×3.3
256 59 0 2 61 ×7.9
128 36 0 7 43 ×11.2

Table 1. Timing statistics in milliseconds for a software and a hardware ray caster
for various resolutions upsampling to 10242 using our technique. Timings are sepa-
rated into the low-resolution image (I) pass, the high-resolution solution (R) pass,
and the upsampling pass (U). The 1024 resolution represents the time for a full-
quality image without upsampling. A zero measurement indicates that the pass
takes much less than one millisecond and has no measurable impact on the final
timing.

In our experiments, the acceleration for these datasets ranges from about 16
times to 26 times for 1282 resolution images upsampled to 10242.

The second algorithm that we modified is a hardware-assisted ray-casting
algorithm from Bernardon et al. [Bernardon et al. 06] that is freely available
and is written in DirectX 9. As with the software ray caster, we were able to
adapt the algorithm to render into a small offscreen buffer and use the existing
depth peeling routines to capture the depth in a full-size offscreen buffer. An

✐

✐

“jgt” — 2009/2/11 — 10:24 — page 9 — #9
✐

✐

✐

✐

✐

✐

Callahan and Silva: Accelerating Volume Rendering with Joint Bilateral Upsampling 9

HLSL program was then used to perform the joint bilateral upsampling and
display the final image. Table 1 shows a comparison of times for varying
resolutions. With the hardware ray caster, acceleration gains range from
about 6 times for the smallest dataset to about 11 times for the largest for
1282 or 2562 resolution images upsampled to 10242.

4.2. Improving Quality

By using a full-size reference image, our joint bilateral upsampling is able to
achieve better imagery than upsampling alone. We show this both quanti-
tatively and visually. Figure 3 shows rate distortion curves for the quality
of upsampling using our joint bilateral filter versus a simple linear interpola-
tion (as provided by texturing hardware). The measurements were computed
using root mean squared error (RMSE) comparisons between full-quality im-
ages at 10242 and images upsampled at various resolutions. In all cases, our
upsampling exhibits less error than with linear interpolation alone. Figure 4
shows rendered solutions at various resolutions for a visual comparison of the
quality change.

One interesting application of our filter is in improving the appearance
of existing acceleration techniques by denoising results while still preserving
edges. We added our upsampling filter to the hardware-assisted visibility sort-
ing (HAVS) volume rendering algorithm [Callahan et al. 05b] to improve the

Figure 3. Rate distortion curves for the software ray caster comparing RMS error
of full-quality images versus our method and linear upsampling at different factors.

✐

✐

“jgt” — 2009/2/11 — 10:24 — page 10 — #10
✐

✐

✐

✐

✐

✐

10 journal of graphics, gpu, & game tools

Figure 4. The Blunt Fin dataset rendered into a 10242 image at (a) full quality
and upsampled from (b) 5122, (c) 2562, and (d) 1282 using our technique.

visual results of a dynamic level-of-detail algorithm that operates by sampling
the geometry of the volume [Callahan et al. 05a]. HAVS sorts the triangles
that compose the mesh first in object space using a simple sorting routine,
then in image space by storing a fixed number of fragments that are stored
and composited in textures. The sample-based level of detail limits the num-
ber triangles before the sorting, based on pre-computed importances, to make
the rendering much faster. In an attempt to maintain coverage of the volume
in the final image, the boundary triangles of the volume are kept separately
from the internal triangles and are not sampled. Because the level-of-detail
algorithm already uses boundary geometry as the base sampling case, we were
able to add a simple depth peeling pass to render the boundary geometry into
a reference image to be used as a reference in the joint bilateral upsampling.

Due to the nature of the algorithm, HAVS is more vertex-bound than pixel-
bound. Thus, the acceleration when using our upsampling approach is negligi-
ble on the most recent graphics cards. However, our technique can be used to
improve image quality of the sample-based level of detail. The sample-based
simplification described above has the side effect of producing high-frequency
error in the reduced representation, unlike domain-based simplification tech-
niques (i.e., simplification via edge collapses [Garland and Zhou 05]). Using

✐

✐

“jgt” — 2009/2/11 — 10:24 — page 11 — #11
✐

✐

✐

✐

✐

✐

Callahan and Silva: Accelerating Volume Rendering with Joint Bilateral Upsampling 11

Figure 5. Our joint bilateral filter can be used to smooth noisy artifacts even when
acceleration gains are minimal. This figure shows the San Fernando Earthquake
dataset (1.4 million tetrahedra) rendered using HAVS [Callahan et al. 05b] with
sample-based simplification [Callahan et al. 05a]. (a) The full-quality image is ren-
dered at 1.7 fps compared with (b) sampling 10% of the geometry (20 fps) and (c)
sampling 10% of the geometry then using our joint bilateral filter without upsam-
pling to remove the high-frequency error while still preserving boundary features
(15 fps).

our joint bilateral filter on the resulting imagery, we are able to reduce the
noise and improve the overall appearance of the technique with little effect
on the performance. Figure 5 shows an example of this LOD before and after
our joint bilateral filter is applied. Because the acceleration due to the LOD
algorithm is dominant, the rendered image I does not need to be computed
at a reduced representation, and upsampling is not necessary.

5. Discussion

Because our method is simple, it can easily be utilized as a technique to
accelerate interaction, while still allowing full-quality images to be rendered

✐

✐

“jgt” — 2009/2/11 — 10:24 — page 12 — #12
✐

✐

✐

✐

✐

✐

12 journal of graphics, gpu, & game tools

when the user stops interacting with the viewing parameters. Tools such as
ParaView1 use a similar strategy during rendering, by changing either the
number of slices for texture-based methods or the number of rays for ray
casters. We envision our algorithm as a replacement or enhancement for
these existing techniques because it produces better approximations of the
full-quality image with fewer visual artifacts. Because it is easy to change
the speed/quality trade-off by adjusting the upsampling factor, our algorithm
could also be used for dynamic level of detail.

Many existing acceleration techniques that trade off speed for image qual-
ity create high-frequency error in the resulting image in the form of stair-
casing or aliasing artifacts. In contrast, our method produces low-frequency
error, which results in more visually pleasing images that retain edges that
are supposed to be in the image, while removing those that are not. Although
we use joint bilateral upsampling, other upsampling strategies have been in-
troduced [Wolberg 90] and could be used instead. However, without the
additional shape information that is provided by the reference image, other
upsampling strategies are not likely to perform as well, as they can result in
halos and other undesired artifacts, as shown by Kopf et al. [Kopf et al. 07].

Our solution for performing joint bilateral upsampling for volume rendering
was implemented in OpenGL and DirectX using fragment programs. We
also implemented the bilateral filter with NVIDIA’s CUDA library, which is
efficient for offscreen processing but was several times slower for interactive
rendering due to the costs of transferring textures to the graphics engine
for display after processing. Even for large images and large filter domains,
the computational cost of our algorithm is not high relative to the volume
rendering cost. As with most acceleration techniques, the trade-off for image
quality is performance (i.e., more downsamping results in higher speed).

Our experiments included several datasets at various sizes to demonstrate
the acceleration that our technique can provide. The size of datasets used in
these experiments was limited by the volume rendering methods we used, not
by any limitations of our acceleration technique. Volume rendering algorithms
that handle larger datasets, such as ray casters that use bricking strategies
for memory management [Muigg et al. 07] or point-based techniques that are
fragment-bound [Anderson et al. 07], would also benefit from our acceleration
technique.

There are several limitations of our upsampling algorithm. The approach
is useful only if the desired images are relatively large, which may not al-
ways the case. In addition, the upsampling only works as an acceleration
technique for algorithms that are inherently pixel-bound, such as ray cast-
ers. The current implementation can handle upsampled images up to 10242

without too much problem, but scaling it to large or multiple displays would

1http://www.paraview.org/.

✐

✐

“jgt” — 2009/2/11 — 10:24 — page 13 — #13
✐

✐

✐

✐

✐

✐

Callahan and Silva: Accelerating Volume Rendering with Joint Bilateral Upsampling 13

require a more efficient bilateral filter, such as an approximation [Paris and
Duran 06], to keep framerates interactive. Finally, our technique works very
well for unstructured volume rendering because the boundary of these vol-
umes is typically of interest in the final visualization. For structured volumes,
this is not often the case. Thus, a reference image computed from internal
features, such as an isosurface, would be necessary for a quality upsampling.
Extending our method to structured volumes would require the difficult task
of finding the right surface (or set of surfaces) that would preserve the features
in the upsampled volume rendering. Addressing these limitations would be
an interesting avenue of future work.

Acknowledgments. The authors thank Jens Krüger and Peter Shirley for useful
discussion, the reviewers for their insightful suggestions, the Stanford University
Computer Graphics Laboratory for the Dragon dataset, O’Hallaron and Shewchuk
(CMU) for the earthquake dataset, Notrosso (Électricité de France) for the SPX
dataset, Haimes (MIT) for the F117 dataset, and Hung and Buning (NASA) for
the Blunt Fin dataset. This research has been funded by the Department of Energy
SciDAC (VACET and SDM centers), the National Science Foundation (grants CNS-
0751152, CCF-0528201, OCE-0424602, CNS-0514485, IIS-0513692, CCF-0401498,
OISE-0405402, CNS-0551724), IBM Faculty Awards (2005, 2006, and 2007), and a
University of Utah Graduate Research Fellowship.

References

[Anderson et al. 07] E. W. Anderson, S. P. Callahan, C. E. Scheidegger,
J. Schreiner, and C. T. Silva. “Hardware-Assisted Point-Based Volume Ren-
dering of Tetrahedral Meshes.” In Brazilian Symposium on Computer Graphics
and Image Processing (SIBGRAPI), pp. 163–170. Los Alamitos, CA: IEEE
Press, 2007.

[Bavoil and Myers 08] L. Bavoil and K. Myers. “Deferred Rendering using a Stencil
Routed K-Buffer.” In ShaderX6: Advanced Rendering Techniques, edited by
W. Engel, Chapter 3.5, pp. 189–198. Boston, MA: Course Technology, 2008.

[Bernardon et al. 06] F. F. Bernardon, C. A. Pagot, J. L. D. Comba, and C. T. Silva.
“GPU-Based Tiled Ray Casting using Depth Peeling.” journal of graphics tools
11:4 (2006), 1–16.

[Bunyk et al. 97] P. Bunyk, A. Kaufman, and C. T. Silva. “Simple, Fast, and Robust
Ray Casting of Irregular Grids.” In Proc. of Dagstuhl, Scientific Visualization,
pp. 30–36. Los Alamitos, CA: IEEE Press, 1997.

[Callahan et al. 05a] S. P. Callahan, J. L. D. Comba, P. Shirley, and C. T. Silva.
“Interactive Rendering of Large Unstructured Grids Using Dynamic Level-of-
Detail.” In Proceedings of IEEE Visualization, pp. 199–206. Los Alamitos, CA:
IEEE Press, 2005.

✐

✐

“jgt” — 2009/2/11 — 10:24 — page 14 — #14
✐

✐

✐

✐

✐

✐

14 journal of graphics, gpu, & game tools

[Callahan et al. 05b] S. P. Callahan, M. Ikits, J. L. D. Comba, and C. T. Silva.
“Hardware-Assisted Visibility Sorting for Unstructured Volume Rendering.”
IEEE Transactions on Visualization and Computer Graphics 11:3 (2005), 285–
295.

[Cignoni et al. 04] P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and
R. Scopigno. “Selective Refinement Queries for Volume Visualization of Un-
structured Tetrahedral Meshes.” IEEE Transactions on Visualization and
Computer Graphics 10:1 (2004), 29–45.

[Danskin and Hanrahan 92] J. Danskin and P. Hanrahan. “Fast Algorithms for
Volume Ray Tracing.” In Workshop on Volume Visualization, pp. 91–98. New
York: ACM Press, 1992.

[Eisemann and Durand 04] E. Eisemann and F. Durand. “Flash Photography En-
hancement via Intrinsic Relighting.” Proc. SIGGRAPH ’04, Transactions on
Graphics 23:3 (2004), 673–678.

[Engel et al. 06] K. Engel, M. Hadwiger, J. M. Kniss, C. Rezk-Salama, and
D. Weiskopf. Real-Time Volume Graphics. Wellesley, MA: A K Peters, 2006.

[Everitt 99] C. Everitt. “Interactive Order-Independent Transparency.” White pa-
per, NVIDIA Corporation, 1999.

[Garland and Zhou 05] M. Garland and Y. Zhou. “Quadric-Based Simplification in
Any Dimension.” ACM Transactions on Graphics 24:2 (2005), 209–239.

[Kopf et al. 07] J. Kopf, M. Cohen, D. Lischinski, and M. Uyttendaele. “Joint
Bilateral Upsampling.” Proc. SIGGRAPH ’07, Transactions on Graphics 26:3
(2007), Article No. 96.

[Krüger and Westermann 03] J. Krüger and R. Westermann. “Acceleration Tech-
niques for GPU-based Volume Rendering.” In Proceedings of IEEE Visualiza-
tion, p. 38. Los Alamitos, CA: IEEE Press, 2003.

[Levoy 90a] M. Levoy. “Efficient Ray Tracing of Volume Data.” ACM Transactions
on Graphics 9:3 (1990), 245–261.

[Levoy 90b] M. Levoy. “A Hybrid Ray Tracer for Rendering Polygon and Vvolume
Data.” IEEE Computer Graphics and Applications 2:4 (1990), 33–40.

[Levoy 90c] M. Levoy. “Volume Rendering by Adaptive Refinement.” The Visual
Computer 6:1 (1990), 2–7.

[Muigg et al. 07] P. Muigg, M. Hadwiger, H. Doleisch, and H. Hauser. “Scalable
Hybrid Unstructured and Structured Grid Raycasting.” IEEE Transactions on
Visualization and Computer Graphics 13:6 (2007), 1592–1599.

[Paris and Duran 06] S. Paris and F. Duran. “A Fast Approximation of the Bilateral
Filter using a Signal Processing Approach.” In Computer Vision – ECCV
2006: 9th European Conference on Computer Vision, Graz, Austria, May 7–
13, 2006, Proceedings, Part IV, edited by A. Leonardis, H. Bischof, and A.
Pinz, pp. 568–580, Lecture Notes in Computer Science 3954. Berlin-Heidelberg:
Springer Verlag, 2006

✐

✐

“jgt” — 2009/2/11 — 10:24 — page 15 — #15
✐

✐

✐

✐

✐

✐

Callahan and Silva: Accelerating Volume Rendering with Joint Bilateral Upsampling 15

[Petschnigg et al. 04] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe,
and K. Toyama. “Digital Photography with Flash and No-Flash Image Pairs.”
Proc. SIGGRAPH ’04, Transactions on Graphics 23:3 (2004), 664–672.

[Roettger et al. 03] S. Roettger, S. Guthe, D. Weiskopf, and T. Ertl. “Smart
Hardware-Accelerated Volume Rendering.” In Proc. Data Visualization Sympo-
sium, pp. 231–238. Aire-la-Ville, Switzerland: Eurographics Association, 2003.

[Silva et al. 05] C. T. Silva, J. L. D. Comba, S. P. Callahan, and F. F. Bernardon.
“GPU-Based Volume Rendering of Unstructured Grids.” Brazilian Journal of
Theoretic and Applied Computing (RITA) 12:2 (2005), 9–29.

[Tomasi and Manduchi 98] C. Tomasi and R. Manduchi. “Bilateral Filtering for
Gray and Color Images.” In ICCV, pp. 839–846. Los Alamitos, CA: IEEE
Press, 1998.

[Weiler et al. 03] M. Weiler, M. Kraus, M. Merz, and T. Ertl. “Hardware-Based
Ray Casting for Tetrahedral Meshes.” In Proceedings of IEEE Visualization,
pp. 333–340. Los Alamitos, CA: IEEE Press, 2003.

[Weiler et al. 04] M. Weiler, P. N. Mallón, M. Kraus, and T. Ertl. “Texture-Encoded
Tetrahedral Strips.” In Symposium on Volume Visualization, pp. 71–78. Los
Alamitos, CA: IEEE Press, 2004.

[Wolberg 90] G. Wolberg. Digital Image Warping. Los Alamitos, CA: IEEE Com-
puter Society Press, 1990.

Web Information:

http://jgt.akpeters.com/papers/CallahanSilva09/

Steven P. Callahan, Scientific Computing and Imaging Institute, University of Utah,
72 S. Central Campus Drive, WEB 3750, Salt Lake City, UT 84112
stevec@sci.utah.edu

Cláudio T. Silva, Scientific Computing and Imaging Institute, University of Utah,
72 S. Central Campus Drive, WEB 3750, Salt Lake City, UT 84112
csilva@sci.utah.edu

Received August 18, 2008; accepted February 6, 2009.

