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Abstract—Privacy, security and data governance constraints rule out a brute force process in the integration of cross-silo data, which
inherits the development of the Internet of Things. Federated learning is proposed to ensure that all parties can collaboratively
complete the training task while the data is not out of the local. Vertical federated learning is a specialization of federated learning for
distributed features. To preserve privacy, homomorphic encryption is applied to enable encrypted operations without decryption.
Nevertheless, together with a robust security guarantee, homomorphic encryption brings extra communication and computation
overhead. In this paper, we analyze the current bottlenecks of vertical federated learning under homomorphic encryption
comprehensively and numerically. We propose a straggler-resilient and computation-efficient accelerating system that reduces the
communication overhead in heterogeneous scenarios by 65.26% at most and reduces the computation overhead caused by
homomorphic encryption by 40.66% at most. Our system can improve the robustness and efficiency of the current vertical federated
learning framework without loss of security.

Index Terms—Cross-Silo, Secure Cooperation, Homomorphic Encryption, Distributed Features.
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1 INTRODUCTION

DATA fuels the growing popularity of the Internet of
Things. With the ubiquitous deployment of dedicated

and multi-purpose sensors, collecting real-time informa-
tion about our environment is becoming more convenient.
However, due to the specific limitations of dedicated sen-
sors, information collected by different industries tends to
have divergent feature dimensions. This divergence makes
cross-silo training and inferring challenging. The traditional
method is to establish a centralized data center led by
relevant authorities. Although this can break the data iso-
lation, it is not feasible today. Because of the tremendous
value of this real-time information, such convenient access
to monitor surroundings makes people concerned about the
leakage and abuse of their private and sensitive data. Apart
from the individual privacy concern, the implementation
of user privacy laws such as GDPR [28] has set a strict
limit on the usage of the collected data. Therefore, cross-
silo data sharing becomes challenging, which hinders the
development of the Internet of Things.

To solve this dilemma, federated learning (FL) [16] was
proposed by Google in 2016. FL ensures that all parties can
collaboratively complete the training task while the data is
not out of the local, which is an ideal framework to alleviate
privacy concerns. However, most FL research focuses on the
sample partitioned scenario [32], [37], where all cooperators
share the same feature dimension. The feature partitioned
federated learning is rarely explored in literature, which is
an equally important issue in real industrial scenarios, such
as recommender system [13], credit evaluation [21], etc.
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Fig. 1: Vertical federated learning. A specialization of feder-
ated learning for secure cross-silo cooperation learning.

Vertical federated learning (VFL) is a specialization of
federated learning for distributed features [10]. As shown
in Fig. 1, economic and medical institutions have divergent
feature dimension. They build a federated model together
without exchanging raw data. To further preserve privacy,
federated model is in safekeeping by a third-party authority,
which prohibits each institution from getting model struc-
ture of others. Unlike conventional FL (or noted horizontal
FL) for distributed samples, which has been researched a
lot due to its continuous line with traditional distributed
learning, VFL is under-studied for the lack of datasets and
benchmarks. Apart from the lack of related infrastructure,
communication redundancy in VFL is considerably larger
than in conventional FL. Because not only gradients are
transmitted during cooperation, intermediate results such
as labels and loss are needed to be exchanged due to
distributed features [32], [37].

Homomorphic encryption (HE) [39], a common privacy-
preserving technology, is applied to provide secure protec-
tion of exchanged information. Apart from HE, differential
privacy [4], quantization [29], compression [30], and coded
computing [25] can be applied to preserve the privacy as
well. However, they are vulnerable to aggressive Bayesian
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restoration attacks due to their randomization privacy pro-
tection [5], [31], [36], [42]. Considering that cooperators in
VFL training need to have fruitful data features for effective
collaborative training, they tend to be competitive enter-
prises in certain fields, such as industry, finance, medicine,
etc. Such a potential adversarial relationship resorts to the
most strict privacy preservation for these precious data. HE
ensures security by allowing encrypted operations without
decryption and thus providing cryptographic privacy pro-
tection. Consequently, HE is studied as our focus of privacy
preservation.

Nonetheless, in addition to the robust security guaran-
tee, HE leads to two orders of magnitude size inflation
of the original data after encryption, which burdens the
communication and incurs massive delays. For example, a
few-minute local training task will take dozens of minutes
or even hours to complete in VFL under homomorphic
encryption. This extra delay, together with the common
heterogeneity [22] existing in cooperation learning, damages
the runtime performance of VFL. To make matters worse,
unlike conventional FL, parties in vertical federated learn-
ing can not compute gradients locally due to the lack of
labels. To compute the gradient, they need to exchange the
encrypted intermediate results. Computational costs under
homomorphic encryption are much higher than that under
plain text. Huge computation overhead further slows down
vertical federated learning under homomorphic encryption.

In this paper, we analyze the main bottlenecks of current
vertical federated learning numerically and implement a
practical and efficient accelerating system under FATE 1. As
for communication overhead, we use a straggler-resilient
scheme based on backup worker [6] to alleviate the over-
head caused by heterogeneity. For computation overhead,
we compress the input matrix based on the principal compo-
nent analysis [1] and reduce the computational redundancy
caused by homomorphic encryption. Our system reduces
the communication overhead in heterogeneous scenarios
range 13.99%-65.26% with different network situations and
backup worker settings, and reduces the computation over-
head caused by HE range 21.95%-40.66% with different
degrees of compression. Our system can significantly im-
prove the efficiency of the current vertical federated learning
without loss of security. In summary, we have made the
following contributions:

• We carry out the first VFL system measurement on
industrial federated learning framework FATE and
demonstrate its main performance bottlenecks.

• We propose an accelerating system designed specifi-
cally for tackling VFL performance bottlenecks with-
out loss of security.

• We demonstrate the effectiveness of our system
through extensive experiments. Our system makes
VFL more practical for real word settings.

The structure of this paper is as follows. In Section 2, we
analyze the inspiration of this paper from the perspective of

1. Federated AI Technology Enabler (FATE) is an open-source
industrial federated learning framework, which has been widely
applied in the financial and medical fields. Git repository:
https://github.com/FederatedAI/FATE.

the advantages and bottlenecks of vertical federated learn-
ing under homomorphic encryption. Then we propose our
system to overcome the existing bottlenecks and accelerate
vertical federated learning in Section 3. The experimental
results showing the efficiency and robustness of our system
are shown in Section 4. Related work is introduced in
Section 5. Finally, we conclude our paper and put forward
several directions for future work in Section 6.

2 BACKGROUND AND MOTIVATION

This part introduces the vertical federated learning frame-
work adopted by FATE [20] and its efficiency in privacy-
preservation. Then we dive into the bottlenecks of the
existing framework and raise our motivation.

2.1 Vertical Federated Learning Architecture

Different from conventional FL, each cooperator has a differ-
ent feature dimension in vertical federated learning. Apart
from distributed features, in order to preserve privacy, labels
of cooperators will not be shared with others. In other
words, only the cooperator who seeks collaboration owns
the labels. We note that the cooperator seeking collabo-
ration and owing labels as Guest. And those who attend
the collaboration are called Hosts. The lack of labels and
features directly leads to the fact that cooperators can not
compute loss locally and thus fail to compute gradients. So
conventional federated learning procedure is not feasible in
vertical federated learning.

Hardy et al. propose a secure cooperative learning
framework [10] for vertical data using additional homomor-
phic encryption. The framework is as precise as a naive
non-private solution that brings all data in one place and
scales to problems with millions of entities with hundreds
of features. It consists of two parts. The first part is en-
crypted entity alignment. Considering that data samples
of different partners are not the same, the system utilizes
many encryption allocation schemes to locate these common
data samples in multiple parties. In this process, the data
information that does not coincide with each other will not
be disclosed. The second part is encrypted model training,
which is the focus of our work. After encrypted entity
alignment, it can be assumed that the data samples of all
parties are consistent, but the feature spaces of all parties
do not coincide. As shown in Fig. 2, before the training,
the authoritative arbiter randomly generates the private key
and public key. Then the arbiter distributes the public key
to each cooperator for encryption. Note that cooperators
have no right or opportunity to obtain the private key. That
is, cooperators have only the right to encrypt, but not the
right to decrypt, which ensures that the interactive data is
presented in ciphertext. During one iteration, each cooper-
ator first completes the forward propagation and obtains
the intermediate results in plain mode. After encrypting the
intermediate result with their own public key, cooperators
exchange the encrypted intermediate results. Then they can
gather a complete encrypted loss, containing the data fea-
ture information of other parties and label information. They
use the encrypted loss to compute encrypted gradients and
send encrypted gradients to arbiter for decryption. After
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Fig. 2: The framework of vertical federated learning, where
homomorphic encryption is applied to preserve privacy.

decrypting their respective gradients, the arbiter will return
the separated gradient parameters to each cooperator.

2.2 Encryption mechanism
Homomorphic encryption allows direct operations on the
ciphertext without decryption, which has attracted a large
number of researchers to explore and study in recent
years [2], [7], [21], [39]. The most commonly used homomor-
phic encryption algorithm is Paillier [27]. In paillier, additive
homomorphic is satisfied, which means that plaintext addi-
tion is realized through the overloaded operator of cipher-
text. More precisely, the result of ciphertext multiplication
after decryption is equivalent to plaintext addition:

D([[x]] • [[y]]) = x+ y, (1)

where [[x]] is the ciphertext of x, function D represents
decryption. Similarly, the result of ciphertext exponentiation
after decryption is equivalent to plaintext multiplication.
Note that the size of ciphertext tends to be excessively bigger
than the size of plaintext. For example, the commonly used
plaintext is 8-bit or 16-bit, while the shortest ciphertext is
2048-bit till 2019 [39]. Homomorphic encryption will greatly
increase the complexity of the operation, especially for mul-
tiplication.

2.3 Performance Bottleneck
We carry out some preliminary experiments2 to show the
performance bottleneck intuitively. As shown in Fig. 3,
vertical federated learning mainly consists of four parts,
namely Computation, Encryption, Communication and Other
operation. Other operation is the time of IO operations and
task scheduling. Since encryption has a negligible impact
on IO operations, we can reasonably assume that time
consumption of Other is static (100s) in all three modes,
and use it as a comparing reference. Plain mode stands
for vertical federated learning without homomorphic en-
cryption and heterogeneity, where Other covers the most
running time. Encrypt mode stands for vertical federated
learning under homomorphic encryption without network
heterogeneity, which means that no straggler will appear.
In encrypt mode, Computation consumes most of time, En-
cryption consumes second. Hetero-encrypt mode is vertical

2. Experiments are on Epsilon [9] dataset with 5000 samples and
2000 features separated for four cooperators. Computing capacity re-
mains constant during training. Training performance of three modes
is identical after 50 iterations.

0 20 40 60 80 100
Training time breakdown (%)

Plain

Encrypt

Hetero-Encrypt
Computation Encryption Communication Others

Fig. 3: Runtime breakdown under different VFL settings.

federated learning in practical deployment, where both ho-
momorphic encryption and heterogeneity are involved. In
hetero-encrypt mode, Communication surpasses in reverse.
Among those three bottlenecks, the increase in encryption
time is common, which has been widely studied [2], [39].
So we dive into those two specific bottlenecks: computation
overhead and communication overhead.

2.3.1 Computaion Overhead
Different from the horizontal federated learning, the param-
eters transmitted in the vertical federated learning are not
only gradients, but also intermediate results. Moreover, due
to the potential competitive relationship, all parties do not
have the authority to decrypt the parameters to preserve
privacy. This means that homomorphic encryption not only
brings the redundancy contained in the encryption and
decryption computation itself, but also forces all parties to
do computation on ciphertext instead of plaintext. And the
ciphertext computation of homomorphic encryption is very
time-consuming, especially for multiplication.

2.3.2 Communication overhead
Heterogeneous networks and huge geographical spans are
the main reasons for communication overhead. More specif-
ically, multiple institutions with different features may be
distributed in all corners of the earth, and their geographical
positions are generally considerably different. Moreover,
the network condition of a single organization is difficult
to ensure stability due to the network heterogeneity [38].
Because each institution itself has limited communication
resources [23], such as carrier, bandwidth, e.t.c. These re-
sources may be allocated to other jobs, as cooperators do not
exist exclusively for federated learning. These services will
bring huge network traffic during the peak hours, and even
lead to network congestion. What is worse, homomorphic
encryption will expand the data size, which amplifies the
impact of network fluctuation.

The above two bottlenecks cause much idle time in
vertical federated learning. That is, one party may spend
more time waiting for the calculation results than other
parties. Such random and unbalanced idle time brings diffi-
culty to the application and promotion of vertical federated
learning.

3 PROPOSED SYSTEM

In order to reduce the communication and computation
overhead in vertical federated learning caused by homo-
morphic encryption and heterogeneity, we propose a prac-
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tical and effective optimization system under the industrial
federated learning framework FATE [20].

3.1 Problem Definition

We suppose one cooperator seeks help for K cross-
industry cooperators. For simplicity, we call cross-industry
cooperators without labels as Hosts, denoted as Ak, for
k = 1, 2..K . Similarly, we call the cooperator seeking
help and owing labels as Guest, denoted as B. Assuming
learning rate µ, regularization parameter λ, dataset set{
xAk
i

}
i∈DAk

,
{
xBi , yi

}
i∈DB

, and model paramters ΘAk
,ΘB

corresponding to the feature space of xAk
i , xBi respectively,

the training objective is:

min
ΘAk

,ΘB

∑
i

∥∥∥∥∥
K∑
k=1

ΘAk
xAk
i + ΘBx

B
i − yi

∥∥∥∥∥
2

+
λ

2

(
K∑
k=1

‖ΘAk
‖2 + ‖ΘB‖2

)
.

(2)

Let uAk
i = ΘAk

xAi , u
B
i = ΘBx

B
i , the encrypted loss is:

[[L]] = [[
∑
i

∥∥∥∥∥
K∑
k=1

uAk
i + uBi − yi

∥∥∥∥∥
2

+
λ

2

(
K∑
k=1

‖ΘAk
‖2 + ‖ΘB‖2

)
]],

(3)

where additive homomorphic encryption is denoted

as [[·]]. Let [[LA]] = [[
∑
i

(∑K
k=1 u

Ak
i

)2
+ λ

2

∑K
k=1 Θ2

Ak
]],

[[LB ]] = [[
∑
i

((
uBi − yi

)2)
+ λ

2 Θ2
B ]], and [[LAB ]] =

2
∑
i

∑K
k=1

(
[[uAk

i ]]
(
uBi − yi

))
, then

[[L]] = [[LA]] + [[LB ]] + [[LAB ]]. (4)

Note that an additively homomorphic encryption
scheme provides an operation that produces the sum of
two numbers under encryption. For simplicity, we overload
the notation and we denote the operator with ”+” as well.
Similarly, let [[di]] =

∑K
k=1[[uAk

i ]]+[[uBi −yi]], then gradients
are: [[

∂L
∂ΘAk

]]
=
∑
i

[[di]]x
Ak
i + [[λΘAk

]],[[
∂L
∂ΘB

]]
=
∑
i

[[di]]x
B
i + [[λΘB ]].

(5)

So, for iteration j = 1, 2..., updated model parameters
are:

Θj+1
Ak

= Θj
Ak
− µ ∂L

∂ΘAk

,

Θj+1
B = Θj

B − µ
∂L
∂ΘB

.

(6)

3.2 Backup Worker

Cooperators in vertical federated learning need to exchange
encrypted intermediate results. As can be seen from the
formula (5), each cooperator can calculate the gradients
with local data after getting the global d. The critical point
of vertical federated learning is to calculate the global d
cooperatively. As mentioned in Section 2, the network en-
vironment is likely to be heterogeneous and volatile. The
existing synchronization framework will lead to much idle
time, which will damage the efficiency and robustness of the
training process.

The simple idea is to discard the unreachable param-
eters, which is effective in distributed learning because
only gradients are transmitted from partial workers [6]. But
considering the difference between VFL and conventional
distributed learning, such an arbitrary drop scheme may not
perform well in VFL. As shown in Fig. 2, cooperators in VFL
exchange gradients with arbiter to decrypt gradient instead
of aggregating gradients. This means that dropping gradi-
ents can block the learning progress or degrade the clients to
training locally without collaboration. Variables transmitted
between cooperators are encrypted intermediate results,
which will be used for gradient computation. So arbitrary
discard will inevitably damage training performance. The
disadvantage of this method is magnified in the longitudinal
federated learning, because some clients will accumulate
such damages and turn into performance stragglers, which
means its misleading drags the global performance.

Therefore, in order to enhance the stability of commu-
nication without excessive loss of accuracy, we combine
the Stale Synchronous Parallel Parameter Server (SSP) [12]
scheme with the original backup scheme [6], that is, using
the old backup data to fill in the parameters correspond-
ing to the missing positions in this round. The detailed
algorithm is shown in Algorithm 1. Assuming K hosts
with dataset xAk

i and one guest with dataset xBi attend the
cooperation, we set the number of backup workers as β.
Hosts compute uAk

i with local dataset, and encrypt it with
homomorphic encryption for secure exchange. Guest waits
for uAk

i from Ak. After receiving the first K − β parameters
in each iteration, the guest stops waiting for data from other
parties, and then uses the stale backup of the unreceived
party to compute [[L]] and [[di]].

[[L]] = [[
∑
i

∥∥∥∥∥
t∑

s=1

u
Ajs
i +

K∑
s=t+1

ˆ
u
Ajs
i + uBi − yi

∥∥∥∥∥
2

+
λ

2

(
t∑

s=1

‖ΘAjs
‖2 +

K∑
s=t+1

‖ ˆΘAjs
‖2 + ‖ΘB‖2

)
]],

(7)

[[di]] =
t∑

s=1

[[u
Ajs
i ]] +

K∑
s=t

[[
ˆ

u
Ajs
i ]] + [[uBi − yi]], (8)

where
ˆ

u
Ajs
i , ˆΘAjs

is the jth iteration’s backup variables,
t = K − β, js is the receieve sequence of jth iteration.
The backup scheme can be various, such as average, local
prediction and so on. For the convenience of discussion,
the simplest method is chosen, that is, to fill the unreceived
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parameters with the results in the previous iteration. The ex-
perimental part below shows that even this simple scheme
has better effects than the arbitrary discard scheme.

Algorithm 1: Backup for VFL

Input: dataset xAk
i , dataset xBi , backups β

Output: Model parameters ΘAk
,ΘB(k = 1, 2..K)

Party Ak, B initialize ΘAk
,ΘB ;

for each iteration j = 1, 2 . . . do
Parallel: Host(j), Guest(j)

end for
Host(j):
for k=1,2..K in parallel do

Ak computes uAk
i , and send [[uAk

i ]], [[Θ2
Ak

]] to B
Get [[di]] from B
Updata ΘAk

with (5) (6)
end for
Guest(j):
if
∣∣∣[[uAk

i ]]
∣∣∣ < K − β then

Waiting for uAk
i from Ak

else
B computes di with (8) and sends [[di]] to Ak

end if
Updata ΘB with (5) (6)

Remark. Backup worker allows distributed workers to
use older, stale versions of model’s values (gradients and
logits). This significantly helps workers to spend more time
on computing instead of idle waiting. Furthermore, the SSP
model [12] can ensures the correctness of ML algorithm by
limiting the maximum age of the stale values. Considering
a nearly half proportion of encrypted computation in VFL
training (shown in Fig. 3), common network fluctuation (the
best network bandwidth is within one magnitude of the
worst) will not incur the age of stale value = 2. In this cir-
cumstance, the SSP model can perform on par with vanilla
synchronous training. Note that our system does not use
any intelligence client selection mechanism [26], [33], [34],
but is compatible with above techniques. These techniques
can be injected to further ensure the upper bound of the
stale age.

3.3 Dynamic Feature Selection

Multiplication of homomorphic encryption consumes a
huge computation cost. We assume that the host data set
xAk
i has m data samples and n features, noted as Xm×n.

So a gradient calculation [[di]]x
Ak
i in (5) requires m × n

times of encrypted multiplication. This leads to the huge
computation overhead in vertical federated learning, the
experimental results have been shown in Fig. 3.

We compress the feature quantity by the dimension
reduction method called Principal Component Analysis
(PCA) [1] to reduce the frequency of multiplication, shown
in (9).

Zm×k = f (Xm×n) , k < n, (9)

where Zm×k is the compressed input matrix, f is a
mapping matrix to maximize the variance of data under the
specified dimension K , note f as WT

k×n.

The traditional principal component analysis is only a
one-time dimensionality reduction, which can not be or-
ganically combined with current vertical federated learning.
Therefore, we design a scheme shown in Algorithm 2 so that
principal component analysis can be effectively integrated
into vertical federated learning. At the beginning of each
iteration, cooperators generate a compression matrix WT

k×n,
the target dimension k can be set flexibly to find a balance
in efficiency and accuracy. First, cooperators compress the
input matrix Θ1×n, Xn×m into θ1×k, Zk×m.

θ1×k = Θ1×nW
T
k×n,

Zk×m = Wk×nXn×m.
(10)

Then they can multiply the compressed input matrix
with encrypt [[di]] using (4) (5) to get gradients [[ ∂L

∂ΘAk
]] with

k gradients, noted as g1×k. The compression mechanism
turns the encrypted matrix from Xn×m to Zk×m and thus
reduces m × n times of homomorphic encryption multipli-
cation to m× k times.

At the end of each iteration, cooperators will decompress
the decrypted gradient.

g1×n = g1×kW
−1
k×n. (11)

Remark Compression and decompression are both per-
formed on local datasets in plaintext. The computation over-
head of plaintext is nearly negligible compared to that of
ciphertext multiplication. And our compression behavior is
recoverable by storing the PCA matrix locally. It avoids the
inexplicability caused by compressing features on the air,
and ensures that the algorithm can perfectly fit the existing
VFL framework without enormous modification.

Algorithm 2: PCA for VFL
Input: dataset Xm×n
Output: Model parameters Θ1×n
Initialize Θ1×n;
for each iteration j = 1, 2 . . . do

Generate the PCA matrix W j
k×n

Compress the input matrix with (10)
VFL Train with (4) (5)
Unzip gradient g1×k with (11)
Update Θj

1×n with (6)
end for

4 EXPERIMENTS

We carry out experiments on the industrial federated learn-
ing framework FATE [20]. Our accelerating system dramat-
ically improves the efficiency and robustness of the current
vertical federated learning without loss of security.

4.1 Setting

Federated Learning Platform: We build our system on
FATE [20]. FATE is the most popular federated learning
framework in Linux and has built cooperation with many
enterprises in many fields, such as industry, finance, medi-
cal, etc.
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Fig. 4: Effect of backup workers: communication speedup.
Clean means no heterogeneity, Bi means the number of
backup workers is i in various heterogeneity (different
possibilities of slow down). Dataset: MIMIC-III.

Datasets: We use three datasets MIMIC-III [14],
Epsilon [9] and NUS-WIDE [8]. MIMIC-III is a real-time
medical database comprising information about patients
admitted to critical care units at a large tertiary care hospital,
including vital signs, medications, survival data and more.
Following the data processing procedures of [11], we get
the final training and testing sets of 14681 data samples and
714 features. Then we shuffle it into 4 datasets with 114,
200, 200, 200 features. Datasets are dispatched to 4 coopera-
tors: Guest, Host1, Host2 and Host3 respectively. Epsilon
dataset is instance-wisely scaled to unit length and feature-
wisely normalized to mean zero and variance one. The raw
dimension of Epsilon is 5000 data samples and 2000 data
features. We shuffle it into 4 datasets with 200, 600, 600,
600 features and dispatch the shuffled datasets to guest and
hosts respectively. The NUS-WIDE dataset consists of 634
low-level images features extracted from Flickr images [24]
as well as their associated tags and ground truth labels. We
put 34 low-level image features on party Guest and 200
features on three Host parties respectively 3.

Models: We use Logist Regression, a common specializa-
tion of Linear Regression, to verify the validity of our sys-
tem. We set the best hyper-parameter at our best considering
the efficiency and training performance. Default hyper-
parameters are as follows: optimizer is rmsprop; learning
rate is 0.05; batchsize for MIMIC-III and NUS-WIDE is
1024, and 5000 for Epsilon.

4.2 Backup Worker

Our system is robust under various network environments
and can reduce considerable communication overhead. We
evaluate our system performance under two different het-
erogeneous network environments with a baseline band-
width of 10Mb. The degree of heterogeneity is quantified
by the possibility of slow down, i.e., reaching the bottom
bandwidth (1/10 of baseline bandwidth) during network

3. Our micro experiments show that unbalanced features have the
almost consistent runtime performance as balanced features. Because
in the forward propagation, the computation overhead caused by
redundant features is in plaintext, which has negligible impact on
runtime performance. Hence, we reasonably assume that hosts’ features
are balanced.

fluctuation [34]. There are three Hosts and one Guest at-
tending the cooperation training. As shown in Fig. 4, we
use a stable bandwidth network as a baseline, called Clean.
In the situation of 1/4 slow down, the bandwidth will be
reduced to 1Mb in the possibility of 1/4. B0 represents the
number of backup workers is 0, which equals the vanilla
vertical federated learning in a heterogeneous network.
The communication overhead is 2.86 times that of Clean
situation. We set the number of backup workers to 1, 2,
it will reduce the communication overhead by 13.99% and
34.97% respectively. When the probability of network fluctu-
ation rises to 1/2, which means that the network condition
becomes more unstable, network heterogeneity will lead
to a sharp increase in network communication overhead.
Vertical federated learning under 1/2 slow down without
optimization (B0) will be 7.34× slower than Clean. The effect
of our system will be more obvious. When the number of
backups is 1, 2 respectively, the communication overhead
can be reduced by 47.41% and 65.26% respectively.
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Fig. 5: Effect of backup workers: AUC vs Iteration.
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Fig. 6: Effect of different backup schemes. Stale scheme
means to compensate the unreceived parameters with the
stale variant, Null scheme means unreceived parameters are
arbitary dropped.

And this dramatic reduction in communication overhead
does not affect the training performance. As shown in Fig.
5, when the number of backup workers is set to 1, the
training process and final performance are almost the same
as vanilla VFL (B0). When the number of backup workers
is set to 2, the final training performance is almost the
same as B0, but the training process will become unstable.
In Fig. 6, we compare the effect of two different backup
schemes. The conventional backup scheme ignoring the
unreceived parameters has a noticeable loss of convergence
performance in three datasets. This is because some critical
information of the global training loss is dropped, leading to
a huge deviation when computing encrypted gradients. In
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Fig. 7: Effect of PCA: AUC vs Iteration. Origin means
vanilla VFL. PCA converts the input dimension to the target
compressed dimension.
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Fig. 8: Runtime performance of PCA: AUC vs Time.

contrast, compensating the unreceived parameters with the
stale variants can effectively narrow the deviation when the
staleness age is limited [12] and perform on par with vanilla
VFL.

4.3 Principle Component Analysis

As shown in Fig. 7, the feature compression method called
principal component analysis has different performance on
different datasets. Origin means vanilla VFL without opti-
mization. PCA converts the input dimension to the target
compressed dimension. In Fig. 7 (a) and (c), our feature
compression scheme that reduces the feature dimension
to 60% does not cause a significant loss of accuracy on
MIMIC-III and NUS-WIDE. It even converges faster due to
the pre-analysis brought from PCA. While on the Epsilon
dataset shown in Fig. 7 (b), training performance under
PCA compression leads initially but fails a little when
convergence. In other word, although the data after the
initial dimensionality reduction using principal component
analysis performs better than the original method, the fi-
nal training performance still suffers a certain degree of
accuracy loss. With the increase of compression degree, the
loss of accuracy will become more apparent. Reducing the
feature dimension to 60% on Epsilon will lose nearly 3%
precision when convergence. Such a ‘dataset affinity’ may
come from the limitations of the principal component anal-
ysis, which compressed the feature dimension before train-
ing. The compression degree of which should be cautiously
decided according to the intrinsic correlation of datasets.

Nonetheless, the possible accuracy loss cannot conceal
the enormous increase of runtime performance brought by
feature compression. As shown in Fig. 8, after compressing

Methods Origin Backup PCA Ours

Time
(minute)

Comp. 98.2 93.6 58.5 59.9
Comm. 141.0 48.3 137.6 46.4

Sum 239.2 141.9 196.1 106.3

TABLE 1: Runtime performance under different modes. Ori-
gin means vanilla VFL without any optimization. Number
of backup workers is set to 2 in Backup mode. PCA mode
reduces the feature dimension to 60%. Ours means the
whole accelerating system composed of both Backup and
PCA. All the four methods are carried out for 50 iterations
on MIMIC-III.

the input dimension via PCA, runtime performance is sig-
nificantly improved for all three datasets. For example, com-
pressing the features dimension of dataset MIMIC-III to
80% and 60%, the convergence speed is increased by 21.95%
and 40.66% compared with the original scheme. Analo-
gously, training performance of Epsilon and NUS-WIDE is
significantly improved as well. This performance speedup
comes from the linearly reduction of encrypted computa-
tion, which accounts for around half of the VFL training
time.

4.4 Mixture
The above two methods are orthogonal and can be used
in combination. The global efficiency and robustness of the
system can be enhanced by mutual compensation, which
means when backup scheme detects stragglers, we can set a
higher compression degree to speed up their computation.
As shown in TABLE 1, the backup scheme reduces the com-
munication delay by up to 65%, the PCA scheme reduces
the calculation delay by up to 40.6%. Idle time caused by
communication and computation overhead is reduced by
55.6% using two schemes jointly, which will significantly
accelerate current vertical federated learning.

5 RELATED WORK

5.1 Related Framework
In order to get rid of the computation and communication
redundancy caused by homomorphic encryption, Hu et.al
propose a novel vertical federated learning framework on
the assumption of shared labels [13]. This assumption may
be valid within a single cilo. But when the scenario is
extended to cross-cilo cooperation, many labels shall not
be shared due to privacy regulation and corporate com-
petition, limiting it to be applied in large-scale industrial
scenarios. Therefore, to the best of our knowledge, VFL
under homomorphic encryption is still the safest framework
for cross-silo cooperating training except from multi-party
secure computing [41], the efficiency of which is far from
usability in practical. Some works have been proposed to
make homomorphic encryption more suitable for federated
learning. In the horizontal scenario, Wang et.al designed
a new coding scheme for the homomorphic encryption
scheme [39], which greatly reduces the redundancy of the
homomorphic encryption scheme. However, the assump-
tion that all parties can decrypt data and calculate in local
plaintext is difficult to hold in vertical federated learning.
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Therefore, it can not solve the huge bottleneck of encrypted
computation in vertical federated learning.

5.2 Network heterogeneity and computing heterogene-
ity
Heterogeneity is the main bottleneck of cooperative learn-
ing. Conventional distributed learning adopts many effi-
cient schemes to eliminate the overhead caused by het-
erogeneity. One traditional way is to reduce the impact
of heterogeneity by increasing the degree of parallelism,
such as pipeline [3], or selecting those similar clients or
data to prevent heterogeneity ahead [17]. Asynchronous
training [18] is another common paradigm. It solves the het-
erogeneity problem at the cost of introducing the staleness,
which damages the convergence performance of training.
However, in the typical VFL framework, jobs are limited to
be trained in a synchronized way. So common asynchronous
optimization comes out of effect. A new paradigm called
backup worker was introduced in [6]. Assuming there is
n+ b worker, backup scheme makes aggregator get the first
n gradients and drop the other b gradients as backup. While
in vertical federated learning, the parameters transmitted
are not only the updated gradients, but also the encrypted
intermediate results, which drag the communication the
most.

6 CONCLUSION AND FUTURE WORK

In this paper, we dive into the bottleneck of vertical feder-
ated learning under homomorphic encryption, and propose
a practical and effective optimization system to accelerate
current vertical federated learning through backup worker
and principal component analysis. The backup scheme im-
proves the efficiency and robustness of the communication
network in the heterogeneous scenarios. Principal compo-
nent analysis alleviates the computation overhead caused
by homomorphic encryption. Our system dramatically ac-
celerates current vertical federated learning and promotes
its practical deployment in safe cross-industry cooperation.
We will further optimize the performance and efficiency
of vertical federated learning in the future, mainly in the
following four directions.

6.1 AUTO-ML
The underlying algorithm of FATE is completely redevel-
oped to ensure security. Hence, model hyper-parameters
that perform well in traditional distributed learning can not
be applied directly. During our experiments, it took us a
lot of effort to adjust these hyper-parameters and keep the
training performance of VFL almost consistent with local
training. Auto-ML [35] can be used to automatically adjust
parameters, so that the potential of VFL can be maximized.

6.2 Encryption Optimization
While reduction of computation overhead is significantly
apparent, it is at the cost of possible accuracy loss, which is
far from perfect. This tradeoff between computational effi-
ciency and model accuracy is related to the tradeoff between
privacy preserving and model accuracy for horizontal fed-
erated learning, which has been theoretically investigated

by [40]. Considering the computation overhead in VFL is
mainly caused by the multiplication of homomorphic en-
cryption, we will further optimize the compression scheme
through finding a multiplication-friendly encryption strat-
egy to eliminate computation overhead in the current verti-
cal federated learning without losing security.

6.3 More datasets and metrics
The existing vertical federated learning does not have a typ-
ical dataset or standard for people to refer. Lack of datasets
and metrics forces researchers in VFL to segment and gen-
erate data sets according to their own understanding and
compare them with themselves. However, this method of
segmentation is probably unscientific, unprofessional, and
impractical. A professional and practical vertical dataset
provided by specialists in related fields will be of great help.

6.4 Incentive mechanism
The cooperators in VFL training need to have fruitful data
features for effective collaborative training. They tend to be
competitive enterprises in certain fields, such as industry,
finance, medicine, etc. Attracting these enterprises to build
collaboration is non-trivial. The incentive mechanism design
for VFL is a promising research topic to pave the way for
practical VFL. For example, rewarding the model owners
based on their marginal contributions can ensure the stabil-
ity of a federation [19]. And how to measure the reliabil-
ity and contributions of the cooperators is a sophisticated
optimization problem as well [15]. Those important topics
researched in conventional FL are equally meaningful in
the VFL scenario. We will design a reasonable and efficient
incentive mechanism for modern VFL in the future.
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[1] Hervé Abdi and Lynne J Williams. Principal component analysis.
Wiley Interdisciplinary Reviews: Computational Statistics, 2(4):433–
459, 2010.

[2] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al.
Privacy-preserving deep learning via additively homomorphic
encryption. IEEE Transactions on Information Forensics and Security,
13(5):1333–1345, 2017.

[3] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. Pipeswitch: Fast
pipelined context switching for deep learning applications. In
USENIX Symposium on Operating Systems Design and Implementa-
tion, pages 499–514, 2020.

[4] Borja Balle, Gilles Barthe, Marco Gaboardi, Justin Hsu, and Tet-
suya Sato. Hypothesis testing interpretations and renyi differential
privacy. In International Conference on Artificial Intelligence and
Statistics, pages 2496–2506, 2020.

[5] Zhiqi Bu, Jinshuo Dong, Qi Long, and Weijie J Su. Deep learning
with gaussian differential privacy. Harvard Data Science Review,
2020(23), 2020.

[6] Jianmin Chen, Xinghao Pan, Rajat Monga, and Rafal Jozefowicz.
Revisiting distributed synchronous sgd. In International Conference
on Learning Representations Workshop Track, 2016.



9

[7] Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian Chen, Dim-
itrios Papadopoulos, and Qiang Yang. Secureboost: A lossless
federated learning framework. IEEE Intelligent Systems, 2021.

[8] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping
Luo, and Yantao Zheng. Nus-wide: a real-world web image
database from national university of singapore. In Proceedings of
the ACM international conference on image and video retrieval, pages
1–9, 2009.

[9] M Everingham, LV Gool, CKI Williams, J Winn, and A Zisserman.
The pascal visual object classes challenge results, 2008. URL:
http://pascallin. ecs. soton. ac. uk/challenges/VOC/voc2005/results. pdf,
2015.

[10] Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock,
Giorgio Patrini, Guillaume Smith, and Brian Thorne. Private
federated learning on vertically partitioned data via entity res-
olution and additively homomorphic encryption. arXiv preprint
arXiv:1711.10677, 2017.

[11] Hrayr Harutyunyan, Hrant Khachatrian, David C Kale, Greg
Ver Steeg, and Aram Galstyan. Multitask learning and bench-
marking with clinical time series data. Scientific Data, 6(1):1–18,
2019.

[12] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu
Kim, Phillip B Gibbons, Garth A Gibson, Greg Ganger, and Eric P
Xing. More effective distributed ml via a stale synchronous
parallel parameter server. In International Conference on Neural
Information Processing Systems, pages 1223–1231, 2013.

[13] Yaochen Hu, Di Niu, Jianming Yang, and Shengping Zhou. Fdml:
A collaborative machine learning framework for distributed fea-
tures. In International Conference on Knowledge Discovery & Data
Mining, pages 2232–2240, 2019.

[14] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-Wei,
Mengling Feng, Mohammad Ghassemi, Benjamin Moody, Peter
Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a freely
accessible critical care database. Scientific Data, 3(1):1–9, 2016.

[15] Jiawen Kang, Zehui Xiong, Dusit Niyato, Shengli Xie, and Junshan
Zhang. Incentive mechanism for reliable federated learning: A
joint optimization approach to combining reputation and contract
theory. IEEE Internet of Things Journal, 6(6):10700–10714, 2019.
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