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Abstract

Background: Fetal heart rate (FHR) variability is an indirect index of fetal autonomic nervous system (ANS) integrity. FHR
variability analysis in labor fails to detect early hypoxia and acidemia. Phase-rectified signal averaging (PRSA) is a new
method of complex biological signals analysis that is more resistant to non-stationarities, signal loss and artifacts. It
quantifies the average cardiac acceleration and deceleration (AC/DC) capacity.

Objective: The aims of the study were: (1) to investigate AC/DC in ovine fetuses exposed to acute hypoxic-acidemic insult;
(2) to explore the relation between AC/DC and acid-base balance; and (3) to evaluate the influence of FHR decelerations and
specific PRSA parameters on AC/DC computation.

Methods: Repetitive umbilical cord occlusions (UCOs) were applied in 9 pregnant near-term sheep to obtain three phases of
MILD, MODERATE, and SEVERE hypoxic-acidemic insult. Acid-base balance was sampled and fetal ECGs continuously
recorded. AC/DC were calculated: (1) for a spectrum of T values (T = 1450 beats; the parameter limits the range of
oscillations detected by PRSA); (2) on entire series of fetal RR intervals or on ‘‘stable’’ series that excluded FHR decelerations
caused by UCOs.

Results: AC and DC progressively increased with UCOs phases (MILD vs. MODERATE and MODERATE vs. SEVERE, p,0.05 for
DC T = 2–5, and AC T = 1–3). The time evolution of AC/DC correlated to acid-base balance (0.4,D r D ,0.9, p,0.05) with the
highest D r D for 2ƒ Tƒ 7. PRSA was not independent from FHR decelerations caused by UCOs.

Conclusions: This is the first in-vivo evaluation of PRSA on FHR analysis. In the presence of acute hypoxic-acidemia we found
increasing values of AC/DC suggesting an activation of ANS. This correlation was strongest on time scale dominated by
parasympathetic modulations. We identified the best performing T parameters (3ƒ Tƒ 5), and found that AC/DC
computation is not independent from FHR decelerations. These findings establish the basis for future clinical studies.
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Introduction

Labor exposes the fetus to repetitive transient hypoxic stress

resulting from uterine contractions and/or umbilical cord

compression. Monitoring of the fetal wellbeing and detection of

fetal distress during labor are of crucial importance to timely

identify hypoxia and to avoid pathologic acidemia. Fetal heart rate

(FHR) analysis by cardiotocogram (CTG) is widely used for fetal

surveillance in labor. It is characterized by high sensitivity but low

specificity for fetal acidemia. After forty years of use, its role in

decreasing perinatal mortality or cerebral palsy, despite a marked

increase in the rate of operative deliveries, is still controversial [1].

The additional analysis of ST-waveforms on fetal electrocardio-

grams (ECG) reduced the number of instrumental vaginal

deliveries for fetal distress [2]. Nevertheless, it did not solve

definitively the issue of fetal acidemia detection [3]. Direct

measurement of pH or lactate concentration in humans during

partum is feasible by fetal scalp sampling, although this procedure
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is not universally accepted as a standard of care, and, occasionally,

may lead to complications [4]. Thus, there is a need for further

advances in fetal monitoring to timely identify fetal hypoxia and

acidemia.

Power spectral analysis has been proposed as a method to

quantify FHR variability. Several studies have demonstrated

changes in power spectrum in relation to fetal hypoxia and/or

acidemia during labor [5–7]. As with many other composite

signals, FHR is generated by a non-stationary system influenced

by internal and external perturbations that alter its behavior.

Moreover, the phase de-synchronizations due to abrupt changes in

the system (as ventricular ectopic beats, maternal uterine

contractions, and others), miss-detected beats and signal losses

determines a quasi-periodic behavior that limits the application of

spectral analysis [8].

Bauer et al. [9] introduced a method called phase-rectified

signal averaging (PRSA) that emphasizes quasi-periodic oscilla-

tions masked by unrelated non-stationary elements in the signal,

noise or artifacts. The PRSA series can be employed to quantify

the ‘‘average acceleration capacity’’ (AC) and ‘‘average deceler-

ation capacity’’ (DC) of the signal. When applied to heart rate, AC

and DC may represent an indirect integrated quantification of the

activities of the sympathetic and parasympathetic autonomic

systems [10]. The utility of DC was proved in adult cardiology: it is

a better predictor of survival in adults who experienced a

myocardial infarction [11]. Studies on intrauterine fetal growth

restriction showed that PRSA is superior to short term variability

in discriminating intrauterine growth restricted fetuses from

controls. Nevertheless, those studies used signals obtained

indirectly (by CTG [12,13] or by trans-abdominal ECG recorder

[14], respectively), and assessed non-laboring women.

This is the first validation of the PRSA method in a fetal in vivo
near-term pregnant sheep model. The aim of the study was to

investigate changes in AC and DC in response to fetal hypoxia and

acidemia, and to evaluate their correlation with acid-base

biomarkers. For PRSA analysis, either the whole fRR signal was

considered or the segments free of FHR decelerations imposed by

umbilical cord occlusions (UCOs). Moreover, specific PRSA

parameters were varied (in particular the time scale over which

AC and DC are computed).

Method

1. Animal model
Nine near term pregnant sheep were deployed as in vivo model.

Animal care followed the guidelines of the Canadian Council on

Animal Care and was approved by the University of Western

Ontario Council on Animal Care. The dataset was previously

described [15,16]. Briefly, after a period of rest (BASELINE), a 1-

minute periodical mechanical compression of the ovine fetus’

umbilical cord was continuously alternated with a 1.5 minutes

recovery. Three levels of occlusion strength, from partial to

complete, were designed: mild (MILD, 60 minutes), moderate

(MODERATE, 60 minutes) and complete (SEVERE, ,2 hours

or until pH,7.00 was reached). Physiologic results from these and

additional animals have been previously reported [15–18].

Electrodes implanted into the left supra-scapular muscles, in the

muscles of the right shoulder, and in the cartilage of the sternum of

the fetus were used to measure the ECG which was digitized at

1000 Hz. Fetal blood samples were collected with intervals of

20 minutes to quantify the values of pH, lactate and base deficit

(hereafter referred to as ‘‘biomarkers’’). The severe phase of UCOs

was stopped when the pH dropped below 7.0. Then, a recovery

phase (RECOVERY) concluded the protocol. ECGs were

automatically analyzed to obtain the sequence of fetal RR

intervals. Due to the long time span over which the data were

collected, heart beat misdetections were common in ECG,

especially during the actual umbilical compression. We considered

suitable for further analysis only those sheep (7 out of 9) which had

more than 90% of correctly located beats during MODERATE

and SEVERE phases (gaps in the series were less than 10% of the

total time). During the MILD phase, miss-detected beats were less

than 10% in the entire population.

2. Phase-rectified signal averaging
PRSA provides an estimate of the autonomic regulation of the

FHR even when phase de-synchronizations due to abrupt changes

in the system, miss-detected beats and signal losses are present [9].

Briefly, a set of anchor points is determined on the fRR series:

each time point t that satisfies the following criterion is inserted

into the anchor points’ list (deceleration):

1

T

XT{1

i~0

fRR tzið Þw 1

T

XT

i~1

fRR t{ið Þ

A window of length 2L is centered on each anchor point (the

anchor point is at position L+1). Then, the windows are aligned

and averaged, obtaining the PRSA series. Finally, the PRSA series

is used to compute the DC with:

DC or ACð Þ~ 1

2s

Xs

i~1

PRSA Lzið Þ{ 1

2s

Xs{1

i~0

PRSA L{ið Þ

It is worth noting that this expression is substantially equivalent

to a wavelet transform (Haar wavelet) of the PRSA series,

evaluated at scale s and location L+1.

Three parameters, T , s and L, need to be specified. T sets the

number of points of the low-pass moving average filter employed

before the detection of anchor points. It is an upper frequency

limit for the periodicities that can lead to the selection of anchor

points by PRSA (i.e., the 3 dB pass-band of the filter ends

approximately at f & 0:603= T fRR
� �

Hz, where fRR is the

average fetal RR interval in seconds). L § Tð Þ determines the

extension of the PRSA series. In principle, L § Tð Þ needs to be

larger than the period of the slowest oscillation to be detected with

PRSA; however, when computing AC or DC, it suffices to be as

large as T . Finally, the scale s selects the oscillations in the PRSA

series that most affect AC and DC. Approximately, using a Haar

wavelet, the scale s corresponds to the frequency

f & 0:371= s fRR
� �

Hz. In this study, the scale s is taken to

be equal to T . This is not mandatory (i.e., in [11] T = 1 and s = 2

were found to be optimal for prediction of mortality after

myocardial infarction in adults), but in line with two previous

studies employing PRSA on fRR series [12,13]. Using s = T we

avoided the need of optimizing a further parameter. We leave this

effort to further studies.

An identical procedure is used to compute AC, but after

employing a different criterion for selecting the anchor points:

1

T

XT{1

i~0

fRR tzið Þv 1

T

XT

i~1

fRR t{ið Þ
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In this framework, DC values are positive and AC values are

negative. However, for simplicity, in this work we chose to

consider only their absolute values, so that both are positive.

3. Preprocessing
Fetal RR intervals greater than 1500 ms (40 bpm) were labeled

as artifacts and substituted with an equivalent number of beats

(calculated dividing the length of each artifact by the median of the

20 nearby fRR samples). These reconstructed samples were not

used as anchor points in the PRSA analysis; however they

contributed to the selection of nearby anchor points. Furthermore,

each fRR interval that exceeded the preceding one by more than

20% was excluded from the anchor points’ lists.

4. Protocol of the study
We analyzed fRR series obtained during the last 30 minutes of

each UCO phase. The rationale for this choice was that, although

hypoxic-acidemia induced by UCOs grew gradually over time

throughout the UCOs, it was respectively maximal within the last

part of each UCO phase. Consequently, time-matched biomark-

Figure 1. Example of fRR series and umbilical cord occlusions (UCOs) pressure signal (bottom bold line). Dashed boxes emphasize
stable fRR intervals (without artifacts and UCO-induced decelerations). Black stars mark artifacts or reconstructed fRR samples, excluded from being
anchor points in the PRSA analysis.
doi:10.1371/journal.pone.0104193.g001

Figure 2. Example of estimation of the fRR time constants during cord occlusion and subsequent recovery. Panel (a): fRR during
mechanical cord occlusion. The data belongs to the fetus of sheep #3 (Table 1). Panel (b): fRR during recovery after UCO for the same case. Box plots
summarize the values of fRR at a given time distance from the occlusion (or its release). The model prediction is reported with a bold line. The vertical
lines delimit the ‘‘whiskers’’ and the + signs the outliers.
doi:10.1371/journal.pone.0104193.g002
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ers’ values were those collected with the last blood sample in each

UCO phase, so that the number of samples was equal for each

individual across the cohort avoiding a possible statistical bias in

correlation coefficients (data available in Table S1).

AC and DC were determined independently for each of the

UCO phases by PRSA analysis. We checked that more than 150

anchor points were available in each UCO phase. The compu-

tation was performed for values of T in the range 1–50 with

L~ 100. The linear correlation between AC/DC and biomark-

ers’ values was assessed by Spearman’s correlation coefficient

(p,0.05 was considered significant).

UCO alters significantly the FHR, and the influence of FHR on

AC/DC is still matter of investigation. For this reason, a second

PRSA analysis was performed after excluding FHR decelerations

due to UCO, i.e., macro oscillations (Figure 1). ‘‘Stable’’ FHR

intervals employed were located using the pressure signal applied

on the umbilical cord during occlusion (Figure 1). At the

beginning of each occlusion, fRR decreased progressively to

quickly recover when pressure was released. The time constants of

the fRR during SEVERE cord occlusion (‘‘stim’’) and recovery

(‘‘rec’’) were estimated, for each sheep, by fitting the exponential

model:

RRstim tð Þ~A 1{e
{ t

tstim

� �
zB

Table 1. Time constants of the fRR-response to UCO (in seconds).

SHEEP tstim trec

#1 9.63 6.46

#2 46.17 5.22

#3 34.56 4.30

#4 14.22 3.38

#5 34.65 7.88

#6 12.46 4.36

#7 11.76 5.61

Mean 23.35 5,32

Median 14.22 5.22

IR 12.11–34.61 4.33–6.03

doi:10.1371/journal.pone.0104193.t001

Figure 3. PRSA curve (DC) for a single case during BASELINE (bold line) and SEVERE UCO (PRSA’s mean value was removed). The
analysis was performed on stable (concatenated baseline free of FHR decelerations segments) fRR intervals. The dashed box emphasizes samples
used for computing DC (T = 5). Vertical dotted bars depict DC in the two cases considered.
doi:10.1371/journal.pone.0104193.g003
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RRrec tð Þ~Ce{t=treczD

where tstim and trec are two time constants (A, B, C and D are

scalars necessary for the fitting but not further considered in this

study). Levenberg-Marquardt least-square estimation was used to

estimate the parameters of the model for each sheep (median

R2
w 0:9). An example is reported in Figure 2 while Table 1 lists

the values of tstim and trec. The two sets of time constants were

largely different (p,0.05, paired Wilcoxon signed rank test)

suggesting that the recovery of the HR is far quicker than the onset

of the deceleration.

We considered stable (free from FHR decelerations) those

intervals spanning 30 s after the end of each occlusion and ending

at the beginning of the next one. The value of 30 s was selected to

be larger than 3 times the longest recovery time, i.e., trec~ 8 s, so

that fRR is substantially back to the baseline value. By definition,

stable baseline intervals between decelerations were short (at most

1 minute each once removed artifacts): to explore larger value of

T they were concatenated (data available in Table S1).

Summarizing, for each UCO phase two sets of AC/DC values

were obtained: 1) from the entire fRR series (entire fRR); and 2)

from stable baseline and free of FHR decelerations fRR intervals

extracted from the fRR series and then concatenated (stable fRR).

Two examples of PRSA curves are shown in Figure 3.

A paired Wilcoxon signed rank test was employed to compare

AC/DC values between: BASELINE and MILD; MILD and

MODERATE; MODERATE and SEVERE. A Bonferroni

correction for multiple comparisons was applied. A non-paramet-

ric test was preferred due to the small number of samples.

Results

Table 2 contains the values of the biomarkers (pH, lactate and

base deficit) for each protocol phase. As expected from the

protocol’s design, there was an increasing trend from BASELINE

to SEVERE UCOs.

1. AC and DC change during protocol phases
Values of AC and DC followed a similar growing trend from

BASELINE to SEVERE UCOs. Table 3 reports median AC and

DC values for each protocol phase and for several T values (PRSA

was computed on the entire fRR signal). Differences between

phases varied according to the value of T employed. The list of T

values for which a statistically significant difference was found

between successive phases (p,0.05) is contained in Table 4.

Summarizing, as the hypoxic-acidemia progressed, DC (for T = 2

to 5) and AC (for T = 1 to 3) were different between MILD and

MODERATE and then between MODERATE and SEVERE.

However, MILD phase was not distinguishable from BASELINE.

Parameters computed with higher values of T were different

between MILD and MODERATE only.

When repeated on stable fRR intervals, the results were

substantially confirmed even though less markedly, as reported

in Table 5 and Table 6. Specifically, while SEVERE was

distinguishable from MODERATE for T in the range 3 to 5,

Table 2. Median values of pH, lactate and base deficit according to protocol phases.

BASELINE MILD MODERATE SEVERE

pH 7.34 (7.34, 7.37) 7.33 (7.31, 7.34) 7.28 (7.24, 7.30) 6.98 (6.96, 7.07)

Lactate 1.60 (1.33, 1.85) 1.65 (1.40, 2.05) 3.80 (2.68, 4.60) 11.40 (5.20, 12.43)

Base deficit 1.08 (0.31, 3.28) 0.29 (22.10, 1.06) 22.46 (23.85, 21.17) 214.07 (215.34, 212.64)

Interquartile ranges are reported within brackets. Lactate and base deficit are shown in mEq/L.
doi:10.1371/journal.pone.0104193.t002

Table 3. AC and DC absolute median values (in ms) when considering the entire signal (including UCO-induced FHR
decelerations).

AC BASELINE MILD MODERATE SEVERE

T = 2 2.30 (1.55,2.51) 1.92 (1.56,2.26) 4.32 (3.40,6.14) 6.57 (4.21,8.18)

T = 4 2.77 (2.35,3.56) 2.56 (2.25,3.91) 5.33 (4.85,7.12) 7.01 (5.19,8.71)

T = 6 3.27 (2.99,3.93) 3.14 (2.78,4.45) 6.13 (5.89,7.77) 6.84 (6.30,8.45)

T = 10 4.07 (3.60,4.24) 4.06 (3.59,4.82) 8.09 (7.07,8.82) 6.40 (5.82,9.02)

T = 20 4.58 (4.12,4.66) 5.04 (4.75,5.50) 10.92 (8.96,11.21) 7.81 (7.02,10.60)

DC BASELINE MILD MODERATE SEVERE

T = 2 2.78 (1.93,3.79) 2.26 (2.05,3.19) 4.91 (3.72,5.85) 7.21 (4.36,7.55)

T = 4 3.00 (2.47,4.06) 2.86 (2.65,4.20) 6.19 (4.93,7.48) 8.92 (5.89,9.61)

T = 6 3.29 (2.98,4.42) 3.49 (3.26,4.60) 6.62 (6.07,8.45) 9.55 (7.56,10.14)

T = 10 3.74 (3.46,4.79) 4.44 (4.19,5.18) 7.69 (7.37,9.86) 10.40 (9.30,10.82)

T = 20 4.21 (3.74,4.96) 5.61 (5.48,5.88) 9.45 (8.87,10.22) 12.24 (9.65,14.66)

Interquartile ranges are reported within brackets. Any AC or DC value (for MILD, MODERATE and SEVERE) is statistically different from the corresponding one in Table 3
(p,0.05).
doi:10.1371/journal.pone.0104193.t003
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MILD and MODERATE were significantly different only for

large values of T . However, for T.25, anchor points were

selected using fRR samples coming from two consecutive recovery

periods, and, thus, the results are less reliable.

Furthermore, AC/DC values, computed on a window of

5 minutes immediately after the end of the SEVERE phase, were

not statistically different from those during the BASELINE phase

(p.0.05).

Finally, during UCO the values of AC/DC computed on the

entire signals (Table 3) were significantly different from those

obtained on stable series (Table 5), and this was true for each value

of T (p,0.05).

2. Correlations with acid base balance
A significant Spearman’s correlation coefficient between AC/

DC (computed on the entire fRR series) and each biomarker of

acid base balance was found for a large range of T values (Figure 4

and Figure 5). However, maximal correlation (0.40,D r D ,0.90;

p,0.05) was for T in the interval 2 to 6, and was stronger for DC.

Both AC and DC correlated stronger to pH and base deficit, than

to lactate concentration. For instance, considering T = 4, we found

a negative correlation among AC (its absolute value) and pH

(r = 20.85; p,0.05), base deficit (r = 20.70; p,0.05), and a

positive correlation with lactate (r = 0.53; p,0.05). Similarly, we

found a negative correlation among DC and pH (r = 20.87; p,

0.05), base deficit (r = 20.74; p,0.05), and a positive correlation

with lactate (r = 0.52; p,0.05).

When excluding decelerations imposed by UCOs, a significant

correlation was found for a narrower range of T values (Figure 6),

the range was wider for DC than AC). However, these values

matched those for which the correlation coefficients were maximal

in the previous analysis.

Discussion

The principal findings of the study are: 1) AC and DC increase

with worsening acidemia; 2) AC and DC correlate to acid base

balance observed at different phases of hypoxic-acidemia; 3) PRSA

computed with T = 2 to 5 best enhances differences among

protocol phases (this is particularly true for SEVERE cord

occlusions), leading to the highest correlation between AC or

DC with biomarkers; and 4) considering only stable fRR segments

(concatenated baseline segments of FHR between decelerations) or

the entire fRR series led to different results (AC/DC values

obtained on stable fRR segments were smaller on average). Thus,

FHR decelerations, even if low frequency, induce changes in the

PRSA series and, consequently, in AC and DC.

1. AC and DC increase with worsening acidemia
AC and DC identify different behavior of the FHR during

acceleration and deceleration, respectively. Nevertheless, it would

be too simplistic to consider AC only as an expression of

sympathetic modulation and DC as an expression of parasympa-

thetic modulation. Rather, both AC and DC result from the

interaction of parasympathetic and sympathetic component, and

Table 4. Ranges of T in which a significant difference between two phases was found (Wilcoxon signed rank test, p,0.05).

BASELINE MILD MODERATE SEVERE

BASELINE - none - -

MILD - - any -

MODERATE - - - Tƒ 3 ACð Þ; 2ƒ Tƒ 5 DCð Þ

PRSA was performed on the entire signal (including UCO-induced FHR decelerations).
doi:10.1371/journal.pone.0104193.t004

Table 5. AC and DC absolute median values (in ms) when considering stable (concatenated baseline segments free of FHR
decelerations) fRR intervals.

AC BASELINE MILD MODERATE SEVERE

T = 2 2.31 (1.55,2.53) 1.61 (1.17,2.11) 2.18 (1.75,2.85) 3.99 (2.10,4.34)

T = 4 2.77 (2.36,3.52) 2.14 (1.68,2.67) 2.79 (2.47,3.58) 4.45 (3.10,5.29)

T = 6 3.26 (3.00,3.87) 2.49 (2.12,2.96) 3.41 (2.95,4.20) 4.81 (3.49,5.22)

T = 10 4.07 (3.61,4.24) 3.01 (2.46,3.48) 4.31 (3.31,5.46) 3.99 (3.84,5.26)

T = 20 4.53 (4.13,4.68) 3.34 (2.73,4.41) 5.43 (3.92,6.25) 5.36 (4.42,5.94)

DC BASELINE MILD MODERATE SEVERE

T = 2 2.79 (1.95,3.78) 2.00 (1.54,2.95) 2.68 (2.28,3.13) 4.18 (2.82,4.44)

T = 4 2.99 (2.50,4.03) 2.37 (1.85,2.96) 3.11 (2.89,4.10) 4.87 (3.57,5.25)

T = 6 3.27 (3.01,4.36) 2.79 (2.37,3.26) 3.61 (3.28,5.13) 4.81 (3.63,6.11)

T = 10 3.73 (3.49,4.70) 3.22 (2.81,4.11) 4.60 (3.67,6.48) 4.83 (4.49,6.29)

T = 20 4.20 (3.77,4.86) 3.82 (3.55,5.10) 5.55 (4.53,7.59) 6.35 (4.99,7.45)

Interquartile ranges are reported within brackets. Any AC or DC value (for MILD, MODERATE and SEVERE) is statistically different from the corresponding one in Table 2
(p,0.05).
doi:10.1371/journal.pone.0104193.t005
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represent an integration of several input signals such as

chemoreceptor, baroreceptor and others. The two components

of the autonomic nervous system (ANS) operate at different

frequency scales: sympathetic component in low frequency

domain, while parasympathetic both in low and high frequency

domain, respectively. In PRSA computation, the s = T parameter

determines an upper frequency limit for the periodicities that

mostly influence AC and DC [9]. For T = 1 high frequencies

dominate the computation. At contrary, increasing values of T will

progressively also emphasize the contribution of low frequency

components.

When looking at the absolute values of AC and DC we observed

a clear increasing trend with worsening acidemia. Indeed, during

SEVERE UCOs (i.e., severe acidemia), the AC and DC were

maximal with respect to BASELINE. This trend was present when

analyzing the whole fRR series and for a large range of T values

suggesting the activation of both sympathetic and parasympathetic

component during progressive acidemia.

However, only a smaller range of T (2ƒ Tƒ 5) was able to

differentiate MODERATE vs SEVERE phase. The same was true

for 3ƒ Tƒ 5 when excluding FHR decelerations. This would

suggest that, for higher degree of acidemia, the frequencies

dominated by parasympathetic component become predominant.

These findings are in agreement with other reports that evaluated

ANS response to hypoxia, but with different methodologies: 1)

Frasch et al, in the same population of 7 near-term pregnant sheep

employed for this work, reported that the root mean square of

successive differences (RMSSD, a time-domain index mainly

influenced by the vagal activity [19]) has the most pronounced

changes during acidemia [20]; 2) Siira et al. found that in an acute

phase of hypoxia, without acidemia, there is an activation of

sympathetic system, while, when acidemia occurs, the vagal

influence increases [5].

The activation of ANS by initial and acute hypoxia most likely

constitutes a first line adaptive response, and results in a more

pronounced FHR modulation and a larger cardio-vascular

response. Indeed, in experiments on fetal lambs, acute fetal

hypoxia led to increased FHR variability representing a sign of

adequate fetal compensatory response [21]. Moreover, the

predominant involvement of vagal tone has been associated to a

more efficient modulation of ANS [22]. In fact, in the presence of

acute hypoxia, the reduction in FHR (i.e., deceleration) is thought

to be protective for the fetus, because it reduces myocardial work

and oxygen consumption [23], and is mediated by the chemore-

Table 6. Ranges of T in which a significant difference between two phases was found (Wilcoxon signed rank test, p,0.05).

BASELINE MILD MODERATE SEVERE

BASELINE - none - -

MILD - - T~ 50 ACð Þ; T§ 45 DCð Þ -

MODERATE - - - 3ƒ Tƒ 5 ACð Þ; 4ƒ Tƒ 5 DCð Þ

PRSA was performed on stable (concatenated baseline segments and free of FHR decelerations) fRR intervals.
doi:10.1371/journal.pone.0104193.t006

Figure 4. Relation between AC and DC with pH for T = 4 (entire fRR series).
doi:10.1371/journal.pone.0104193.g004
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ceptors via the parasympathetic branch. Nevertheless, if there is a

prolonged hypoxic insult and overwhelming acidemia, parasym-

pathetic activity decreases [5], causing reduced FHR variability

[24]. In fact, when the vagal regulation becomes inadequate, some

of the adaptive mechanisms (such as chemoreceptor-mediated

circulatory adaptation) might fail causing fetal brain damage, and

ultimately fetal death.

Interestingly, our data did not show the final fall in parasympa-

thetic activity before the pH reached the predefined threshold, most

likely due to the acute nature of the insult. This was confirmed by

the rapid recovery (Table 1 and Figure 2) that each animal showed

both for acid-base balance and PRSA parameters [15].

2. AC and DC correlate with acid-base balance
We found that AC and DC correlate to the biomarkers of

acidemia, and this correlation is significant both for fRR series that

include and exclude FHR decelerations. Interestingly, the

correlation was stronger for pH and base deficit, and to a lesser

extent for lactate concentration. This finding can be explained by

the fact that both pH and base deficit are strong stimulators of

chemoreceptors which are highly sensitive to the presence of

hypoxemia, and, consequently, influence FHR modulation [25].

Moreover, we found that the correlation with acidemia was

maximal for low values of T . This would suggest that, in the

presence of acute hypoxic insult, the low frequencies dominated by

parasympathetic branch are more responsive to the changes of

acid base balance. There are studies that evaluated the correlation

between FHR variability assessed by spectral analysis and acid

base balance, either during labor [5], or at birth [6,26]. Although,

all studies confirmed that hypoxia and acidemia have a direct

effect on FHR variability, and thus on ANS, it is difficult to derive

a common line for all studies because of profound methodological

Figure 5. Spearman’s correlation coefficients between AC (a) and DC (b) and each acid-base balance biomarker. PRSA was performed
on the entire fRR series. Stars refer to significant p values (p,0.05). Lactate values were multiplied by 21.
doi:10.1371/journal.pone.0104193.g005

Figure 6. Spearman’s correlation coefficients between AC (a) and DC (b) and each acid-base balance biomarker. PRSA was performed
on stable (concatenated baseline and free of FHR decelerations) baseline fRR intervals. Stars refer to significant p values (p,0.05). Lactate values were
multiplied by 21.
doi:10.1371/journal.pone.0104193.g006
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differences [7]. Nevertheless, our findings are in agreement with

those by Siira et al., who found a correlation between high

frequency bands at power spectral analysis of FHR variability and

pH obtained by fetal scalp blood sampling during labor [5].

3. Changes in AC and DC varying the parameter T
The significance of the parameter T has been explored in adult

cardiology, and a T of 1–2 has been found as the best value [10]

(when T~ 1, s~ 2 might be preferred [11]). Although some

studies applied PRSA to FHR [12–14], the impact of changing T
when PRSA is applied to FHR has not been reported. We found

that T value in interval 2–5 best enhances the differences between

progressive cord occlusion phases (worsening acidemia). Similarly,

when evaluating the correlation with acid-base biomarkers, the

best correlation was observed for T value in the range 2–6. Very

recent analyses in adult cardiology also showed that application of

a larger T makes PRSA more robust to artifacts and noise [27].

Thus, we suggest this time scale for an effective computation of

PRSA analysis, when detecting hypoxic-acidemic events in

laboring fetuses. However, the small sample size employed

requires further studies.

4. Excluding FHR decelerations in PRSA computation
Next, we wanted to evaluate if there are significant differences

between stable intervals of fRR series, and the entire fRR series.

The rationale was the fact that abrupt perturbations, such as

uterine contractions, or in this case UCOs, may lead to a phase de-

synchronization in the fRR series. Interestingly, we found

significant differences between AC and DC computed on the

entire signal or on stable fRR signal, respectively. This was true

even for small values of T , and, thus, for high order frequencies.

When interpreting these findings it has to be taken into account

that: 1) the frequency content of macro oscillations is very limited

(compared with those of other components of the fRR), and, thus,

should be filtered out from the series when calculating PRSA; and

2) capacity estimates should be independent from FHR deceler-

ations when ANS regulation does not change (at least for small

values of T,20). However, our results showed the contrary. There

could be two possible explanations. First, during UCOs, not only

the mean trend of the series changes but also the beat-to-beat

relationships regulated by ANS. Second, PRSA’s amplitude

depends on the power of the oscillatory components in the signal,

and, thus, AC and DC may be influenced by severe FHR

decelerations that determine changes in total spectral power.

The analysis on the stable fRR segments seems to strengthen the

first explanation. Moreover, in order to address the issue of total

power of the signal we computed the standard deviation of

normal-to-normal intervals (SDNN, [21]), a FHR variability

measure capturing all cyclic components responsible for the

variability in the period of recording and strictly related to the total

power of the sequence. SDNN was statistically indistinguishable

between any two consecutive phases of the stable segments of fRR

intervals (paired Wilcoxon signed rank test, p.0.05; data not

shown). Therefore, the total power cannot explain the difference

in AC and DC between phases.

To summarize, we found differences in AC/DC between entire

and stable fRR series, respectively, that in our data series cannot

be explained by the change in total power suggesting a higher

order influence of ANS on fRR series during decelerations. Which

one of the two phases (i.e., entire or stable fRR series) could be

more valuable in a clinical scenario remains to be evaluated.

Conclusions

In conclusion, our study shows that PRSA-based analysis of

FHR variability is a sensitive tool for detecting hypoxia-induced

autonomic activations. Overall, we found the evidence of ANS

activation in sheep fetus exposed to acute hypoxic-acidemic insult.

Such activation was more prominent at mid/high frequencies

(which mostly influence PRSA in the range 3ƒ Tƒ 5), that

correspond to a more relevant activation of the parasympathetic

branch). Moreover, the PRSA-based measures, AC and DC, were

significantly correlated with measures of acidemia with strongest

correlation in a range of high frequencies. We evaluated the

impact of the parameter T and we offered suggestions for its

choice. These findings establish the basis for future clinical studies.

Limitations and strengths of the study
This is the first validation, in an in vivo pregnant sheep model,

of PRSA analysis of FHR to detect different acid-base states

during worsening hypoxic-acidemia. Studies performed on in vivo
models (usually pregnant sheep) permit to simulate near-term

pregnancies, and repetitive UCOs to mimic uterine contractions.

Moreover, the data such as fRR series, pH, base deficit and lactate

concentration are obtained directly from the fetus during the

entire course of the experiment, increasing the accuracy of the

findings.

A limitation of the study is the small sample size. However, it

was adequately powered to detect differences of DC and AC at

different hypoxic phases.

Supporting Information

Table S1 The table shows, for each sheep, the absolute median

values (in ms) of AC and DC computed for T values in the interval

1–50 in each of the phases of the experiment (baseline, mild,

moderate and severe phases). The analysis of both the entire signal

(including FHR decelerations) and stable fRR intervals (concat-

enated baseline segments free of FHR decelerations) are reported.

Median values of pH, lactate and base deficit collected in each of

the protocol phases are also reported for each sheep. Lactate and

base deficit are shown in mEq/L.

(XLS)
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