
MATHEMATICS OF COMPUTATION
Volume 80, Number 275, July 2011, Pages 1287–1301
S 0025-5718(2011)02458-0
Article electronically published on February 18, 2011

ACCELERATION OF A TWO-GRID METHOD

FOR EIGENVALUE PROBLEMS

XIAOZHE HU AND XIAOLIANG CHENG

Abstract. This paper provides a new two-grid discretization method for solv-
ing partial differential equation or integral equation eigenvalue problems. In
2001, Xu and Zhou introduced a scheme that reduces the solution of an eigen-
value problem on a finite element grid to that of one single linear problem on
the same grid together with a similar eigenvalue problem on a much coarser
grid. By solving a slightly different linear problem on the fine grid, the new
algorithm in this paper significantly improves the theoretical error estimate
which allows a much coarser mesh to achieve the same asymptotic convergence
rate. Numerical examples are also provided to demonstrate the efficiency of
the new method.

1. Introduction

In this paper, we present an improved two-grid method for solving eigenvalue
problems. The two-grid discretization method has been well developed in recent
years. It was first introduced by Xu [17, 18, 19] for nonsymmetric and nonlin-
ear elliptic problems. It was then applied to other problems by many researchers,
including: Axelsson and Layton [1] for nonlinear elliptic problems, Dawson and
Wheeler [7] for nonlinear parabolic equations, Layton and Lenferink [11], Utnes
[16], and Layton and Tobiska [12] for Navier-Stokes problems, Marion and Xu [13]
for evolution problems, and Xu and Zhou [22] for eigenvalue problems. This method
is also used as part of the finite difference scheme (see also Dawson, Wheeler and
Woodward [8] for parabolic equations). Recently, Chien and Jeng [6] used this
method along with the continuation method for solving semilinear elliptic eigen-
value problems; Jin, Shu and Xu [10] employed it for decoupling systems of partial
differential equations; Xu and Zhou [20, 21, 23] developed localized and parallelized
algorithms based on two-grid discretizations for linear and nonlinear elliptic bound-
ary problems as well as eigenvalue problems.

In this paper, we propose an improved two-grid discretization method for eigen-
value problems: Find λh ∈ R and uh ∈ Sh\{0} satisfy

a(uh, vh) = λhb(uh, vh), ∀vh ∈ Sh.

Here Sh is a finite element space defined on a quasi-uniform grid of size h. Expand-
ing upon an idea developed by Xu and Zhou [22], we solve a standard finite element
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discretization for an eigenvalue problem on a coarse space SH : Find uH ∈ SH ,
λH ∈ R such that

(1.1) a(uH , v) = λHb(uH , v), ∀v ∈ SH ,

and obtain a rough approximation of the eigenpair. We then solve a linear problem
based on (λH , uH) on a fine space Sh: Find uh ∈ Sh such that

(1.2) a(uh, v)− λHb(uh, v) = b(uH , v), ∀v ∈ Sh, and λh =
a(uh, uh)

b(uh, uh)
,

and obtain a corrected eigenpair (λh, uh) instead of solving the eigenvalue problem
on the fine grid directly. We obtain the following results (see Section 3) for elliptic
eigenvalue problems:

min
α∈R

‖u− αuh‖a = O(hr +H3r+1) and |λh − λ| = O(h2r +H6r+2),

where r is the degree of the piecewise polynomials. These estimates mean that

we can obtain asymptotically optimal accuracy by using H = O(h
1
4 ) if we use the

piecewise linear finite element. In comparison with the results by Xu and Zhou [22]:

‖u− uh‖a = O(hr +Hr+1) and |λh − λ| = O(h2r +H2r+2),

where the asymptotically optimal accuracy is obtained by taking H = O(h
1
2 ) if the

piecewise linear element is used. Our method can either use a coarser grid to obtain
the same optimal accuracy or use the same coarse and fine grid to accelerate the
convergence and obtain a better approximation for the eigenpair.

The rest of this paper is organized as follows. In Section 2, we describe the
standard finite element method for eigenvalue problems. Section 3 contains the
new algorithm of the paper, as well as error analysis and extensions. In Section 4,
we give some numerical examples to show the efficiency of our new method.

2. Preliminaries

In this section, we describe some basic notation and properties of the standard
finite element approximation of the self-adjoint eigenvalue problems.

2.1. Setting for the problem. Suppose that H is a real Hilbert space with an
inner product (·, ·) and norm ‖ · ‖, respectively. Let a(·, ·) and b(·, ·) be two given
symmetric bilinear forms on H×H. Assume that a(·, ·) satisfies
(2.1) |a(u, v)| ≤ C0‖u‖‖v‖, ∀u, v ∈ H,

and there exists C1 > 0 such that

(2.2) a(u, u) ≥ C1‖u‖2, ∀u ∈ H.

Then we can introduce another norm ‖u‖a := a(u, u)1/2 on H. Obviously, ‖u‖a
and ‖u‖ are two equivalent norms. In the rest of this paper, we will use a(u, v) and
‖u‖a as the inner product and norm on H and denote this space by Ha. For b(·, ·),
we assume that

‖u‖b := b(u, u)1/2

defines a norm on H. Let Hb be the completion of Ha with respect to ‖ · ‖b, Hb is
a Hilbert space with inner product b(·, ·) and ‖ · ‖b is assumed to be compact with
respect to ‖ · ‖a. Ha is compactly embedded in Hb. (Alternately, we can assume
that Ha ⊂ Hb is compact, and let b(·, ·) be the inner product on Hb).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ACCELERATION OF A TWO-GRID METHOD FOR EIGENVALUE PROBLEMS 1289

From Ha and Hb, we can construct the negative space H−a = H′
a with a dual

norm ‖ · ‖−a given by

(2.3) ‖u‖−a = sup
v∈Ha,‖v‖a=1

|b(u, v)|,

then Hb ⊂ H−a compactly, and for v ∈ Ha, b(u, v) has a continuous extension to
u ∈ H−a which results in the dual form 〈·, ·〉H−a×Ha

so that b(u, v) is continuous
on H−a × Ha. We can assign an inclusion, I ∈ L(Ha,H−a), to the bilinear form
b(u, v) as follows:

(2.4) b(u, v) = 〈Iu, v〉H−a×Ha
= 〈u, v〉H−a×Ha

, ∀u ∈ Ha, v ∈ Ha.

By the negative space H−a and (2.1), for the bilinear form a(u, v), we can define a
unique operator A ∈ L(Ha,H−a) such that

(2.5) a(u, v) = 〈Au, v〉H−a×Ha
, ∀u, v ∈ Ha, and ‖A‖Ha→H−a

≤ C0.

2.2. Finite element spaces. Assume that Γh = {τ} is a mesh of Ω and h =
maxτ∈Γh hτ is the largest mesh size of Γh. Let the family {Sh} be the finite element
spaces on Ω associated with the mesh and satisfy the following approximation
property: For any u ∈ Ha, we get

(2.6) lim
h→0

inf
v∈Sh

‖u− v‖a = 0.

Let Ph be the orthogonal projection of Ha onto Sh with respect to the bilinear
form a(·, ·), namely

(2.7) a(u, v) = a(Phu, v), ∀u ∈ Ha, v ∈ Sh

and, clearly,

‖Phu‖a ≤ ‖u‖a, ∀u ∈ Ha.

If u ∈ Ha, then

lim
h→0

‖u− Phu‖ = 0.

We also introduce two more operators, which are used in the analysis of our
accelerated two-grid scheme, T and Th : H−a → Ha such that

(2.8) a(Tf, v) = b(f, v), T f ∈ Ha, ∀v ∈ Ha

and

(2.9) a(Thf, v) = b(f, v), T f ∈ Sh, ∀v ∈ Sh.

Note that Th = PhT . Let η(h) be defined by

(2.10) η(h) = ‖T − Th‖H−a×Ha
= sup

g∈Ha,‖g‖a=1

inf
v∈Sh

‖Tg − v‖a,

which gives us the following result (see Lemma 3.3 and 3.4 in [2]):

Lemma 2.1. Let η(h) be defined as in (2.10), then

lim
h→0

η(h) = 0

and

‖u− Phu‖−a ≤ η(h)‖u− Phu‖a, ∀u ∈ Ha.
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2.3. Eigenvalue problems and some classical error estimates. We consider
variationally formulated, self-adjoint eigenvalue problems. We call a real number
λ and a nonzero function u an eigenpair of the bilinear form a(·, ·) with respect to
the bilinear form b(·, ·) if they satisfy

(2.11) a(u, v) = λb(u, v), ∀v ∈ Ha.

Under the assumptions we have made, (2.11) has a countable sequence of real
eigenvalues

0 < λ1 ≤ λ2 ≤ · · · ,
and corresponding eigenvectors

u1, u2, · · · ,
which can be chosen to satisfy that

a(ui, uj) = λib(ui, uj) = δij , i, j = 1, 2, · · · .
The eigenvalues and eigenvectors satisfy the following well-known variational prin-
ciple known as the min-max principle:

(2.12) λi = min
Vi∈Ha,dimVi=i

max
u∈Vi

a(u, u)

b(u, u)
.

Next we will give an approximation of the eigenpair of (2.11) using the standard
finite element method, or more generally, the Galerkin method. To this end, sup-
pose that we are given a family {Sh} of finite-dimensional subspaces and Sh ⊂ Ha.
Consider the following eigenvalue problem: Find λh ∈ R and uh ∈ Sh\{0} satisfy

(2.13) a(uh, vh) = λhb(uh, vh), ∀vh ∈ Sh.

The eigenpair (λh, uh) of (2.13) will be viewed as an approximation of the eigenpair
(λ, u) of (2.11) (as h → 0). (2.13) has a sequence of eigenvalues

0 < λh,1 ≤ λh,2 ≤ · · ·λh,Nh
, Nh = dimSh,

and corresponding eigenvectors

uh,1, uh,2, · · · , uh,Nh
,

which can be chosen to satisfy

a(uh,i, uh,j) = λh,ib(uh,i, uh,j) = δij , i, j = 1, 2, · · · , Nh.

The min-max principle analogous to (2.12) holds for (2.13) by replacing Ha by Sh

and taking i = 1, 2, · · · , Nh. It follows directly from the min-max principle that

λi ≤ λh,i, i = 1, 2, · · · , Nh.

It follows from (2.6) that
λh,i → λi, as h → 0.

Assuming λi has multiplicity qi, let

M(λi) = {u ∈ Ha : u is an eigenvector of (2.11) corresponding to λi},
and

δh(λi) = sup
u∈M(λi),‖u‖a=1

inf
u∈Sh

‖u− v‖a.

λi is approximated by λh,i+j , j = 0, · · · , qi − 1. Let uh,i+j denote the approximate
eigenvectors corresponding to λh,i+j , j = 0, · · · , qi − 1. Similarly, let

Mh(λi) = span{uh,i, uh,i+1, · · · , uh,i+qi−1},
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and Eh be the orthogonal projection of Ha onto Mh(λi).
The following result is well known (see p. 699 of [3] and Lemma 3.6, 3.7 and

(3.29b) of [2], or cf. [4]) and is useful in error analysis.

Lemma 2.2. (i) For any uh,i ∈ Mh(λi) of (2.13) (i = 1, 2, · · · , Nh), there is an
eigenvector ui ∈ M(λi) of (2.11) corresponding to λi and

‖ui − uh,i‖a ≤ Ciδh(λi),

or for any ui ∈ M(λi),

‖ui − Ehui‖a ≤ Ciδh(λi).

Moreover,

‖ui − uh,i‖−a ≤ Ciη(h)‖ui − uh,i‖a.
(ii) For the eigenvalue, we have

λi ≤ λh,i ≤ λi + Ciδ
2
h(λi).

Here and after Ci is a constant which is dependent on i, but not dependent on h.

At the end of this section, we give an important but straightforward identity that
relates the errors in the eigenvalue and eigenvector approximation (for examples,
see Lemma 3.1 of [2] or Lemma 9.1 of [3]).

Proposition 2.3. Let (λ, u) be an eigenpair of (2.11). For any w ∈ Ha\{0}, we
have

a(w,w)

b(w,w)
− λ =

a(w − u,w − u)

b(w,w)
− λ

b(w − u,w − u)

b(w,w)
.

3. An improved two-grid discretization

In this section, we present an accelerated scheme of two-grid discretization for
eigenvalue problems. As in other two-grid methods, the basic mechanisms in our
approach consist of two quasi-uniform triangulations of Ω, ΓH and Γh with different
mesh sizes H and h (H > h) and their corresponding finite element spaces SH and
Sh, also known as the coarse and fine spaces, respectively. We assume that SH and
Sh satisfy (2.6) and SH ⊂ Sh.

3.1. An accelerated two-grid scheme and error estimate. We define a new
bilinear form as follows:

aμ(·, ·) : H−a ×Ha → R, aμ(u, v) = a(u, v)− μb(u, v).

Since Ha ⊂ Hb ⊂ H−a compactly, it follows from (2.5) and (2.4) that

aμ(u, v) = 〈(A− μI)u, v〉H−a×Ha
, ∀u ∈ Ha, v ∈ Ha,

and we have the following lemma for the newly introduced bilinear form:

Lemma 3.1. If μ is not an eigenvalue, there exist two constants C(μ) and Ch(μ)
such that

(3.1) sup
v∈Ha

|aμ(u, v)|
‖v‖a

≥ C(μ)‖u‖a, ∀u ∈ Ha

and

(3.2) sup
v∈Sh

|aμ(u, v)|
‖v‖a

≥ Ch(μ)‖u‖a, ∀u ∈ Sh.
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Proof. By (2.2), the operator defined by (2.5) satisfies that A ∈ L(Ha,H−a) and
A−1 ∈ L(H−a,Ha). Since Ha is compactly embedded in Hb, and Hb is compactly
embedded in H−a, Ha ⊂ H−a is also a compact embedding (i.e, the inclusion
I ∈ L(Ha,H−a) is compact). Hence, the operator T defined by (2.8) satisfies
T = A−1I: Ha → Ha and is also compact from Ha to Ha. Therefore, the Riesz-
Schauder theory is applicable to T − νI. Since

T − νI = −ν(I − ν−1T ) = −νA−1(A− μI)

with μ = 1/ν, the statements of the Riesz-Schauder theory transfer via T − νI to
A−μI = −ν−1A(T−νI). (A−μI)−1 ∈ L(H−a,Ha), which means that (3.1) holds.
For (3.2), note that the operator Th is also compact from Ha to Ha, and hence the
conclusion is obtained directly by replacing A by Ah. �

According to (3.1) and (3.2), if μ is not an eigenvalue, then aμ(u, v) = 〈f, v〉 is
uniquely solvable for all v ∈ Ha or v ∈ Sh. If μ is an eigenvalue, then aμ(u, v) =
〈f, v〉 may have no solution (In fact, it has at least one solution if and only if
f ∈ M(μ)⊥).

Now, the main algorithm of this paper is presented as follows:

Algorithm 1. Accelerated Two-grid Method

Step 1: Find λi,H ∈ R and ui,H ∈ SH (i = 1, 2, · · · , NH) such that ‖ui,H‖a = 1
and

a(ui,H , v) = λi,Hb(ui,H , v), ∀v ∈ SH .

Step 2: Find uh
i ∈ Sh, (i = 1, 2, · · · , NH), such that

(3.3) aλi,H
(uh

i , v) = b(ui,H , v), ∀v ∈ Sh.

Step 3: Set

λh
i =

a(uh
i , u

h
i )

b(uh
i , u

h
i )

, i = 1, 2, · · · , NH .

Remark 3.2. We note that the linear system in Step 2 is nearly singular and how this
system is solved efficiently is obviously a matter of concern. This problem has been
much discussed in the literature in the context of the general inverse power method.
As shown in, e.g., [9, 15, 14], the near-singularity of this system seldomly presents
a problem for the inverse power method. Let x1 and x̃1 denote the exact and
computed solution of one step of the inverse power method with shift σ. Because
of the roundoff error, we have (A − σI)x1 = x0, and (A − σI)x̃1 = x0 + g. Let φ
be the angle between g and the eigenvector vi, and the orthogonal decomposition
of g is g = (vi cosφ + z sinφ)‖g‖, where zT vi = 0. Therefore, we have a similar
orthogonal decomposition for the error e = x̃1 − x1 = (A− σI)−1g:

e = (vi cosφ/(λi − σ) + z̃‖(A− σI)−1z‖ sinφ)‖g‖,
where z̃ is the normalized version of (A − σI)−1z and is orthogonal to vi. Let ψ
denote the angle between e and vi, then we have

tanψ = ‖(A− σI)−1z‖(λi − σ) tanφ ≤ |λi − σ|
minj �=i |λj − σ| tanφ.

This shows that the error e is almost entirely in the direction of the eigenvector vi
when |λi − σ| is very small. Therefore, an iterative method (such as the multigrid
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method or the conjugate gradient method) can be used to solve this nearly singular
system without much extra difficulty. Moreover, when this system actually becomes
singular or very close to being singular, λi,H will be equal or very close to λi,h, it
means that λi,H is already a good approximation of λi,h.

The following theorem gives the error estimates for our accelerated two-grid
scheme.

Theorem 3.3. Assume that (λh
i , u

h
i ), (i = 1, 2, · · · , NH) are calculated via Algo-

rithm 1. If SH ⊂ Sh, then there exists an eigenvector ui ∈ M(λi) such that

min
α∈R

‖ui − αuh
i ‖a ≤ Ci(‖ui − Phui‖−a + |λi,H − λi|‖ui − Phui‖−a

+ |λi,H − λi|‖ui − ui,H‖−a + ‖ui − Phui‖a).
(3.4)

For the eigenvalue, we have

|λh
i − λi| ≤ Ci(‖ui − Phui‖−a + |λi,H − λi|‖ui − Phui‖−a

+ |λi,H − λi|‖ui − ui,H‖−a + ‖ui − Phui‖a)2.
(3.5)

Consequently,

min
α∈R

‖ui − αuh
i ‖a ≤ Ci(η(h)δh(λi) + δ2H(λi)δh(λi)η(h) + δ3H(λi)η(H) + δh(λi)),

(3.6)

|λh
i − λi| ≤ Ci(η

2(h)δ2h(λi) + δ4H(λi)δ
2
h(λi)η

2(h) + δ6H(λi)η
2(H) + δ2h(λi)).(3.7)

Proof. Consider an equivalent linear system on the fine grid as follows:

(3.8) aλi,H
(ũh

i , v) = (λi − λi,H)b(ui,H , v), ∀v ∈ Sh.

Note that

(3.9) λh
i =

a(uh
i , u

h
i )

b(uh
i , u

h
i )

=
a(ũh

i , ũ
h
i )

b(ũh
i , ũ

h
i )

.

According to Lemma 2.2, there exists an eigenvector ui ∈ M(λi) such that ‖ui −
ui,H‖ ≤ CiδH(λi). From (2.11), (2.7) and (3.8), we have

aλi,H
(Phui − ũh

i , v) = λib(ui − Phui, v) + (λi,H − λi)b(ui − Phui, v)

+ (λi − λi,H)b(ui − ui,H , v), ∀v ∈ Sh.
(3.10)

From Lemma 3.1 and (2.3), we can obtain

‖ui − ũh
i ‖a ≤Ci(‖ui − Phui‖−a + |λi,H − λi|‖ui − Phui‖−a

+ |λi,H − λi|‖ui − ui,H‖−a + ‖ui − Phui‖a).
(3.11)

Note that minα∈R ‖ui−αuh
i ‖a ≤ ‖ui− ũh

i ‖a, (3.4) follows from (3.11) immediately.
(3.5) follows from (3.9), (3.11), and Proposition 2.3. Finally, (3.6) and (3.7) are
obtained by Lemma 2.2. �

Remark 3.4. Our accelerated two-grid scheme expands upon the idea developed by
Xu and Zhou [22]. Therefore, we can also extend it to nonselfadjoint eigenvalue
problems. Assume that a(·, ·) may not be symmetric, but b(·, ·) is symmetric. Note
that

a(w,w)

b(w,w)
− λ =

a(w − u,w − u)

b(w,w)
− λ

b(w − u,w − u)

b(w,w)
+

a(w − u, u)− a(u,w − u)

b(w,w)
.
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For instance, when r > 1 and the bilinear form a(·, ·) corresponds to a general
elliptic operator of second order, then

|a(w − u, u)− a(u,w − u)| ≤ C‖w − u‖1−r

and
‖w − u‖1−r � ‖w − u‖1.

Therefore, in this situation, our accelerated two-grid scheme can also be applied to
nonselfadjoint eigenvalue problems.

3.2. Examples. Our accelerated two-grid method is suitable for a large class of
self-adjoint eigenvalue problems. Next, we give two examples: One is a partial
differential operator and the other is an integral operator. Let Ω ⊂ R

d (d = 1, 2, · · · )
be a bounded polygonal and convex domain, and Γh(Ω), consisting of shape-regular
simplices, be a mesh with mesh size h.

3.2.1. Second order elliptic operators. Define

a(u, v) =

∫
Ω

d∑
i,j=1

aij
∂u

∂xi

∂v

∂xj
, aij ∈ W1,∞(Ω),

b(u, v) = (u, v)L2 ,

where A = (aij) is uniformly positive definite on Ω. Introduce the following spaces

Ha = H1
0 (Ω), Hb = L2(Ω),

and the finite element space

Sh(Ω) = {v ∈ C(Ω) ∩H1
0 (Ω) : v|τ ∈ P r

τ , ∀τ ∈ Γh(Ω)},
where P r

τ is the space of polynomials whose degree is not greater than the positive
integer r.

Assume M(λi) ⊂ Hr+1(Ω), and then

η(h) = O(h), δh(λi) ≤ Cih
r.

Hence,

(3.12) min
α∈R

‖ui − αuh
i ‖a ≤ Ci(h

r +H3r+1)

and

(3.13) |λh
i − λi| ≤ Ci(h

2r +H6r+2).

If we use the piecewise linear finite element, namely r = 1, then the asymptotically
optimal accuracy is obtained by taking H = h

1
4 .

Remark 3.5. In [22], the error estimates of the eigenvector and eigenvalue are as
follows:

(3.14) ‖ui − uh
i ‖a ≤ Ci(h

r +Hr+1)

and

(3.15) |λh
i − λi| ≤ Ci(h

2r +H2r+2).

This means that the asymptotically optimal accuracy is obtained by taking H =

h
r

r+1 (when r = 1, H = h
1
2 ). When r is large (such as in the case of a high order

finite element), we have h ≈ H, which means we cannot use a coarse grid; other-
wise improvement stemming from correction on the fine grid will be inconspicuous.
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But with our accelerated two-grid scheme, the asymptotically optimal accuracy is
obtained by taking H = h

r
3r+1 . Obviously, our scheme accelerates the convergence.

Even when r is large, we still have h ≈ H3, and hence the improvement on the fine
grid will still be conspicuous.

3.2.2. Fredholm integral operators. Define

a(u, v) = (u, v)L2 ,

b(u, v) = (ku, v)L2 ,

where (ku)(x) =
∫
Ω
k(x, y)u(x)dy is the symmetric and positive definite Fredholm

integral operator on L2(Ω) (k(x, y) ∈ Cr+1(Ω × Ω)). We introduce the spaces as
follows:

Ha = L2(Ω), Hb = the completion of Ha with respect to ‖ · ‖b
and

Sh(Ω) = {v ∈ C(Ω) ∩H1
0 (Ω) : v|τ ∈ P r

τ , ∀τ ∈ Γh(Ω)}.
Then we have

η(h) = O(hr+1), δh(λi) ≤ Cih
r+1

and, therefore,
min
α∈R

‖ui − αuh
i ‖a ≤ Ci(h

r+1 +H4r+4)

and
|λh

i − λi| ≤ Ci(h
2r+2 +H8r+8).

Remark 3.6. The error estimates obtained by Xu and Zhou in [22] for the Fredholm
integral operator are

‖ui − uh
i ‖a ≤ Ci(h

r+1 +H2r+2)

and
|λh

i − λi| ≤ Ci(h
2r+2 +H4r+4).

Thus, it is proven that our method accelerates the convegence.

4. Numerical examples

In this section, we present some numerical experiments for second order elliptic
operators and demonstrate the efficiency of our accelerated two-grid algorithm. All
of the numerical tests are based on AFEM@matlab [5].

4.1. Example 1.

−Δu = λu, in Ω,

u = 0, on ∂Ω,

where Ω ⊂ R or ⊂ R
2.

(i) Ω = (0,1)× (0,1). We consider the two-dimensional case Ω = (0, 1)× (0, 1),
where the eigenvalues are

λk,l = (k2 + l2)π2, k, l = 1, 2, · · · .
The corresponding eigenvectors are

uk = sin kπx sin lπy, k, l = 1, 2, · · · .
We use the piecewise linear finite element space in the following numerical experi-
ments.
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We first show the convergence rate of our accelerated two-grid scheme. According
to Theorem 3.3, we have

(4.1) min
α∈R

‖∇(uh − αuh)‖L2 = O(H4) and |λh − λh| = O(H8),

where (λh, uh) is the eigenpair obtained by solving the eigenvalue problem on the
fine grid directly. The results shown in Table 1 consist of these estimates.

Table 1. Convergence rate test on uniform grid

H minα ‖∇(uh − αuh)‖L2 Ratio |λh − λh| Ratio
1/2 3.5948E-1 - 1.0528E-1 -
1/4 2.4495E-2 23.8753 4.6979E-4 27.8080

1/8 1.7281E-3 23.8253 2.2809E-6 27.6862

1/16 1.1206E-4 23.9468 9.5479E-9 27.9002

In order to demonstrate the acceleration of our new proposed scheme and com-
pare our numerical results fairly with those of Xu and Zhou, we first apply both
schemes on the same uniform coarse and fine grid satisfying H2 = h. (By taking
H2 = h, Xu and Zhou’s scheme can obtain asymptotically optimal accuracy.) In
addition, we apply our accelerated scheme on coarser grids H = 1

4 ,
1
8 with the fine

grids h = 1
64 ,

1
256 to show that we can obtain better results by applying our acceler-

ated scheme using a coarser grid and the same fine grid. Also, in order to show that
our accelerated scheme can improve the results on a large class of coarse and fine
grids, we choose mesh sizes satisfying h = H/2, a common occurrence in the mesh
refinement process. Finally, we apply two schemes on the unstructured meshes (see
Figure 1), and the results are shown in Table 2. Here, λ denotes the exact eigen-
value, and λh is the standard finite element eigenvalue on the fine grid. λXZ and
λAc denote the approximate eigenvalues obtained by Xu and Zhou’s scheme and
our accelerated scheme, respectively.

From Table 2, we can see that our accelerated two-grid scheme outperforms in
all cases. Although our accelerated scheme cannot obtain asymptotically optimal
accuracy when H = h

1
2 , we can still get a better approximate eigenvalue. Fur-

thermore, we can use coarser grids (H = 1/4, h = 1/64 and H = 1/8, h = 256) to
obtain better approximations. For grids obtained by the mesh refinement procedure
(H = 2h) or unstructured grids, our accelerated scheme still works better.

Table 3 shows the error of the eigenvector approximation. We can see that in all
of cases, our accelerated scheme provides a better approximate eigenvector. Table 3
also lists the CPU time for the two schemes. Here we only show the computational
time on the fine grid and the direct solver (“\” in MATLAB) is used. On the
same coarse and fine grids, our accelerated scheme may take a little bit more time.
However, the eigenpair approximation obtained by our new scheme is much better.
Moreover, our accelerated scheme can use coarser grids (H = 1/8, h = 1/16 for
our new scheme and H = 1/32, h = 1/64 for Xu and Zhou’s scheme) to produce
similar results (λAc−λh = 7.22E-7, λXZ−λh = 2.14E-6, minα ‖∇(uh−αuh

Ac)‖L2 =
9.67E-4 and minα ‖∇(uh − αuh

Xz)‖L2 =1.67E-3), which saves the computational
time (1.00E-2 seconds for our accelerated scheme and 1.6E-1 seconds for Xu and
Zhou’s scheme).
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0 1
0

1

(a)

Coarse grid

0 1
0

1

(c)
0 1

0

1

(d)

0 1
0

1
Fine grid

(b)

Figure 1. Unstructured coarse and fine meshes. (a) and (b) are
a pair of coarse and fine grids, (c) and (d) constitute another pair.

Table 2. Results of Example 1 on Ω = (0, 1)× (0, 1) for the first
eigenvalue λ = 19.739208802178716

Coarse Fine λXZ λAc λXZ − λh λAc − λh

H h Coarse and fine grids satisfying H = h
1
2

1/4 1/16 19.942337 19.930260 1.25E-2 4.70E-4
1/8 1/64 19.752004 19.751103 9.03E-4 2.28E-7
1/16 1/256 19.740012 19.739952 6.00E-5 9.55E-9

H h Coarser grid (only for our accelerated scheme)H > h
1
2

1/4 1/64 - 19.751738 - 6.37E-4
1/8 1/256 - 19.739954 - 2.43E-6

H h Coarse and fine grids satisfying H = 2h
1/4 1/8 20.513575 20.505713 8.03E-3 1.68E-4
1/8 1/16 19.930303 19.929791 5.13E-4 7.22E-7
1/16 1/32 19.786826 19.786792 3.37E-5 3.02E-9
1/32 1/64 19.751103 19.751101 2.14E-6 1.18E-11
1/64 1/128 19.74218171 19.74218157 1.35E-7 -7.35E-13
1/128 1/256 19.73995199 19.73995197 8.42E-9 -3.37E-12

Fig.1 Fig.1 Unstructured coarse and fine grids (see Figure 1)
(a) (b) 19.969542 19.968661 8.83E-4 1.80E-6
(c) (d) 19.793019 19.792981 3.79E-5 4.36E-9

(ii) Ω = (−1,1)× (−1,1)\(0,1)× (−1,0). We consider eigenvalue problems on
an L-shaped domain in this section. The coarse grid used in this numerical exper-
iment is chosen to be a uniform grid (see Figure 2(a)). Note that the eigenvector
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Table 3. Results of Example 1 on Ω = (0, 1) × (0, 1) for the
eigenvector corresponding to the first eigenvalue and CPU time (s)

Coarse Fine minα ‖∇(uh − αuh
XZ)‖L2 minα ‖∇(uh − αuh

Ac)‖L2 CPU(XZ) CPU(Ac)

H h Coarse and fine grids satisfying H = h
1
2

1/4 1/16 1.25E-1 2.45E-2 2.00E-2 2.00E-2
1/8 1/64 3.42E-2 1.73E-3 1.30E-1 2.00E-1
1/16 1/256 8.85E-3 1.12E-4 2.02E0 3.60E0

H h Coarse and fine grids satisfying H = 2h
1/4 1/8 9.88E-2 1.44E-2 0.00E0 0.00E0
1/8 1/16 2.57E-2 9.67E-4 9.99E-3 1.00E-2
1/16 1/32 6.63E-3 6.29E-5 4.00E-2 5.00E-2
1/32 1/64 1.67E-3 3.98E-6 1.60E-1 1.90E-1
1/64 1/128 4.20E-4 2.49E-7 5.40E-1 8.30E-1
1/128 1/256 1.05E-4 1.56E-8 2.05E0 3.66E0

−1 1
−1

1

(a)

Coarse grid

−1 1
−1

1
Fine grid

(b)

−1 1
−1

1

(c)
−1 1

−1

1

(d)

Figure 2. Coarse and fine grids for an L-shaped domain. (a) is
the coarse grid. (b), (c) and (d) are the fine grids.

has singularity near the origin, and the fine grids are obtained by the adaptive
local refinement procedure (see Figure 2(b), (c) and (d)). The results are shown in
Table 4. Clearly, our accelerated scheme produces better approximations.
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Table 4. Results of Example 1 on Ω = (−1, 1)× (−1, 1)\(0, 1)×
(−1, 0) based on the local refinement for the first eigenpair.

Coarse Fine λXZ λAc λXZ − λh λAc − λh

Fig.2 Fig.2 Coarse and fine grids for an L-shaped domain (see Fig. 2)
(a) (b) 9.800761 9.761609 3.96E-2 4.21E-4
(a) (c) 9.700724 9.698331 2.43E-3 3.30E-5
(a) (d) 9.655058 9.654758 3.65E-4 4.96E-6

Coarse Fine minα ‖∇(uh − αuh
XZ)‖L2 minα ‖∇(uh − αuh

Ac)‖L2

Fig.2 Fig.2 Coarse and fine grids for an L-shaped domain (see Fig. 2)
(a) (b) 2.18E-1 2.27E-2
(a) (c) 5.51E-2 6.51E-3
(a) (d) 1.98E-2 2.57E-3

4.2. Example 2.

−∂xxu− (1 + δ2)∂yyu = λu, in Ω,

u = 0, on ∂Ω,

where Ω = (0, 1)× (0, 1). The second and third eigenvalues are

λ2 = (1 + (1 + δ)/4)π2 and λ3 = (1 + δ + 1/4)π2.

Table 5. Results of Example 2 on Ω = (−1, 1)× (−1, 1) for the
second eigenvalue λ2 = (1 + (1 + δ)/4)π2 and the third eigenvalue
λ3 = (1 + 1/4 + δ)π2 (δ = 1E − 5).

Coarse Fine λXZ λAc λXZ − λh,i λAc − λh,i

H h Coarse and fine grids satisfying H = h
1
2

1/4 1/16 λ2 12.593356 12.549865 5.17E-2 8.21E-3
λ3 12.737820 12.695065 7.95E-2 3.68E-2

1/16 1/256 λ2 12.338144 12.337866 2.82E-4 3.23E-6
λ3 12.338595 12.338313 2.80E-4 -2.53E-6

H h Coarser grid (only for our accelerated scheme) H > h
1
2

1/8 1/256 λ2 - 12.337912 - 4.90E-5
λ3 - 12.338441 - 1.26E-5

H h Coarse and fine grids satisfying H = 2h
1/8 1/16 λ2 12.543869 12.541672 2.15E-3 1.26E-5

λ3 12.660697 12.658317 2.41E-3 3.56E-5
1/16 1/32 λ2 12.388349 12.388194 1.56E-4 1.00E-7

λ3 12.417062 12.416903 1.60E-4 1.28E-7
1/32 1/64 λ2 12.349858 12.349848 1.03E-5 1.64E-7

λ3 12.357007 12.356997 1.02E-5 8.56E-8
1/64 1/128 λ2 12.340263 12.340262 1.08E-6 6.52E-7

λ3 12.342049 12.342048 2.16E-7 -3.44E-7
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The distance between these two eigenvalues is 3
4π

2δ. We also use the piecewise

linear finite element space and choose the coarse and fine grid satisfying H = h
1
2 ,

H = 2h for both Xu and Zhou’s scheme and our accelerated scheme. The coarser
grid H > h

1
2 is used only in our accelerated scheme. The results are shown in Table

5 for δ = 1E − 5.
From Table 5, we can see that our scheme works better in all cases. This means

our accelerated scheme is efficient and robust for eigenvalue problems which may
have clustered eigenvalues.

References

1. O. Axelsson and W. Layton, A two-level method for the discretization of nonlinear boundary
value problems, SIAM J. Numer. Anal. 33 (1996), no. 6, 2359–2374. MR1427468 (98c:65181)
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