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Abstract

Objectives

To evaluate proton density fat fraction (PDFF) and T2* measurements of the liver with com-

bined parallel imaging (sensitivity encoding, SENSE) and compressed sensing (CS) accel-

erated chemical shift encoding-based water-fat separation.

Methods

Six-echo Dixon imaging was performed in the liver of 89 subjects. The first acquisition variant

used acceleration based on SENSE with a total acceleration factor equal to 2.64 (acquisition

labeled as SENSE). The second acquisition variant used acceleration based on a combination

of CSwith SENSEwith a total acceleration factor equal to 4 (acquisition labeled as CS

+SENSE). Acquisition times were compared between acquisitions and proton density fat frac-

tion (PDFF) and T2*-values were measured and compared separately for each liver segment.

Results

Total scan duration was 14.5 sec for the SENSE accelerated image acquisition and 9.3 sec

for the CS+SENSE accelerated image acquisition. PDFF and T2* values did not differ sig-

nificantly between the two acquisitions (paired Mann-Whitney and paired t-test P>0.05 in all

cases). CS+SENSE accelerated acquisition showed reduced motion artifacts (1.1%) com-

pared to SENSE acquisition (12.3%).

Conclusion

CS+SENSE accelerates liver PDFF and T2*mapping while retaining the same quantitative

values as an acquisition using only SENSE and reduces motion artifacts.
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Citation: Lohöfer FK, Kaissis GA, Müller-Leisse C,

Franz D, Katemann C, Hock A, et al. (2019)

Acceleration of chemical shift encoding-based

water fat MRI for liver proton density fat fraction

and T2� mapping using compressed sensing.

PLoS ONE 14(11): e0224988. https://doi.org/

10.1371/journal.pone.0224988

Editor: Xi Chen, McLean Hospital, UNITED STATES

Received: August 1, 2019

Accepted:October 25, 2019

Published: November 15, 2019
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Introduction

The non-invasive quantification of fat and iron content in liver tissue is of high clinical signifi-

cance. For example, Non-Alcoholic Fatty Liver Disease (NAFLD) is the most common cause

of chronic liver disease worldwide [1], with a prevalence of approximately 30% in adults in the

western world [2]. In patients with NAFLD, liver damage results in hyperferritinemia and

hepatic iron accumulation [3, 4]. Both hepatic iron overload and steatosis can result in fibrosis,

progress to cirrhosis and therefore carry an increased risk for the development of hepatocellu-

lar carcinoma [5]. Despite availability of non-invasive imaging methods for quantification of

hepatic fat and iron content, invasive tissue biopsy and histopathologic visualization of the fat

deposition remains the gold standard in detection and quantification of hepatic steatosis and

iron overload [6–12].

Magnetic resonance imaging (MRI) provides tools for fast, non-invasive quantitative imag-

ing. Specifically, multi-echo gradient-echo acquisitions enable the simultaneous spatially-

resolved mapping of the proton density fat fraction (PDFF) and T2�. Liver PDFF has emerged

as a method for quantification of intrahepatic fat [13–17] with high sensitivity and specificity

of 95.0% and 100.0% for the detection of histologic steatosis [13]. Due to its high diagnostic

performance, PDFF is used as a reference modality for other methods of image-based fat quan-

tification like computed tomography [18]. Likewise, liver T2� mapping has emerged as a

method for quantification of intrahepatic iron content [19]. Chemical shift encoding-based

water-fat separation by multi-echo gradient echo acquisition enables the simultaneous accu-

rate and precise quantification of liver PDFF and T2�.

Parallel imaging has been traditionally used to reduce acquisition times, enabling chemical

shift encoding-based water-fat separation measurements in a single breath-hold. However,

further reduction of the breath-hold duration is highly desirable to avoid motion artefacts and

thus improve accuracy of non-invasive fat and iron quantification, especially in patients with

difficulty holding their breath. Compressed sensing (CS) allows for acceleration of MRI

sequences and has been successfully utilized in various applications [20–22]. Some methodo-

logical works have employed CS for PDFF mapping and applied the technique in small volun-

teer or patient samples [23–26]. However, few studies exist on the performance of CS for

simultaneous PDFF and T2� mapping in larger patient cohorts.

Therefore, the purpose of this study was the evaluation of the robustness of an CS-acceler-

ated multi-echo gradient echo acquisition for the quantification of hepatic fat and iron content

compared to a standard parallel-imaging-accelerated multi-echo gradient echo acquisition in a

larger patient cohort.

Material andmethods

Approval by the institutional ethics committee (180/17S, Ethikkommission der Fakultät für

Medizin der Technischen Universität München) was received for the study. The requirement

to obtain written informed consent for retrospective data analysis was waived. All analyses

were carried out in compliance with the pertinent regulations and requirements.

Patient and public involvement

We did not involve patients or the public in our work.

Patient cohort

We considered 217 datasets of patients who underwent routine clinical liver MRI examination

from January 2018 until August 2018 for inclusion in the study. Datasets of patients with

Acceleration liver proton density fat fraction and T2* mapping using compressed sensing

PLOSONE | https://doi.org/10.1371/journal.pone.0224988 November 15, 2019 2 / 11

Competing interests: The authors acknowledge

research support from Philips Healthcare. This

does not alter our adherence to PLOS ONE policies

on sharing data and materials.

https://doi.org/10.1371/journal.pone.0224988


primary or secondary/metastatic liver tumors (N = 128) were excluded. The final patient

cohort consisted of 89 patients (39 males and 50 females). Average patient age was 62.6±16.9

years (range 19–86 years). MRI was performed for the following indications: evaluation of

focal pancreatic lesions (n = 57), pancreatitis (n = 15), evaluation of biliary lesions (n = 9) and

suspected liver lesions (n = 8).

Data acquisition

Two variants of multi-echo gradient-echo imaging for performing chemical shift encoding-

based water-fat separation were performed sequentially on each patient at a 3 T MRI scanner

(Philips Ingenia Elition X; Philips Medical Systems, Best, The Netherlands). The two acquisi-

tions were based on a spoiled gradient echo sequence using bipolar gradient readouts. The first

acquisition variant used acceleration based on SENSE with a total acceleration factor equal to

2.64 (acquisition labeled as SENSE). The second acquisition variant used acceleration based on

a combination of CS with SENSE with a total acceleration factor equal to 4 (acquisition labeled

as CS+SENSE). The relevant scan parameters are listed in Table 1.

The CS+SENSE technique used in the present work was based on the combination of

SENSE and CS, labelled as Compressed SENSE or C-SENSE. The technique uses the coil sensi-

tivity information from a SENSE calibration scan and randomly undersamples both the central

and outer part of k-space, following a smooth sampling density as moving from the center to

outer parts of k-space. The acquisition and reconstruction were based on the vendor’s imple-

mentation (Compressed SENSE, Philips Healthcare). A single CS acceleration factor was

defined for the CS+SENSE acquisition variant and the sampled k-space pattern (central and

outer part) was defined based on the vendor’s implementation. In order to maintain a balance

between noise reduction and data consistency for CS, an iterative L1-minimization recon-

struction technique, forcing data fidelity, and image sparsity in the wavelet domain, was used.

Complex multi-echo gradient-echo images were generated after the SENSE and CS+SENSE

reconstructions and provided as input to the fat quantification routine provided by the vendor

(mDixon Quant, Philips Healthcare). Specifically, after phase correction, a complex-based

water-fat decomposition was performed using a single T2
� correction and a pre-calibrated fat

spectrum accounting for the presence of the multiple peaks in the fat spectrum. A seven-peak

fat spectrummodel was employed [27]. The PDFF map was computed as the ratio of the fat

signal over the sum of fat and water signals.

Table 1.

Acquisition with SENSE Acquisition with CS+SENSE

Gating Breath-hold Breath-hold

Acquisition duration (s) 14.5 9.3

Acceleration factor 2.2 x 1.2 = 2.64 4

FOV (mm) FH; RL; AP 150; 400; 300 150; 400; 300

Acquisition voxel size (mm) FH; RL; AP 6; 3; 2 6; 3; 2

Reconstruction voxel size (mm) FH/RL/AP 6; 1.14; 1.14 6; 1.14; 1.14

Fast imaging mode none none

TEeff /TEequiv (ms)

Act. TR (ms) 7.8 7.8

Act. TE (ms) 1.35 1.35

Flip angle (˚) 3 3

Scan parameters

https://doi.org/10.1371/journal.pone.0224988.t001
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Image analysis

Images were reviewed by two abdominal radiologists under standardized radiological report-

ing room conditions. Circular regions of interest (ROI) with a diameter of 15mm were manu-

ally drawn in each liver segment in consensus, avoiding large portal vein and hepatic vein

branches (Fig 1). T2� and PDFF maps were reviewed and mean ROI values and standard devi-

ations were extracted. The software used was Sectra IDS7 (Linköping, Sweden).Motion arti-

facts were rated using a 4-point Likert scale as 1 = image not diagnostic because of artifacts;

2 = major artifacts; 3 = minor artifacts; 4 = no artifacts.

Statistical analysis

Variables were tested for normal distribution using the D’Agostino-Pearson omnibus K2 test.

Student’s t-test was used for mean comparisons of normally distributed variables. The Wil-

coxon test was used for mean comparisons of variables without normal distribution. All

Fig 1. MRI was performed for evaluation of cystic pancreatic lesion. Exemplary region of interest is drawn in segment VII (1.5cm). PDFF: acquisition with SENSE
11.1±2.4% (A); acquisition with CS+SENSE 10.8±1.5% (B); T2�: acquisition with SENSE 9.35±0.6ms (C); acquisition with CS+SENSE 9.28±0.5ms (D).

https://doi.org/10.1371/journal.pone.0224988.g001
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analyses were performed using Prism Version 7 (GraphPad Software). A two-tailed P-value

below 0.05 was considered statistically significant.

Results

The use of CS+SENSE accelerated image acquisition by 35% compared to the SENSE acquisi-

tion (from 14.5 to 9.3 seconds). Mean PDFF values ranged from 4.79±5.76% (liver segment

IVb) to 6.37 ± 6.65% (liver segment VII) in the acquisition with SENSE and from 5.01±5.88%

(liver segment IVb) to 6.28 ± 6.10% (liver segment VII) in the acquisition with CS+SENSE.

Results did not differ significantly between the two acquisitions. All values are shown in

Table 2. Mean PDFF was significantly higher in the right liver lobe compared to the left in both

acquisitions (right lobe: 6.04 ± 6.36%; left lobe: 5.24 ± 5.69%; P = 0.03; acquisition with SENSE

and right lobe: 5.96 ± 6.30%; left lobe: 5.16 ± 5.74%; P = 0.02; acquisition with CS+SENSE).

Mean T2� values ranged from 20.54±7.05 ms (liver segment II) to 23.42±7.43 ms (liver seg-

ment V) in the acquisition with SENSE and from 21.29±8.24 ms (liver segment II) to 23.30

±8.60 ms (liver segment IVb) in the acquisition with CS+SENSE. T2� values did not differ sig-

nificantly between the two acquisitions. T2� values with inter-patient standard deviation and

results of the mean comparison are shown in Table 3. T2� values showed no significant

Table 2.

Liver Segment PDFF (%) in acquisition with SENSE PDFF (%) in acquisition with CS+SENSE p

I 5.36±4.83 5.11±4.49 0.1012

II 5.29±6.08 5.17±5.72 0.8659

III 5.04±5.68 5.01±5.88 0.9954

IVa 4.99±5.65 5.03±5.79 0.4.996

IVb 4.79±5.76 5.88±6.24 0.9889

V 5.53±6.72 5.50±6.73 0.5450

VI 6.19±5.93 6.05±5.76 0.1847

VII 6.37±6.19 6.28±6.10 0.7536

VIII 6.05±6.65 6.00±6.66 0.9425

PDFF mean values in % with standard deviation, no significant differences were seen between the two acquisitions. Wilcoxon test (no normal distribution); Patients:

n = 89

https://doi.org/10.1371/journal.pone.0224988.t002

Table 3.

Liver Segment T2� (ms) in acquisition with SENSE T2� (ms) in acquisition with CS+SENSE p

I 22.25±7.70 23.04±7.67 0.1578

II 20.54±7.05 21.29±8.24 0.2096

III 20.96±6.98 21.38±7.85 0.3541

IVa 21.59±6.48 21.68±7.22 0.8428

IVb 23.15±7.30 23.30±8.60 0.7841

V 23.42±7.43 23.15±7.46 0.3549

VI 22.91±6.94 22.97±7.21 0.8399

VII 22.05±7.38 22.18±7.34 0.7391

VIII 22.05±6.76 22.32±7.31 0.4264

T2� mean values in ms with standard deviation no significant differences were seen between the two acquisitions.

Paired t test (normal distribution); Patients: n = 89

https://doi.org/10.1371/journal.pone.0224988.t003
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difference between the right and left liver lobe in both acquisitions (right lobe: 22.60 ± 7.28ms;

left lobe: 21.70 ± 7.14ms; P = 0.08 in the acquisition with SENSE; right lobe: 22.65 ± 7.31ms;

left lobe: 22.14 ± 7.94ms; P = 0.35; in the acquisition with CS+SENSE). Images acquired with

SENSE showed minor motion artifacts in 10.1% (n = 9) and major motion artifacts in 2.2%

(n = 2) of the cases. Images acquired with CS+SENSE showed minor motion artifacts in 1.1%

(n = 1) of all cases. One exemplary case with hepatic steatosis, sparing segment I is shown in

Fig 2. Fig 3 shows a patient with segmental steatosis. A T2 weighted image and a CT-image,

acquired in the portal venous phase are shown as a comparison. Fig 4 shows a case of a patient

with hepatic iron overload due to hemosiderosis.

Discussion

The data presented in this study show comparability of quantitative PDFF and T2� measurements

acquired with compressed sensing (CS)-accelerated chemical shift encoding-based water-fat sepa-

ration. Our results demonstrate a significantly higher PDFF in the right lobe of the liver, which is

in accordance with other studies [28, 29], and no spatial dependence of liver T2� values.

The most important finding of the presented data is the agreement of the quantitative

PDFF and T2� imaging results between the two acquisitions. Several studies have shown high

accuracy of MRI-based imaging techniques for the non-invasive quantification of fat and iron

content of the liver [13, 14, 29]. Due to their widespread availability, chemical shift encoding-

based water-fat separation techniques can be used as a fast screening for NAFLD or disorders

of iron metabolism. Given the increase of medical imaging in the last years [30], the acquisi-

tion time is an essential factor. In our study, CS+SENSE was able to accelerate image acquisi-

tion of liver PDFF and T2� mapping by 35% to a scan time of only 9.3 seconds. In a liver

segment-based comparison between the acquisition with CS+SENSE and the acquisition with

SENSE, no significant differences were detected in the quantitative parameters PDFF and T2�.

Thus, reduction of scan time lead to a reduction of motion artifacts and did not lead to changes

in quantitative parameters, rendering the presented chemical shift encoding-based water-fat

Fig 2. Patient with hepatic steatosis with focal fatty sparing of Segment I. Exemplary region of interest are drawn in Segments I and VII (1.5cm). PDFF Segment I:
acquisition with SENSE 25.9±3.8% (A); acquisition with CS+SENSE CS4 25.8±4.5% (B) PDFF Segment VII: acquisition with SENSE 32.2±2.0% (A); acquisition with CS
+SENSE 33.2±1.6% (B).

https://doi.org/10.1371/journal.pone.0224988.g002
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separation technique combined with CS+SENSE a sequence with an excellent applicability in

routine MRI liver examinations. The widespread availability could allow an application for

large studies on hepatic steatosis.

Previous methodological works applied CS for the joint problem of image reconstruction

and water-fat separation [23–25]. The present work estimates the PDFF and T2� maps in two

steps: it first applies the CS+SENSE reconstruction for the reconstruction of the multi-echo

complex images and then applies water-fat separation on the reconstructed water-fat images,

as also previously performed [26, 31]. Although higher acceleration factors can be achieved by

solving the joint step instead of solving the problem in two steps, the present study shows that

a prospective CS+SENSE accelerated acquisition using the two-step approach already results

in reliable PDFF and T2� maps in the presently studied patient cohort.

Fig 3. Patient with segmental hepatic steatosis. Exemplary regions of interest are drawn in segments IVa and V (diameter 1.5cm). PDFF Segment IVa: acquisition with
SENSE 25.7±1.5% (A); acquisition with CS+SENSE 26.9±2.0% (B) PDFF Segment V: acquisition with SENSE 31.6±1.8% (A); acquisition with CS+ SENSE 32.6±2.2 (B)
A T2-weighted image (C) and a CT image in the venous contrast phase (D) are shown for comparison. In CT Hounsfield units are 87±13 in Segment IVa and 42±16 in
Segment V.

https://doi.org/10.1371/journal.pone.0224988.g003
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Our study has some limitations. First, the study was only performed in one center and on

one scanner to show the feasibility of the accelerated acquisition with CS+SENSE. We did not

test the two acquisitions at different field strengths. Second, histologic correlation was not per-

formed. However, this was not within the scope of the current study that aimed at showing

robustness of quantitative parameters when using CS acceleration. Former studies have have

already shown an accurate estimation of liver fat by PDFF in correlation with histologic find-

ings [32, 33]. In addition, several previous studies have already shown high sensitivity and

specificity in liver quantitative imaging with chemical shift encoding based water-fat separa-

tion techniques accounting for the same confounding factors [13, 34].

In conclusion, the acceleration of chemical shift encoding-based water-fat separation using

compressed sensing results in comparable quantitative measurements of hepatic fat and iron

content with reduced breath-hold intervals, leading to reduced motion artifacts and making

chemical shift encoding-based water-fat separation a fast and precise non-invasive tool in

quantitative liver imaging.
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