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Abstract. Recently, composite-order bilinear pairing has been shown
to be useful in many cryptographic constructions. However, it is time-
costly to evaluate. This is because the composite order should be at least
1024bit and, hence, the elliptic curve group order n and base field be-
come too large, rendering the bilinear pairing algorithm itself too slow
to be practical (e.g., the Miller loop is Ω(n)). Thus, composite-order
computation easily becomes the bottleneck of a cryptographic construc-
tion, especially, in the case where many pairings need to be evaluated
at the same time. The existing solution to this problem that converts
composite-order pairings to prime-order ones is only valid for certain
constructions. In this paper, we leverage the huge number of threads
available on Graphics Processing Units (GPUs) to speed up composite-
order pairing computation. We investigate suitable SIMD algorithms for
base/extension field, elliptic curve and bilinear pairing computation as
well as mapping these algorithms into GPUs with careful considerations.
Experimental results show that our method achieves a record of 8.7ms
per pairing on a 80bit security level, which is a 20-fold speedup compared
to the state-of-the-art CPU implementation. This result also opens the
road to adopting higher security levels and using rich-resource paral-
lel platforms, which for example are available in cloud computing. For
example, we can achieve a record of 7 × 10−6 USD per pairing on the
Amazon cloud computing environment.

1 Introduction

A bilinear pairing ê : G×G → GT is said to be over a composite-order group if the
order G and GT is composite. Pairings with this property are commonly used in
recent cryptographic constructions, specifically in functional encryption schemes,
e.g., [2,5,7]. On the other hand, evaluating a pairing over a composite-order group
is much more expensive compared to its prime-order counterpart. To achieve the

� Part of this work was done while the author was with the University of Hong Kong.

T.W. Chim and T.H. Yuen (Eds.): ICICS 2012, LNCS 7618, pp. 341–348, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



342 Y. Zhang et al.

same 80bit (AES) security level, the composite order should be at least 1024 bit
to be difficult to factorize, while a much smaller prime order (e.g., 160bit) is
enough. As a result, the underlying finite field, elliptic curve operations and the
pairing evaluating algorithm itself become much slower. An estimation [3] shows
that the composite-order pairing would be 50x times slower than its prime-
order counterpart. Thus, composite-order pairing computation easily becomes
the bottleneck of a cryptographic construction, especially in cases where multiple
such pairings need to be evaluated at the same time (e.g., decryption algorithm
in the scheme [5]). Furthermore, one typical scenario of functional encryption
schemes is the outsourced database scenario where the database server needs to
decrypt the whole encrypted data with particular decryption key that embeds
the query predicate. As a result, the database needs to evaluate mass amount of
composite-order parings as fast as possible.

There are some efforts to address this problem. Freeman [3] proposed a method
that can convert a scheme constructed with a composite-order pairing to a
prime-order pairing construction with the same functionality. However, Free-
man’s method is not black-box; it is only valid for certain cryptographic con-
structions. [8] points out that some schemes inherently require composite-order
groups and cannot be transformed mechanically by using Freeman’s method.

In this paper, we leverage the huge number of threads available on GPUs
(Graphics Processing Units) to speed up the composite-order bilinear pairing
computation. The proposed method considers parallelism both within and be-
tween pairings. To compute a pairing, we use a block of threads, while we
concurrently run many blocks to compute many pairings in parallel. We first
implemented 32bit modular addition, subtraction and multiplication on each
thread. Addition, subtraction and multiplication operations on finite field Fq are
conducted on a block of threads via Residue Number System (RNS) [6]. Multi-
plication and square operations on extension field Fq2 and addition and double
operations on an elliptic curve are implemented upon Fq operations, which in
turn are based on a block of threads. Putting all together, the bilinear pairing
algorithm [1] is implemented upon the Fq operations, Fq2 operations, and the
elliptic curve operations. Compared to the existing work, our method is trans-
parent and generic to cryptographic schemes. It can serve for all cryptographic
schemes constructed in composite-order pairings.

To the best of our knowledge, this work is the first on evaluation of bilinear
pairings over composite-order group on graphics card hardware. Porting the ex-
isting CPU-version code into the GPU is not trivial, due to the different levels
of parallelism provided by CPUs and GPUs. As a result, we need to find and
implement the optimized parallel (e.g., SIMD-fashion) algorithms for GPU that
evaluate arithmetic operations on base field, extension field, elliptic curve, and
the bilinear pairing algorithm itself. Different design decisions were made com-
pared to the CPU code. For example, Fq operations in our implementation is
done by a block of threads via RNS instead of the serialized method on CPU. Due
to RNS, we had to seek the formulas that can minimize the number of modular
reductions. Moreover, the multiplication inverse in the proposed implementation
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needs to be avoided which motivates us to choose a projective coordinate system
to represent elliptic curve points and to postpone the final powering operation
back to CPU. The experimental results show that the proposed method achieves
a 20-fold speedup on a 80bit security level, compared to the state-of-the-art im-
plementation [9] for CPUs. Specifically, it achieves a record of 8.7ms per pairing
on average, which is comparable with prime-order group pairings.

The rest of this paper is organized as follows. The arithmetic operations and
algorithms are presented in Section 2. Section 3 discusses the implementation
considerations on mapping the algorithms. The experimental results are shown
in Section 4.

2 Arithmetic Operations

We employ Barreto et al.’s algorithm [1] to evaluate bilinear pairing. Its details
(including the algorithm to evaluate gU,V ) can be found in the full version [11]
of this paper, which is also specifically designed for the composite-order pairing.
We note that we choose Barreto et al.’s algorithm because the flow of computa-
tions in it only depends on the system parameters but not on the input points.
Therefore, their algorithm fit well with SIMD fashion of GPUs.

The arithmetic operations required by Barreto et al.’s algorithm are the op-
erations in the extension field Fq2 and the elliptic curve E(Fq) which are in turn
based on operations in the base field Fq. Specifically, given a, b ∈ Fq2 ;P,Q ∈
E(Fq), we consider a× b, a2, P +Q and 2P operations.

The multiplication inverse in Fq is expensive in our GPU implementation,
which motivates us to avoid it. However, there are two occasions which may
require multiplication inverse. One is in the addition and double operations of
E(Fq). This can be avoided by using a projective coordinate system to represent
elliptic curve points and we do so. The second one is in the final powering of
bilinear pairing. However, we identify that the final powering is not a bottleneck
of the whole system. In fact, through the experiments, we find that the final
powering is 500+ times faster than the Miller’s loop on the CPU. Therefore, we
can leave the work of final powering (and therefore multiplication inverse in Fq)
to the CPU.

Furthermore, cryptographic constructions may only require the result of a
product of bilinear pairings [5]. In this case, we can calculate the multiple pairings
result (without the final power) on the GPU, then multiply them and do the
single final powering to get the result. In this way, the cost to compute the final
powering would be even ignored.

2.1 Base Field Operations

Motivated by the feasibility of performing fast and parallelized operations on
multi-core graphics hardware, we choose to represent the base field elements
of Fq in Residue Number System (RNS). In RNS, an n-length vector a =
(a1, a2, ..., an) is chosen such that gcd(ai, aj) = 1 for all i �= j and q < A where



344 Y. Zhang et al.

A =
∏n

i=1 ai is called the dynamic range of a. For any x, 0 ≤ x ≤ q, it can
be represented uniquely in RNS as 〈x〉a = (x mod a1, x mod a2, . . . , x mod an),
and recovered uniquely in the form of x mod A due to the Chinese Remainder
Theorem.

The purpose of using RNS is to break down some basic arithmetic oper-
ations that include � ∈ {+,−,×} to small pieces which can be parallelized
and computed using the multiple cores of the GPU. That is, 〈x〉a � 〈y〉a =
((x1 � y1) mod a1, . . . , (xn � yn) mod an) where 〈x〉a = (x1, . . . , xn) and 〈y〉a =
(y1, . . . , yn). Note that division (and therefore multiplication inverse in Fq) and
comparison in RNS are non-trivial and usually avoided from using as they do
not offer speed advantage over conventional methods.

It is known that the multiplication operation on Fq can be done in RNS
using the RNS Montgomery multiplication algorithm (see [6]). But there are few
papers dealing with addition and subtraction on Fq in RNS. If we see the RNS
Montgomery multiplication algorithm as the first step to compute multiplication
(the second step is the mod q operation), we can find a uniform way to handle
addition and subtraction in RNS as well. Basically, given two elements a, b ∈ Fq,
we calculate addition a+ b, subtraction a − b and multiplication a× b without
any modular operations. The result may grow up; when it becomes larger than
a threshold, we employ an explicit modular reduction (i.e., mod q) to bring back
the result to the allowed range again. This idea makes the operations in base
field Fq simple and clear. Moreover, since the first step addition, subtraction
and multiplication are cheap in RNS, this method allows us to fully focus on the
most expensive part; that is, the second step: modular reduction.

To perform modular reduction, we employ the Montgomery Modular Reduc-
tion algorithm in RNS. Algorithm 1 shows the algorithm (derived from [6, Alg.
3], as we discussed). In the algorithm, the dynamic ranges of bases a and b are
denoted as A and B, respectively.Also note that the output of Algorithm 1 is
sB−1(modq) where the component B−1 should be removed in the conventional
way of using the Montgomery Multiplication algorithm (see [6]).

Algorithm 1. Montgomery Modular Reduction in Residue Number
Systems [6]

Input: 〈s〉a∪b.
Output: 〈w〉a∪b, where w < 2q and w ≡ sB−1 (mod q).
Ensure: gcd(B, q) = 1, gcd(A,B) = 1, 4q ≤ B and 2q ≤ A.

1 〈t〉b ← 〈s〉b · 〈−q−1〉b 〈t〉a∪b ⇐ 〈t〉b
2 〈u〉a ← 〈t〉a · 〈q〉a
3 〈v〉a ← 〈s〉a + 〈u〉a
4 〈w〉a ← 〈v〉a · 〈B−1〉a 〈w〉a ⇒ 〈w〉a∪b

5 return 〈w〉a∪b

The symbol ⇒ (or ⇐) represents a base extension algorithm [10,4]. Given
an RNS representation 〈x〉c, this algorithm outputs 〈x〉d for d �= c. The two
base extensions 〈t〉a∪b ⇐ 〈t〉b and 〈w〉a ⇒ 〈w〉a∪b are the most computationally
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expensive parts of Algorithm 1.The following theorem (whose proof is given
in the full version [11]) states the correctness of Algorithm 1.

Theorem 1. For any integer s such that 0 ≤ s < αq2, Algorithm 1 outputs
w such that 0 ≤ w < 2q if B > αq and A > 2q.

Therefore, when the result of a{+,−,×}b grows beyond threshold αq2, we can
reduce it back to w < 2q. Furthermore, we can control parameter α, such to
trade off between the number of reductions and the number of threads; a larger
α results a larger threshold, but B > αq will be larger as well, requiring a larger
number of bases to represent.

2.2 Extension Field Operations

Given an element a ∈ Fq2 , a can be written as x + iy where x, y ∈ Fq and
i2 = −1. The multiplication a× b :

a× b = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y1 + x2y2)

which requires two reductions with four cheap multiplications and two cheap
additions in RNS. Since the number of reductions meets with the lower bound
(two), we do not resort to more advanced methods (e.g., Karatsuba multiplica-
tion). Similarly, squaring a2 requires two reductions as well.

a2 = (x2
1 − y21) + i2x1y1

2.3 Elliptic Curve Operations

As we discussed, we adopt the Jacobian projective coordinate system for rep-
resenting points in elliptic curve to avoid multiplication inverse in Fq. A point
P = (X,Y, Z) in Jacobian projective coordinates can be mapped to ( X

Z2 ,
Y
Z3 ) in

affine coordinates. As we will often use Z2, we store Z2 in the coordinates as
well and we call this modified Jacobian coordinates: (X,Y, Z, Z2). To make the
addition formula simpler, Q is also given in affine coordinates (X2, Y2).

As in the previous section, we are interested to find patterns like
∑

AiBi in
operations, to minimize the number of modular reductions. The refined formulas
to compute addition and double in E(Fq) are shown in Table 1 provided that
P = (X1, Y1, Z1, Z

2
1 ) and Q = (X2, Y2).

3 Implementation and Analysis

In this section, we discuss how the previous presented algorithms are mapped to
CUDA programming model. In CUDA programming model, programmers can
define the block size for their own kernel function. The block size defines how
many threads are within each block. CUDA guarantees that threads in the same
block can communicate and will execute on the same physical SM (streaming
Multiprocessors). A detailed description on SM can be found in the full version.
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Table 1. E(Fq) Operations

2(X1, Y1, Z1, Z
2
1 ) (X1, Y1, Z1, Z

2
1 ) + (X2, Y2)

Y 2
1 H = X2Z

2
1 −X1

S = 2Y 2
1 X1 e0 = Y2Z1

M = (Z2
1 )

2 + 3X2
1 r = Z2

1e0 − Y1

X3 = T = M2 − 2S H2 = (H)2

Y3 = −MT +MS − 8(Y 2
1 )

2 X3 = (r)2 − (HH2)− 2X1H
2

Z3 = 2Y1Z1 e1 = −X3 +X1H
2

Z2
3 = (Z3)

2 e2 = Y1H

Y3 = e1r − e2H
2

Z3 = Z1H

Z2
3 = (Z3)

2

In this paper, we consider 1024/2048 bit composite order (w.r.t. 80/112bit se-
curity levels). As the word length in GPU is 32 bits, we need at least 32/64 bases to
represent a 1024/2048bitnumber inRNS. In fact, the least numberwe can choose is
33/65. To complete Montgomery modular reduction (Algorithm 1), we need addi-
tional 32/64 bases. Moreover, we employ Shenoy’s base extension algorithmwhich
requires onemorebase.Therefore, for the 80bit security level,weneed33+33+1=67
bases to represent a singel element in Fq. Specifically, eachFq element is mapped to
a block of 67 threads. For each thread, a 32bit unsigned integer (UINT32) is used
to represent the element (under the particular base of that thread).

We don’t consider parallelism within the operations in the Fq2 and E(Fq),
as our goal is to compute as many as possible pairings at one time (a typical
goal in the server setting). Therefore, we simply represent Fq2 elements to be
a vector (x, y) where x, y are UINT32. Similarly, we represent P = (x, y, z, z2)
in E(Fq) (x, y, z are UINT32). Therefore, each block handles eactly one pairing
calculation. This grid/block arrangements also simplify the design.

The base field operations include a+b mod m, a−b mod m and a×b mod m
where a, b < m and m < 232. For example, to compute a+ b mod m, there are
two cases: a + b < m and m ≤ a + b < 2m. In the second case, we have to
output a+ b−m and therefore we need test whether a+ b < m or not. However,
this case handling, depending on the input values, causes a branch divergence
on GPU. In the full version [11] of this paper, we present methods to minimize
the divergence for all the base field operations.

GPU also provides some memory to use. Some of it can be accessed only within
a thread; some can be shared among threads of the same block. Some may have
special (1D/2D) caches. We have to carefully choose which memory to use to
achieve an optimized performance. To allocate memory, the basic idea is that
we (try to) store all variables to the register file of their threads such that the
access time to them can be ignored. For the inter-thread data generated in the
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modular reduction algorithm, we use shared memory to store it, as the content
in a register file can be only used within one thread. Moreover, we also store 67
(and 131) bases and those one-dimensional precomputed values in the constant
memory to facilitate its 1D cache. Although the time for the fist access to them
is large (400-600 cycles), the overall access time could be small as the algorithms
and their threads fetch them frequently. For example, in each algorithm, the first
thing is to load the associated base of that thread to the register. We also store
the 2D array of the base extension algorithm to the texture memory so that we
can benefit from the spatial locality and the 2D cache of the texture memory.
Through the CUDA profiler’s report, we verified that we indeed exploit caching
well and the cache-hit rate is very high.

4 Experimental Results

The experiments were conducted on NVIDIA GeForce GTX 285, GTX 480 and
Amazon EC2 Cloud 1 (equipped with two Tesla M2050). Specifically, GTX
285, 480 and EC2 have 240, 480 and 448x2 cores separately where each with
1.476GHz, 1.4GHz and 1.15GHz clock. Moreover, GTX 285, 480, EC2 also have
1GB, 1.5GB and 3GBx2 graphical memory on board. Their CUDA versions are
1.3 (GT200), 2.0 (Fermi) and 2.0 (Fermi).

We incorporateAmazonEC2 cloudbecause it is a popularway to instantiate the
outsourced database scenario that requiresmass evaluation of composite-order bi-
linear pairings.We study the real price paid to the EC2 cloud to evaluate each pair-
ing. For comparison, we also choose Pairing-Based Cryptography (PBC) library
version 0.5.11 (built uponGMP library2 version 5.0.1) as the benchmark that runs
on Intel Core 2 E8300CPUat 2.83GHz and 3GBmemory. GMP library is designed
to be as fast as possible with highly optimized assembly code. Through the exper-
iments, we choose random points P,Q ∈ E(Fq) as the input to evaluate ê(P,Q).

We compare the running time on CPU and GPUs. The results are shown in
Fig. 1. The GPUs method seems not to have advantage when the number of
pairings is small (< 32), as the hardware is not fully occupied. With the number
becoming larger, the speedup in running time increases. This indicates that the
GPUs method is especially suitable for the case that multiple composite-order
pairings should be evaluated at the same time.

Specifically, in the 80bit security level, GTX 285, M2050 (Amazon EC2) and
GTX 480 achieve a running time of 17.4ms, 11.9ms and 8.7ms per pairing re-
spectively, which is 9.6, 14.3 and 19.6 times faster respectively compared to the
state-of-the-art CPU implementation (171.1ms per pairing). We note that this
result has been comparable with prime-order pairing implementation on CPU
(see the dashed lines in Fig. 1), where both A and D179 [9] pairing are for
80bit security and A is the fastest. With 2.1 USD charged per hour, 11.9ms on
Amazon EC2 also means that the cost to compute a single pairing is as low as
(2.1× 11.9)/(60× 60× 1000) = 7× 10−6 USD.

1 http://aws.amazon.com/ec2/
2 http://gmplib.org/

http://aws.amazon.com/ec2/
http://gmplib.org/
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