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Abstract – In this paper, a novel method for accelerating frequency sweeping in eddy current 

calculation using finite elements method (FEM) is presented.   

Exploiting the fact that between adjacent frequencies, the eddy current distributions are similar, an 

algorithm is proposed to accelerate the frequency sweeping computation. The solution of the field 

quantities under each frequency, which involves solving a system of linear equations using the 

Conjugate Gradients Squared (CGS) method, is accelerated by using an optimized initial guess – the 

final solution from the previous frequency. 

Numerical tests show that this treatment could speed up the convergence of the CGS solving process, 

i.e. reduced number of iterations reaching the same relative residuals or reaching smaller residuals 

with the same iteration number. 
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1. Introduction 

 
There are various electromagnetic computation techniques for eddy current simulations, such as the 

Finite-element method (FEM), the Boundary-element method (BEM), and the Method of Auxiliary 

Source (MAS) [1]. The Finite Element Method is particularly universal as it can be applied to an 

object of arbitrary shape and material properties. The principle of the FEM is to replace an entire 

continuous domain by a number of sub-domains in which the unknown function is represented by 

simple interpolation functions with unknown coefficients. 

Based on the variation principle, the FEM transforms the boundary value problem (partial differential 

equation) to its corresponding variational problem. Then, the problem becomes one of solving a 

system of algebraic equations, of which the solution is the numerical solution of the boundary 

problem [2]. 

In recent developments, several methods have been proposed to accelerate the computation processes 

for eddy current calculations. These methods can be divided into two categories, namely, the 

improvements on electromagnetic (EM) formulation /strategy and that on the numerical solution 

processes.  

For improvement on the formulation /strategy, a number of methods were used: a novel 

decomposition of the model such as ParaFEM [3, 4], multi-layered conductive structures (MCS) 

method [5] and second-order transmission condition (SOTC) method [6] etc. ParaFEM is a portable 

library of subroutines for parallel finite element analysis, which can be used for solving very large 

finite element problems in a range of disciplines. But this method significantly relies on the material 

distribution of the model. The principle of this method is decomposing the model into several 

individual subdomains and then solves these subdomains in parallel; however, it is worth mentioning 

that this method assumes weak coupling relationship between the subdomains. The multi-layered 

conductive structures (MCS) method is proved to be about 100 times less than conventional FEM in 

computation time. But, as a derivative of the Dodd and Deeds method, it can only be used for some 

layer-isotropic structures/models such as that encountered in pipelines, airplanes, water jet peened 
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components instead of arbitrary geometry models such as cracks on the structure. Second-order 

transmission condition (SOTC) method developed in the framework of non-conformal (NC) finite 

element domain decomposition method (DDM) [7], was shown to have improved accuracy on large 

iterations (about or over 200) but with almost no improvement on calculations with small iterations 

(equal or smaller than 50). FEM-BEM hybrid method [8-12] was also well used, which couples 

boundary-element region with finite-element region to derive solutions for in-homogenous material 

distributions. 

For improving the numerical solution process, SuiteSparse [13] and GRID [14] were developed to 

improve the computation speed of solving systems of linear equations from FEM. GPU acceleration 

[15-18] can also increase the numerical processes by exploiting parallel computing, but at the cost of 

expensive hardware.  

In this paper, a fast frequency-sweeping FEM method with LU decomposition and initial guess/ 

preconditioning is proposed, which starts from smaller relative residuals at the beginning of the 

iteration.   

2. Methods of Edge-Element FEM Solver 

After discretizing the target by using a commercial software package, in this case COMSOL, the 

exported file including the coordinates of the nodes, the sequence of the nodes in each element, as 

well as the material properties of each element can be regarded as the input of the solver, which is 

based on the FEM. In this part, the original Galerkin’s equations are transformed into matrix form 

[19]. 

( ) ( ) ( )
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1,2,...,6

c c c c

n n n

i i i i s
curl vcurl d j d gradV d curl v curl d
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Where 
i

N  is the vector interpolation of 
th

i  edge corresponding to its nth edge element, 
i

L  the 

elemental interpolation of 
th

i node corresponding to its nth element, 
s

A  the original edge vector 

potential of the nth element,
( )nA  the produced edge vector potential of the nth element, 

( )n
V  the 

electrical potential on the receiver (pick-up) coil contributed by the nth element, v  the reluctivity (the 

reciprocal of the permeability) of the target, 0v  the reluctivity (the reciprocal of the permeability) of 

the air,   the conductivity of the target. 

Assuming for an arbitrary element n, there exist a matrix Q that can represent the stiffness matrix 

form of equation (1) and (2) left side for an arbitrary element. 

( ) ( )

( )

( ) ( )

(6 6) (6 4)

(4 6) (4 4)

n n

n

n n

K L
Q

M N

  
  

  
                                         (3) 

 

After combining equation (3) of the whole system element, the matrix form of equation (1) and (2) 

can be obtained as following. 

1 1

1 1

( ) ( )

( ) ( )

e e

o o

A A

A AK e e L e o
Q B

M o e N o oV V

V V

      
      
      
                          
      
      
            

                             (4)  

 

Here K matrix is divided into K1 and K2 matrix.  K1 denotes the matrix form of first vector potential 

related term in equation (1), which act as a fundamental formation of the vector potential. K2 denotes 

the matrix form of second vector potential related term in equation (1), which exhibit the skin effect 

the eddy current. L is the matrix form of first electric potential related term in equation (1), which 

controls the eddy current by the Maxwell-Wagner effect- restricting the current by the shape of the 

target. M and N are the matrices form of first and second term in equation (2), which collectively 

controls the magnetostatic field part. B is the matrix form of the right side term of equation (1) and (2), 

which denotes the Dirichlet Boundary Condition. e and o represent the edge and vertex number of 

whole mesh respectively. 
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The electric field of an arbitrary element can also be derived from the vector potential and electric 

potential in equation (4) by using the derivative of traditional A and V-A formulation incorporating 

Coulomb gauge [20]:            

( ) ( ) ( )n n n
j A V  E                                                       (5) 

Where A(n) denotes the vector sum of the vector potential on all the edges of each tetrahedral element. 

V(n) denotes the electric potential on all the vertex of each tetrahedral element. 

Thus, the transmitter–receiver mutual inductance changes caused by the given model can also be 

obtained by applying the equation presented by Mortarelli (1980) or Auld and Moulder (1999). For 

both articles, the authors start from the Lorentz reciprocity relation and progress to reach to the same 

generalized equation that could be applied to any pair of coils [21]: 

 2 2

1 1
a b a b a b

c c

L dv dv
j I j I

 
 

       E J E E                        (6) 

L denotes the inductance changes caused by the difference between medium a and b. 

3. Accelerating Method  
 

A. Method 

Bi-conjugate Gradients Stabilised (CGS) method was used in the solution processes of Equation (4).  

Conventional methods start from an initial guess of a zero vector.  As the solutions of the adjacent 

frequencies are quite similar, the solution for the previous frequency is assigned to be initial guess of 

the next frequency. Consequently, the iterations in each solving process start from an optimised guess 

/ smaller residuals and thus the number of iterations would be much reduced. And the simulations are 

computed by ThinkStation P510 platform with Dual Intel Xeon E5-2600 v4 Processor, with 16G 

RAM. 

B. Models 



6 

 

(a)                                                                   (b) 

Figure 1. Models verification (a) aluminium plate (b) aluminium plate with crack in the centre 

In this model, the target is tested under a sweeping frequency range (1 Hz-1M Hz). The width, depth 

and height of the plates in (a) and (b) are 20 mm, 20 mm, and 5 mm respectively. The width, depth, 

and height of the simulated crack (flawed area) in plate (b) are 2.5 mm, 0.5 mm, and 5 mm 

respectively. Both blocks are centred at (0, 0, 0) mm. The materials of the two plates are aluminium 

with the conductivity of 35 M S/m at 20 degree. The exciting coil and pick-up coil with the same 

radius of 2 mm are both on the top of the plate with coordinates of (-1, 0, 3.5) mm and (-1, 0, 3.6) mm 

respectively. 

C. Verification of the solver accuracy 
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(b) 

Figure 2. Inductance caused by the aluminium plate without crack (a) Imaginary part (b) Real 

part 

 

The analytic solution of plate (a) inductance was calculated by the Dodd and Deeds formulas. It can 

be seen from Figure 2 that the error between the FEM simulation and analytic results almost can be 

ignored except that of the imaginary part under the frequency range from 0.1M Hz to 1M Hz, which is 

due to the approximating the plate as a plate with infinite length and width. 

 

(a) 

10
0

10
1

10
2

10
3

10
4

10
5

10
6

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
x 10

-9

f (Hz)

R
e
( 

L
)(

H
)

Re(L) - f

 

 

Edge FEM simulation result

Analytic result

10
1

10
2

10
3

10
4

10
5

10
6

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
x 10

-9

f (Hz)

Im
( 

L
)(

H
)

Im(L) - f



8 

 

 

(b) 

Figure 3. Inductance caused by the aluminium plate with a crack in the center (a) Imaginary 

part (b) Real part 

 

Once the accuracy of edge FEM simulation was proved by comparing its results of plate (a) 

inductance with Dodd and Deeds method in Figure 2, the inductance results of the plate (b) can also 

be calculated by edge FEM simulation, as in Figure 3. 
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(b) 

Figure 4. Inductance caused by the crack in the centre (a) Imaginary part (b) Real part 

 

These figures show the inductance caused by the flawed area in the centre of plate (b), which is 

actually the same value as the subtraction of plate (a) inductance (as in figure 2) and plate (b) 

inductance (as in Figure 3). 

D. Results  

D.1. Acceleration performance  

 

(a)                                                                                 (b) 
 

Figure 5. Eddy current frames under the frequency of 90 Hz (a) Colour map (b) Quiver map 
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(a)                                                                                 (b) 
 

Figure 6. Eddy current frames under the frequency of 100 Hz (a) Colour map (b) Quiver map 

 

(a)                                                                                 (b) 
 

Figure 7. Eddy current frames under the frequency of 110 Hz (a) Colour map (b) Quiver map 

 

Figures 5, Figure 6, and Figure 7 illustrate both the colour maps and quiver maps of the eddy current 

distributions under the frequency of 90, 100, and 110 Hz. As can be seen from the legend changes on 

the colour map, the eddy current increases as frequency increases, but a similarity in pattern can be 

observed. 
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Figure 8. Convergence of original conjugate gradient squared (CGS) method compared with 

that of conjugate gradient squared (CGS) method with an initial guess 

 

 

Figure 8 demonstrates the relative residual changes verse iteration numbers. It can be seen that the 

conjugate gradient squared (CGS) method with an initial guess converges much faster than the 

original one. 

 

D.2. Effect of frequency step 

As the solution for the previous frequency was assigned to be the initial guess of the next frequency, 

the similarity between the adjacent frequencies may affect the acceleration efficiency. First, the 

acceleration performances under the effect of different linear frequency steps were analysed.  
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Table1. Original and Accelerated computation time for linear frequency step of 50 Hz and 100 

Hz when model (Fig. 1) is meshed into 30k elements  

 frequency 

Linear frequency step of 50 Hz 10 60 110 160 210 260 310 360 

Linear frequency step of 100 Hz 10  110  210  310  

Original computation time (s) 5.49 5.81 6.02 6.09 6.12 6.13 6.15 6.18 

Original iteration number 399 426 431 439 442 443 445 447 

Accelerated computation time with Linear 

frequency step of 50 Hz (s) 
 3.59 3.72 3.76 3.78 3.79 3.8 3.82 

Accelerated iteration number with Linear 

frequency step of 50 Hz 
 198 199 201 205 206 206 207 

Accelerated computation time with Linear 

frequency step of 100 Hz (s) 
  4.08  4.19  4.21  

Accelerated iteration number with Linear 

frequency step of 100 Hz 
  209  215  217  

 

As can be seen from Table.1, the acceleration efficiency for the linear frequency step of 50 Hz is 

higher than that for the linear frequency step of 100 Hz. Then it can be assumed firstly that larger 

frequency steps may result in lower acceleration efficiency. Further validation studies are shown as 

followings. 
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Figure 9. Original and Accelerated computation time for differet frequencies when model (Fig. 

1) is meshed into 30k elements  

 
Figure 10. Original and Accelerated iterations for differet frequencies when model (Fig. 1) is 

meshed into 30k elements 

 
Figure 9 and Figure 10 exhibit the computation time and iteration number before and after the 

acceleration with the same Maximum Interference Threshold (MAXIT) of 1.00E-14 from 10 Hz to 1 

M Hz.  
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 Hz or 5010 Hz). The following frequencies can be treated in 

a similar fashion.  

As can be seen from Figure 9 and Figure 10, the computation time and iterations increase slightly as 

frequencies rise, which is due to the skin effect and the resulted more singular system stiffness matrix 

with the increased frequency. And the acceleration efficiency for equal frequency step in 

a logarithmic frequency scale is higher than that of equal frequency step in a linear frequency scale up 

to 104.2 Hz, after which point, the trend reverses. This is possibly due to the larger frequency steps 

after 104.2 Hz on a logarithmic frequency scale.  
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D.3. Effect of mesh element density  

  
Figure 11. Original and Accelerated computation time for differet frequencies when model (Fig. 

1) is meshed into 50k and 100k elements  

 

Figure 12. Original and Accelerated iterations for differet frequencies when model (Fig. 1) is 

meshed into 50k and 100k elements  
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Figure 11 and Figure 12 show the computation time and iteration number before and after the 

acceleration with the same Maximum Interference Threshold (MAXIT) of 0.80E-14 from 10 Hz to 1 

M Hz when the model is meshed into 50k and 100k elements respectively. Equal frequency steps in 

a logarithmic frequency scale (10
0.1 

Hz) were simulated to evaluate the efficiency of the proposed 

method. 

It can be concluded from the above figures that the acceleration efficiency is almost immune to the 

mesh element density as the degree to which the improvement has been achieved remains similar 

irrespective of the mesh density.  

We also modelled copper in addition to aluminium; the results suggest that this does not have 

significant effect on the efficiency of the method. 

 

 

4. Conclusions 

This paper has considered a method of accelerating the computation of frequency sweeping in eddy 

current calculation using the finite-element method (FEM). Based on the Bi-conjugate Gradients 

Stabilised (CGS) processing method, this method utilizes the previous adjacent computation results as 

the initial guess of the iteration computation for the next adjacent frequency. 

Numerical tests suggest that the method can increase the speed of convergence by several folds in the 

tested cases. And the performance shows larger frequency step can result in lower acceleration 

efficiency. In the end, the acceleration efficiency of this method is proved to be immune to the mesh 

elements density which is because the ratio of original computation time/accelerated computation 

time or original iterations/accelerated iterations stay almost invariable as the model mesh element 

increase under the fixed frequency. Copper is also modelled in addition to aluminium; and results 

have not showed significant effect on the efficiency of the proposed acceleration method. 
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Appendix. Analytic Solution 

Initially, the Dodd and Deeds analytical solution will be considered, which describes the inductance 

change of an air-core coil caused by a layer of non-magnetic, metallic plates [22]. Other similar 

formulas exist [23]. The difference in the complex inductance is ( ) ( ) ( )
A

L L L     , where the 

coil inductance above a plate is ( )L  . And ( )
A

L    is the inductance in free space.   

 

Figure 13. Sensor configuration 

Table 2. Coil parameters 

r1 2mm 

r2 2.4mm 

lo (lift-off) 0.2mm 

h (height)  1mm 

g (gap) 0.5mm 

Number of turns    N1 = N2  16 
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The formulas of Dodd and Deeds are: 



 dA
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0 denotes the permeability of free space. N denotes the number of turns in the coil; r1 and r2 denote 

the inner and outer radii of the coil; while l0 and h denote the lift-off and the height of the coil; and c 

denotes the thickness of the plate.  
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