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Abstract. We study magnetically powered relativistic outflows in which a part of the magnetic energy is dissipated
internally by reconnection. For GRB parameters, and assuming that the reconnection speed scales with the Alfvén
speed, significant dissipation can take place both inside and outside the photosphere of the flow. The process leads
to a steady increase of the flow Lorentz factor with radius. With an analytic model we show how the efficiency of
this process depends on GRB parameters. Estimates are given for the thermal and non-thermal radiation expected
to be emitted from the photosphere and the optically thin part of the flow respectively. A critical parameter of
the model is the ratio of Poynting flux to kinetic energy flux at some initial radius of the flow. For a large value
(>∼100) the non-thermal radiation dominates over the thermal component. If the ratio is small (<∼40) only prompt
thermal emission is expected which can be identified with X-ray flashes.
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1. Introduction

To overcome the compactness problem of γ-ray bursts
(GRBs) (e.g. Piran 1999) the central engines must pro-
duce radiating material moving ultra-relativistically fast
towards the observer. GRB models must therefore de-
scribe an energy source which not only releases energy of
around 1052 erg/sterad but must also explain the “clean”
form of the energy. To produce the high Lorentz factors
of the order of 102–103 (Fenimore et al. 1993; Woods &
Loeb 1995; Lithwick & Sari 2001) which are needed only
a small fraction of the total energy can exist in form of
rest mass energy of the matter involved.

The popular models involving compact objects or the
collapse of a massive star to a black hole must include
mechanisms how the energy is transported into a space
region with few baryons. Otherwise large amounts of mass
are expelled which cannot be accelerated to high Lorentz
factors. The initially released energy could leave the cen-
tral polluted region by neutrinos which annihilate to a
pair plasma further away (Berezinskii & Prilutskii 1987;
Goodman et al. 1987; Ruffert et al. 1997). But due to the
small cross section of neutrinos the efficiency is low and
most of the energy escapes as neutrinos.

A Poynting flux dominating outflow will naturally oc-
cur if the compact object rotates and possesses a magnetic
field. The luminosity will be fed by the rotational energy
reservoir of the central object. Models involving an mag-
netised torus around a black hole (Mészáros & Rees 1997)
or a highly magnetised millisecond pulsar (Usov 1992;
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Kluźniak & Ruderman 1998; Spruit 1999) would produce
such a rotationally driven Poynting flux. Extraction of en-
ergy from the central object by this magnetic process is
potentially very efficient and fast.

In order to obtain not only a large energy extrac-
tion but also the observed large bulk Lorentz factors, the
Poynting flux must be converted to kinetic energy. The
simplest available magnetic acceleration models, in which
the flow is approximated as radial, are problematic in
this respect. In the classic non-relativistic case (Weber
& Davis 1967; Belcher & MacGregor 1976) a dominat-
ing initial Poynting flux can transfer 1/3 of its energy to
the matter. If the flow is initially relativistic however al-
most no acceleration is possible (Michel 1969). The phys-
ical reason lies in the singular field and flow geometry of
a purely radial flow. In this case the magnetic pressure
gradient balances the magnetic tension force and no ac-
celeration occurs. An imbalance between the pressure gra-
dient and the tension force occurs in non-radial outflows, if
the flow lines diverge faster with radius than in the radial
case (Begelman & Li 1994; Takahashi & Shibata 1998).
Detailed 1-dimensional calculations have been made which
show how such a flow divergence can come about (Beskin
1997; Daigne & Drenkhahn 2002).

In this paper we show that there is a second process
which naturally leads to efficient conversion of Poynting
flux to bulk kinetic energy. If the magnetic field in the
outflow contains changes of direction on sufficiently small
scales, (a part of) the magnetic energy is “free energy”
which can be released locally in the flow by “fast recon-
nection” processes. Such a decay of magnetic energy, if it
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can occur rapidly enough, has two desirable effects. First
it provides a source of energy outside the photosphere
which is converted directly into radiation, without the
relatively inefficient intermediate step of internal shocks
(Spruit et al. 2001, hereafter Paper I). Secondly, it leads to
an outward decrease of magnetic pressure, which causes a
strong acceleration of the flow and conversion of Poynting
flux to kinetic energy. In the present work, we concentrate
on the acceleration effect, and show how it depends on the
parameters (energy flux, baryon loading) of a GRB. This
aspect of the model can be illustrated with analytic cal-
culations. In a future paper we show, with more detailed
numerical results, how the dissipated magnetic energy can
also power the observed prompt radiation.

Changes of direction of field lines must occur in the
flow in order for energy release by reconnection to be
possible. These can occur naturally in a number of ways.
If the magnetic field of a rotating central object is non-
axisymmetric the azimuthal part of the magnetic field in
the flow changes direction on a length scale λ ≈ πv/Ω,
where v is the flow velocity and Ω the angular frequency.
For an inclined dipole this yields the “striped” field in
pulsar wind model of Coroniti (1990) where magnetic en-
ergy is released by the annihilation of the antiparallel field
components. Field decay by reconnection was applied to
pulsar winds (Coroniti 1990; Lyubarsky & Kirk 2001) and
also to GRBs (Thompson 1994; Paper I).

In this paper we investigate the dynamics of a magnet-
ically powered outflow in which some of the energy dissi-
pates by reconnection. With the assumption that the flow
is highly dominated by magnetic energy and that the ther-
mal energy is negligible we derive the velocity profile of
the flow. The results provide estimates of the Lorentz fac-
tor of the flow, the photospheric radius, and the amount of
energy that can be converted into non-thermal radiation.
We investigate under which conditions prompt emission is
expected and whether a considerable amount of thermal
radiation can be produced. These predictions can then be
tested against observations of the thermal component in
GRB spectra (Preece 2000).

2. Model description

Highly magnetised spinning compact objects, e.g. mil-
lisecond pulsars or tori around black holes, are sources
of Poynting flux that can power GRBs. They produce
a plasma-loaded electromagnetic wind travelling outward
and are fed by the rotational energy of the central ob-
ject. In the wind of an aligned rotator the magnetic field
is ordered and stationary. If ideal MHD applies, and the
wind is radial in the poloidal plane, a large fraction of
the total luminosity is bound to stay in form of Poynting
flux. The picture changes in the case of an inclined rotator
or any other source producing a non-axisymmetric rotat-
ing magnetic field. If the emitted Poynting flux contains
modulations of the field it also carries along free mag-
netic energy, which can be extracted by reconnection pro-
cesses. In these processes the field rearranges itself to an

energetically preferred configuration while the energy re-
leased is transfered to the matter. Because perfect align-
ment of magnetic and rotation axis is a special case it is
likely that most astrophysical objects produce modulated
Poynting fluxes containing free magnetic energy.

A necessary condition for the existence of free magnetic
energy in the flow is the field variation on small scales.
For reconnection processes differently oriented field lines
must come close to each other. Therefore the length scale
on which the orientation of magnetic field lines change
controls the speed of the field dissipation. The smaller the
length scale is the faster the field can decay.

The general large scale magnetic field structure ex-
pected to be produced by a rotating object was discussed
in Paper I. It is useful to consider simplified flow geome-
tries along the equatorial plane and along the rotation axis
as examples. In the equatorial plane an inclined rotator
will produce a “striped” wind (Coroniti 1990). It consists
of an electromagnetic wave in which the azimuthal field
component varies with a wave length of 2πc/Ω. Along the
rotation axis the wave will have a circular component with
the same wave length. Such wave-like field variations are
present in general if a non-axisymmetric magnetic field
component is present. The equatorial plane of an inclined
rotator is only a prototype to illustrate the field geometry.
In general, wave-like variations occur at all latitudes. If the
rotator is aligned the field will be axisymmetric. Then, the
magnetic field geometry looks like a wound up spiral on
all cones of equal latitude. This field geometry is present
in case of a jet-like outflow. Here, the magnetic field does
not vary on small scales along the outflow direction. The
differently directed field components lie on opposing sides
of the rotation axis. In the context of a jet-like outflow the
typical length scale of the field variation is the diameter
of the jet cone rϑ where ϑ is the jet opening angle.

In both of these field geometries MHD instabilities can
promote reconnection processes. For wave-like variations
current sheets form and tearing instability will lead to
reconnection. For a polar jet-like outflow of an aligned
rotator the field configuration is highly unstable to the
kink instability (e.g. Bateman 1980, see also Paper I). It is
plausible that the kink instability working in this case will
distort the geometry after some time so that also wave-
like variations come into play. This leads to non-periodic
and highly irregular waves. Our model assumes the longi-
tudinal field variation to be periodic so that the compli-
cated effects of any non-periodicity is neglected. We con-
sider both limiting cases for the small scale field variations
though wave-like structures seem to be more general.

Near the source the flow is accelerated magnetocen-
trifugally (and perhaps thermally). It will be accelerated
up to a distance around the Alfvén radius and then start to
become radial asymptotically. The poloidal and azimuthal
field components at the Alfvén radius are similar in mag-
nitude. Beyond this point their ratio scales as Bφ/Br ∼ r,
so that the radial component soon becomes negligible at a
couple of Alfvén radii. The Alfvén point lies always inside
the light radius c/Ω and if the magnetic field dominates,
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like in our case, the Alfvén radius and light radius are
almost equal. Thus we can simplify the flow and field ge-
ometry at source distances r > a few × c/Ω ≈ 107 cm
by assuming a purely radial flow with an azimuthal mag-
netic field. At this distance gravity effects can also be ne-
glected. The magnetocentrifugal effects accelerate the flow
to fast magneto-sonic velocity. Because we work in the cold
limit (see below) and approximate the magnetic field to
be purely poloidal the magneto-sonic velocity is equal to
the Alfvén velocity. The initial flow velocity is set to the
Alfvén velocity at some initial radius r0 >∼ c/Ω.

To make a simple approach feasible analytically we
have to make further approximations. The flow is treated
stationary and its thermal energy is neglected (“cold”
limit). This “cold” approximation is quite good in the op-
tically thick region since no energy can be lost by radiation
anyway. All of the dissipated energy is always converted
into kinetic form. If the flow is optically thin the radia-
tion produced by dissipation will freely escape and this
energy part will not be converted into kinetic energy. Our
model overestimates the kinetic energy gained in the opti-
cally thin regime. Statements about the radius of the pho-
tosphere, where the flow changes from optically thick to
thin, or the Lorentz factor there will hold rather robustly.

2.1. Magnetic field dissipation

The dissipation is modelled by using the typical length
scale of the magnetic field λ and a fraction of the Alfvénic
velocity εvA where ε is an dimensionless factor. The idea
is that the magnetic field lines with different directions
get advected towards a reconnection centre where the field
dissipates (Petschek 1964). This advection happens with a
fraction of vA. The decay of mean field must also depend
on vA in a similar fashion. Though there are elaborate
models on the reconnection physics (e.g. Coroniti 1990;
Thompson 1994) we prefer to express this rather uncertain
topic in form of the dimensionless free parameter ε and the
Alfvénic speed vA. All the uncertain physics in this picture
is taken up by ε. Our ansatz for the time scale of the mean
field decay, in a comoving frame is then

τco =
λco

εvA,co
(1)

where quantities considered in the comoving frame are
indexed with “co”. This comoving frame moves with the
mean large scale bulk flow motion so that the small scale
motion is neglected.

The reconnection takes place at certain reconnection
centres in the flow. The typical distance between these
reconnection centres also influence the rate of the overall
field dissipation. Since we regard the field dissipation in
all generality and for a variety of field geometries we can-
not explicitely model these small scale details about the
density of reconnection centres. This uncertain issue must
also be handled by the free parameter ε so that ε controls
the average field dissipation on larger length scales.

At first sight ε < 1 is an upper limit since for ε = 1
reconnection would happen everywhere with an advection
speed of c. If the advection towards the reconnection cen-
tres happens with almost c large current densities are re-
quired. The MHD condition might break down leading to
an additional decay of magnetic field. This effect could be
parameterised by an larger value of ε so that an upper
limit of 1 may not be strict.

For most of the paper we will work with a fiducial value
of ε = 0.1. One should keep in mind that ε is perhaps the
most uncertain quantity of the model because it may not
be constant and its value cannot be estimated by first
principles in general.

The length scale for the dissipation λco depends on the
nature of the outflow as discussed in the last section. We
will distinguish the two cases where the field variation is
encountered on length scales longitudinal to the flow di-
rection (called longitudinal case in the rest of the paper)
and where this length scale is transversal to the flow di-
rection (transversal case). The transversal case is found in
a polar outflow of a aligned rotator where the field com-
ponents having different directions lie on opposite sides
of the rotation axis. For mathematical simplicity we will
regard here the two limiting cases only and make a few
notes on the mixed case later in this study.

The longitudinal and the transversal length scales
λlo, λtr in the comoving frame scale differently with the
Lorentz factor of the flow Γ:

λlo,co =
2πcΓ

Ω
, (2)

λtr,co = ϑr (3)

where ϑ is some kind of an opening angle of the polar
outflow. λtr,co does not scales with Γ because it denotes a
length which is perpendicular to the direction of motion
being the same in the lab and comoving frame.

3. The dynamics of the flow

The reconnection processes described in the last section
will change constantly the structure of the magnetic field
on a length scale of the order of the wave length (small
length scale of the problem). Though, the azimuthal field
line stretching will keep the field aligned predominantly
perpendicular to the flow direction. The exact field struc-
ture is not important because only the magnetic energy
density B2/(8π) enters the dynamic equations. In the
following, B denotes the dynamical effective transversal
magnetic field which is constant over small scales. The
induction equation will still be valid for the effective field.

3.1. Conservation laws

The dynamics of the flow is governed by the ideal MHD
equations for the conservation of energy, momentum and
mass. For the relativistic treatment the equations are
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formally best written in tensorial form (e.g. Bekenstein
& Oron 1978):

T µν ;ν = 0, (4)

(ρuµ);µ = 0 (5)

where

T µν = wuµuν + pgµν︸ ︷︷ ︸
matter part

+
1

4π

[(
uµuν +

1
2
gµν
)
bαb

α − bµbν
]

︸ ︷︷ ︸
electromagnetic part

(6)

is the energy-momentum tensor for ideal MHD. The sig-
nature (−+ ++) is used for the metric tensor gµν . Here,
ρ, w and p are the mass density, the enthalpy density and
the pressure in the proper frame of the fluid moving with a
4-velocity uµ = (Γ,u). bµ = ∗Fµνuν is the the 4-vector of
the magnetic field where ∗Fµν is the dual electromagnetic
field strength tensor.

Now we choose a spherical coordinate system centred
on the central engine. The flow is assumed to be spher-
ically symmetric and the field dominated by its toroidal
component. In this case u ⊥ B and the components of
the magnetic four vector are simply bµ = (0,−B/Γ) and
bµb

µ = B2
co = B2/Γ2. Writing (4) and (5) in coordi-

nate form and assuming stationarity gives the conserva-
tion laws for energy, momentum and mass

0 = ∂rr
2

(
wΓu+

βB2

4π

)
, (7)

0 = ∂rr
2

(
wu2 +

(
1 + β2

) B2

8π

)
+ r2∂rp, (8)

0 = ∂rr
2ρu (9)

where β = u/Γ (Königl & Granot 2002; Lyutikov 2001).
By integrating the mass and energy equations one obtains
the total mass loss per time per sterad

Ṁ = r2ρuc (10)

and the total luminosity per sterad

L = r2

(
wΓuc+

βB2

4π
c

)
. (11)

The enthalpy density w includes the rest mass energy den-
sity ρc2. In the following we will assume a cold flow with
w = ρc2, p = 0. Then, the momentum equation can be
integrated and the conservation laws read

Ṁ = r2ρuc, (12)

L = ΓṀc2 + βc
(rB)2

4π
, (13)

const. = uṀc+ (1 + β2)
(rB)2

8π
· (14)

In the energy Eq. (13) one can identify the kinetic energy
flux per sterad Lkin = ΓṀc2 and the Poynting luminosity
per sterad Lpf = βc(rB)2/(4π).

Taking the flow to be cold and eliminating (rB)2

from (13), (14) shows that u is a constant function of r.
Finding an exact accelerating solution of the energy and
momentum equations without thermal pressure is not pos-
sible. By using an evolution equation for the magnetic field
B (see Sect. 3.4 below) and combining it with the energy
Eq. (13) one obtains an accelerating solution but violates
the momentum conservation. Luckily, the error made by
that becomes small in the ultra-relativistic limit. Then,
Γ ≈ u, β ≈ 1 so that the first term in the momentum
Eq. (8) becomes small since it approaches the form of the
rhs of the energy Eq. (7). As a consequence the thermal
pressure gradient term of (8) must also be small. Setting
the pressure to zero and solving the energy equation means
that the momentum equation is almost satisfied. Since
we only consider ultra-relativistic flows the error made is
small which justifies the use of the cold approximation.

3.2. A note on the ideal MHD approximation

In the treatment above the ideal MHD approximation was
used. But a key ingredient of the model is the existence of
field dissipation for which ideal MHD is not applicable at
first sight. The field dissipation acts like an effective diffu-
sivity in the plasma so that the effective mean electric field
in a comoving frame does not vanish. Since a substantial
electric field Eco would contribute to the comoving energy
density, the question arises if it can be neglected. We found
from a more detailed numerical investigation (in prepara-
tion) that the comoving electric field is in fact small, and
we use this advance knowledge to neglect its contribution
to the dynamics here.

3.3. The initial conditions of the flow

Let σ be the ratio of Poynting flux to matter energy flux:

σ =
Lpf

Lkin
=
β(rB)2

4πΓṀc
=

B2

4πΓ2ρc2
· (15)

σ is also the magnetisation parameter of the plasma, de-
scribing the ratio of the proper magnetic energy density
to the proper energy density of the matter. The Alfvén
4-velocity in the comoving frame is

uA =
B/Γ√
4πρc2

=
√
σ (16)

with the regular dimensional velocity counterpart

vA = c
uA√

1 + u2
A

= c

√
σ

1 + σ
· (17)

At an initial radius r0, where the flow starts with the
Alfvén speed (discussed in Sect. 2), the relation between
initial 4-velocity u0 and initial Poynting flux ratio σ0 is
simply

u0 = u(r0) = uA(r0) =
√
σ0 . (18)
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The total energy and the mass flux are linked by

L = (σ0 + 1) Γ0Ṁc2 (19)

so that Ṁ can be expressed in terms of L and σ0:

Ṁ =
L

c2(σ0 + 1)3/2
· (20)

In the GRB case the flow must start highly Poynting flux
dominated with σ0 >∼ 100 so that u � 1 at all distances.
One can therefore set σ0 + 1 ≈ σ0, u ≈ Γ and β ≈ 1. The
conservation Eqs. (12)–(14) then reduce to

Ṁ = r2ρuc, (21)

L

(
1− u

σ
3/2
0

)
= c

(rB)2

4π
· (22)

In this limit one can also simplify the expression (16) for
the Alfvén speed in the comoving frame by using (21)
and (21):

βA =
√

1− u

σ
3/2
0

, uA =
σ

3/2
0

u
· (23)

Equation (21) states that there is no acceleration if B ∼
1/r. This is the case in a radial outflow with ideal MHD
conditions. We encounter here again the fact that the
Poynting flux energy in a radial ultra-relativistic MHD
outflow cannot be transfered to the matter (e.g. Begelman
& Li 1994; Daigne & Drenkhahn 2002).

3.4. The evolution of the magnetic field

The evolution of the magnetic field, as it is carried with
the flow, is governed by the induction equation. This in-
cludes the effects of advection and field line stretching. In
addition we will include a term to describe the decay of (a
part of) the field by reconnection as described in Sect. 2.1.
Since the reconnection is easiest described in a local, co-
moving frame, we first transform the induction equation

∂tB = −c curlE (24)

into the comoving frame where we extend it to account
for the reconnection.

In the stationary case of our model setup the induction
equation for ideal MHD is

∂rβrB = 0. (25)

This equation describes the field evolution due to ideal
MHD processes. To obtain the evolution term in the the
comoving frame we first need the convective derivative

dB
dt

= cβ∂rB = −cB
r
∂rrβ (26)

which then gives in terms of the comoving quantities

dB
dt

=
d(ΓBco)

Γdtco
(27)

=
dBco

dtco
+
Bco

Γ
dΓ
dtco

(28)

=
dBco

dtco
+
B

Γ
dΓ
dt
· (29)

Combining (26) and (29) gives the comoving field evolu-
tion without dissipation effects

dBco

dtco
= −cB

Γr
∂rru. (30)

Let us denote the striped, decayable part of the magnetic
field with B⇀↽ and the perpendicular, non-reconnecting
part with B⇑. We model the decay of the striped compo-
nent of the magnetic field in the comoving frame by the
ansatz
dB⇀↽co

dtco
= −cB⇀↽

Γr
∂rru−

B⇀↽
τ

(31)

where τ is the field decay time scale from (1) in the lab
frame. The non-decaying partB⇑ evolves according to the
induction Eq. (25) so that

βrB⇑ = const. (32)

Expressing the comoving quantities in terms of lab frame
quantities similar to (27)–(29) gives

dB⇀↽co

dtco
=

dB⇀↽
dt
− B⇀↽

Γ
dΓ
dt
· (33)

Since the flow is stationary we can replace the convec-
tive derivatives by r-derivatives and after combining (31)
and (33) one obtains

cβ∂rB⇀↽ −
B⇀↽
Γ
cβ∂rΓ = −cB⇀↽

Γr
∂rru−

B⇀↽
τ
· (34)

One arrives at

∂rβrB⇀↽ =
rB⇀↽
cτ

(35)

and with βrB⇀↽ =
√

(βrB)2 − (βrB⇑)2 this yields

∂rβrB = −rB
cτ

[
1−

(
B⇑
B

)2
]
· (36)

Let µ = (B⇑/B)0 so that µ is the initial fraction between
the field strengths of the non-decaying component and
the total field. µ = 0 means that the complete field de-
cays while at µ = 1 only ideal MHD processes occur and
no dissipation takes place. In the case of an equatorial
outflow of an inclined rotator µ = cos i where i is the in-
clination. The other cases are more complicated and µ is
not associated to a simple geometric quantity.

Using µ as a constant of the problem the field decay
equation can be cast into this simple form:

∂r(βrB)2 = −2
(βrB)2

βcτ

[
1− µ2 (βrB)2

0

(βrB)2

]
· (37)
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Equations (12), (13), (14), (37) over-determine the
3 unknown functions ρ, u,B because we have assumed
a cold flow so that the internal energy is neglected. But
in the ultra relativistic limit the energy and momentum
Eqs. (13), (14) are equal. In this limit (21), (21), (37) are
sufficient to obtain the solutions for ρ, u,B.

3.5. Solution of the flow problem

In the ultra relativistic limit β ≈ 1, Γ ≈ u Eq. (37) for the
evolution of the magnetic field with distance, including
dissipation becomes

∂r(rB)2 = −2
(rB)2

cτ

[
1− µ2 (rB)2

0

(rB)2

]
· (38)

Using the B–u relation (21) to eliminate (rB)2 one obtains
a differential equation for u:

∂ru =
2
cτ

[
σ

3/2
0

(
1− µ2

)
+
√
σ0µ

2 − u
]
. (39)

This equation is to be integrated with initial condition
u = u0 =

√
σ. In the absence of internal dissipation (µ =

1) the flow is not accelerated, ∂ru = 0, as expected. The
flow accelerates monotonically and reaches asymptotically
its terminal speed u∞ found be setting ∂ru = 0:

u∞ = σ
3/2
0

(
1− µ2

)
+
√
σ0µ

2. (40)

The dissipation time scales are

τlo =
2π
εΩ

u2√
1− u/σ3/2

0

(41)

and

τtr =
ϑ

εc

ru√
1− u/σ3/2

0

(42)

for the longitudinal and transversal cases from (1), (2),
(3), (23).

Since our model rests on the assumption of a significant
“decayable” component, µ in the following is taken to be
of the order 0.5 but not close to 1. Then, the terminal
velocity u∞ is much larger than the initial velocity and
u∞/u0 ≈ σ0(1− µ2)� 1 and (40) simplifies to

u∞ ≈ (1− µ2)σ3/2
0 . (43)

The differential Eq. (39) is analytically solvable at inter-
mediate source distances, where the flow is much faster
than the initial velocity (

√
σ0 � u) but is still far away

from the point where the acceleration saturates (u �
u∞ < σ

3/2
0 ). The dissipation time scales then simplify to

τlo ≈
2πu2

εΩ
, τtr ≈

ϑru

εc
· (44)

In this case u∞ − u ≈ u∞ and (39) becomes

∂ru =
2u∞
cτ

(45)

108 1010 1012 1014

r [cm]

10

102

Γ

Fig. 1. Lorentz factor Γ of the flow as function of radius r
for the longitudinal and transversal cases. Model parameters
are σ0 = 100, ε = 0.1, µ2 = 0.5, Ω = 104 s−1, ϑ = 10◦ and
r0 = 107 cm. The solid lines are the numerical solutions of (39)
while the dashed lines are the approximations (47) and (48).
The vertical lines correspond to the photospheric radii: dotted
for the transversal case and dashed-dotted for the longitudinal
case model. The steep dashed-dotted line represents the u ∼ r
law which is expected in the classic non-magnetic optically
thick fireball models (Paczyński 1986).

with the solutions

u =
(

3
πc
εΩu∞(r − r0) + σ

3/2
0

)1/3

(long. case) (46)

and

u =
(

4εu∞
ϑ

ln
(
r

r0

)
+ σ0

)1/2

(transversal case). (47)

The function u for the longitudinal case can be described
as a broken power-law as can be seen in Fig. 1. In the
domain r0 � r, u0 � u � u∞, which we have regarded
anyway for finding the solution, the 4-velocity is well ap-
proximated by

u =
(

3
πc
εΩu∞r

)1/3

. (48)

3.6. The length scale for the acceleration

In the longitudinal case the dissipation stops ap-
proximately where the rising power-law part of the
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u functions (48) reaches the u∞ limit (43). By using (43)
and (48) one can write down this saturation radius as

rsr =
πc

3
u2
∞
εΩ

=
πc

3
σ3

0(1− µ2)2

εΩ

= 7.85× 1012 cm · (ε−1Ω4)−1 σ3
0,2

(
1− µ2

0.5

)2

· (49)

The complete analytical approximation for the longitudi-
nal case reads

u =

{
u∞ (r/rsr)

1/3 for r ≤ rsr
u∞ for r > rsr

. (50)

4. Analysis of the results

4.1. The photospheric radius

The photosphere is located where the optical depth
reaches a value of 1. The optical depth depends on the
density and the the radial velocity u and must be inte-
grated from a finite radius to infinity. Because we only
want to know the photospheric radius within a factor of,
say 2, we define it to be where the mean free path of a
photon equals the distance from the source r. In the co-
moving frame a photon sees the mass density ρ and the
mean free path for Thompson scattering is 1/(κρ). The
source distance in this frame is r/Γ so that the photo-
sphere is located at

rph =
uph

κρph
(51)

which yields

κL

c3σ
3/2
0

= u2
phrph. (52)

If we neglect not only the initial velocity but also the
initial radius r0 compared to the photospheric radius, (46)
and (47) simplify to

u3
ph =

3
πc
εΩ(1− µ2)σ3/2

0 rph (longitudinal case), (53)

u2
ph =

4ε(1− µ2)σ3/2
0

ϑ
ln
(
rph

r0

)
(transversal case). (54)

Together with condition (52) at the photosphere we arrive
at the equations for the photospheric radius and the 4-
velocity in the longitudinal case

uph =
[

3κ
πc4

εΩ(1− µ2)L
]1/5

= 119 ·
[
ε−1Ω4

(
1− µ2

0.5

)
L50

]1/5

, (55)

rph =

[
π2κ3

9c7
L3

(εΩ(1− µ2))2

]1/5

σ
−3/2
0

= 1.05× 1011 cm

×
[
ε−1Ω4

(
1− µ2

0.5

)]−2/5

L
3/5
50 σ

−3/2
0,2 . (56)

Note that the 4-velocity at the photosphere uph does not
depend on the initial Poynting flux ratio σ0 and only
weakly on L.

For the transversal case the flow velocity always de-
pends greatly on the initial radius r0. The dissipation time
scale is τtr ∼ ru and most energy is released at small r near
the source. The acceleration depends crucially on the onset
of the dissipation and therefore on r0. In our simple model
r0 and ϑ are not well determined by physical arguments
so that the transversal case is rather uncertain and highly
speculative. One cannot write down robust equations for
the photosphere like in the longitudinal case without many
degrees of freedom.

4.2. Energy available for prompt radiation

The energy dissipated beyond the photospheric radius is

LD = (u∞ − uph) Ṁc2. (57)

Using (20), (43) and (55) this yields

LD = e
(
1− µ2

)
L (58)

with

e = 1−
(

3κ
πc4

εΩL
(1− µ2)4

)1/5

σ
−3/2
0 . (59)

For a Poynting flux dominated flow, the magnetic energy
flux equals the total energy flux L. Of this, a fraction 1−µ2

is dissipated internally while a fraction e(1 − µ2) can be
converted to radiation beyond the photosphere. Thus e is
an efficiency factor, which gives the ratio between the en-
ergy dissipated in the optically thin domain and the total
dissipated energy. Efficient conversion of free magnetic en-
ergy into non-thermal radiation can happen if e is of the
order unity which requires that the second term in (59) is
small:

0.24× (ε−1Ω4L50)1/5

(
1− µ2

0.5

)−4/5

σ
−3/2
0,2 < 1 (60)

or written differently

σ0 > 39× (ε−1Ω4L50)2/15

(
1− µ2

0.5

)−8/15

(61)

where ε−1 = ε/0.1, Ω4 = Ω/
(
104 s−1

)
, L50 =

L/
(
1050 erg s−1 sterad−1

)
and σ0,2 = σ0/100 are parame-

ters scaled to fiducial GRB values.
When (61) is satisfied, part of the magnetic energy is

released beyond the photosphere, and powers the prompt
radiation. If it is not satisfied, the energy is released in-
side the photosphere and is converted, instead, into bulk
kinetic energy. Some other means of conversation into ra-
diation is then needed, such as internal shocks. Since the
dependence on parameters other than the initial Poynting
flux ratio σ0 is small in (61), we conclude that efficient
powering of prompt radiation by magnetic dissipation in
GRB is possible for σ0 >∼ 100.
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r [cm]
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Γ

Fig. 2. The influence of r0 on the Lorentz factor: the solid lines
correspond to longitudinal case solutions and the dashed one to
transversal case solutions with 1.5×107 cm ≤ r0 ≤ 1.2×109 cm.
The constants used where σ0 = 100, µ2 = 0.5, ε = 0.1, Ω =
104 s−1. For the transversal cases ϑ = 2πc

√
σ0/(Ωr0) is chosen

so that the initial acceleration (slope at r0) is the same as in
the corresponding longitudinal cases.

4.3. Longitudinal and transversal cases in comparison

The major difference between the longitudinal and the
transversal case is the different dissipation time scale.
While the decay time scale for the longitudinal case (44)
is τlo ∼ u2 and therefore limited by u ≤ u∞, the time
scale for the transversal case τtr ∼ ru is not limited. At
small radii it starts at low values but grows then to infin-
ity. This major difference is visualised in Fig. 1 where the
flow Lorentz factor is plotted depending on the radius.

As mentioned in Sect. 4.1 the transversal case depends
strongly on the initial radius r0. This is seen in Fig. 2
where the numerical solutions of (39) are shown for various
initial radii. While all longitudinal case solutions merge
toward the u ∼ r1/3 power-law there is a large spread in
the transversal case solutions.

The longitudinal and transversal cases are the two lim-
its for a general case where both kinds of scaling of the
decay time scale occur. One can model the mixing of both
cases by writing the dissipation time scale as

τ = k

(
r

r0

)α(
u

u0

)2−α
(62)

where 0 < α < 1 is a dimensionless parameter which
determines the mixing. α = 0 corresponds to the pure
longitudinal case and α = 1 to the transversal case.

108 1010 1012 1014 1016

r [cm]

10

102

Γ

α=0

α=1

Fig. 3. The Lorentz factor Γ for different parameters α ∈
{0, 0.2, 0.4, 0.6, 0.8, 1}. The other wind parameters were set to
σ0 = 100, µ2 = 0.5, ε = 0.1, r0 = 108 cm, Ω = 104 s−1 (cor-
responding to ϑ = 10.8◦ in the transversal description). The
different winds all start with the same dissipation rate so that
they show the same initial acceleration. Γ∞ is marked by a
horizontally dotted line.

The constant k can be written depending on the corre-
sponding model parameters as

k =
2πσ0

εΩ
(63)

or as

k =
ϑr0
√
σ0

εc
· (64)

Figure 3 shows the velocity profiles for various α values.
All graphs result from a numerical integration of (39).
Beyond the photosphere, assuming it is around 1011 cm,
the dissipation is only efficient if the field variation does
not point in transversal direction. The efficiency estima-
tion in (59) is therefore an upper limit for the general case
with α 6= 0.

4.4. The validity of the MHD condition

Because we work with the ideal MHD approximation we
have to make sure that there are enough charges in the
flow to make up the required electric current density.
Because the reconnection processes will destroy the or-
dered initial field configuration quickly it does not make
much sense to consider this configuration throughout the
flow. But one can at least estimate needed currents by
looking at a sinusoidal wave in the equatorial plane. In
Paper I we derived the limiting radius where the MHD
condition breaks down by using a constant flow speed and
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assumed µ = 0. The condition that enough charges are
available to carry the current is

ΩB
4πΓ2

=
2ρec
mp
· (65)

This yields the radius up to which the MHD approxima-
tion holds:

rMHD =
4e
√
πL

mpc3/2Ω
u/σ

3/2
0√

1− u/σ3/2
0

(66)

> 4× 1018 cm · L1/2
50 Ω−1

4 σ−1
0,2. (67)

Here, we have used the dependence (21) of the magnetic
field strength on velocity. In (66) rMHD is written as a
function of u and depends implicitly on r. At r0 where
u = u0 =

√
σ0 it starts at the value (67) and rises strongly

until the final velocity u = u∞ = σ
3/2
0 is reached where

rMHD diverge to ∞. For the GRB parameters assumed
here, we find rMHD � rsr and the MHD approximation is
always fulfilled, as in Paper I.

4.5. Comparison with the striped pulsar wind

Dissipation of magnetic energy was applied to the Crab
pulsar wind by Lyubarsky & Kirk (2001). Their model
setup included a striped pulsar wind (Coroniti 1990) that
is the equatorial wind of on inclined rotator. This is quite
similar to our longitudinal case where all Poynting flux can
decay so that µ = 0. The wind starts with Γ =

√
σ0 and

reaches Γ∞ = σ
3/2
0 as in our model. Due to a difference

approach to model the reconnection rate they obtain a
flow acceleration of Γ ∼ r1/2 (Eq. (30) Lyubarsky & Kirk
2001) which is faster than Γ ≈ u ∼ r1/3 form (50).

The findings of Lyubarsky & Kirk (2001) that the re-
connection is inefficient for the Crab wind seems to contra-
dict our result, that it efficiently accelerates the GRB out-
flow. The reason for that is the different initial Poynting
flux values used for the Crab pulsar and in our study. σ0 is
the critical parameter controlling the final Lorentz factor
and the spatial size of the accelerating wind.

Discussing the Crab pulsar wind in detail and specu-
lating why reconnection fails is beyond the scope of the
present paper. Instead, we simply take the flow parame-
ter values σ0,2 = 400, Ω4 = 0.02 from Lyubarsky & Kirk
(2001) and show that our model gives basically the same
result as the striped wind model. However, see Yubarsky
& Eichler (2001) for a critical revision of the Crab pulsar
wind parameters. Equation (50) yields for the 4-velocity
at the observed termination shock at r = 3× 1017 cm
u

u∞
= 0.023 ε−1/3

−1 ,
u

u0
= 920 ε−1/3

−1 . (68)

When the wind reaches its termination shock only a small
fraction of the Poynting flux was converted. Though, due
to the small amount of mass in the flow large acceler-
ation occurs and the Lorentz factor increases by almost
4 orders of magnitude. This is the same result as obtained

by Lyubarsky & Kirk (2001). The different acceleration
laws of the two models does not change the picture. The
observed pulsar wind bubble is to small to allow for effi-
cient reconnection.

The radius rsr from (49) denotes the radius where the
Poynting flux conversion ends. Its value scales with the
third power of σ0. Plausible Lorentz factors for GRB winds
of around 102–104 imply σ0,2 ≈ 0.2–5 (or larger for µ > 0).
This lowers rsr by 6 orders of magnitudes compared to
the Crab wind. Thus rsr <∼ 3 × 1015 cm which is smaller
than the radius ra ≈ 1016 cm where the flow runs into
the ambient medium (Piran 1999). The requirement on
σ0 for the dissipation to take place inside a radius ra can
be expressed by (49) which yields an upper limit for the
initial Poynting flux ratio:

σ0 <∼ 1100 · (ra,16ε−1Ω4)1/3

(
1− µ2

0.5

)−2/3

· (69)

For GRBs there is no size problem as for the Crab wind
and Poynting flux can be efficiently converted.

5. Discussion

We have investigated the effect of dissipation of magnetic
energy in a GRB outflow on the acceleration of the flow.
Such dissipation is expected if the flow contains small scale
changes of direction of the field for example when the flow
is produced by the the rotation of a non-axisymmetric
magnetic field. The dissipation is governed by the speed
of fast reconnection, parameterised in our calculations as
a fraction ε ≈ 0.1 of the local Alfvén speed in the flow.

Two possibilities for the field geometry in the outflow
have been considered: a geometry where the changes in the
small scale field direction occur along the bulk flow direc-
tion, and a geometry where the field variation is transver-
sal to the flow direction. The first mentioned, longitudinal
case is expected in the equatorial plane of an inclined ro-
tator as in the “striped” pulsar wind model of Coroniti
(1990). The second, transversal case can be associated
with a polar outflow where the field line structure resem-
bles a spiral. In both cases there are MHD instabilities
(tearing and kink instabilities) which lead to reconnection
processes. They differ only by the functional form of the
reconnection time scale.

We find that in any case the process leads to a strong
increase of the bulk Lorentz factor of the flow. This ac-
celeration is due to the outward decrease of the magnetic
pressure resulting from the field decay. At the same time,
the dissipated energy can be released to large extend in
the optically thin part of the flow beyond its photosphere,
and can power most if not all of the prompt emission. This
provides an alternative to the internal shock model.

The calculation is done for a stationary wind. Why
this approximation is valid for highly variable objects like
GRBs is not obvious. The duration of GRBs t is of the
order of a few seconds. One can approximate the wind as
stationary within a source distance ct ≈ 1011 cm. Thus the
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flow up to the photospheric radius is well described by a
stationary description. Further out the time dependence
of a real flow will become more important but that topic
is beyond the scope of this work.

The outflow with transversal field variation contains
some additional complications which does not occur in
the longitudinal case. The dissipation time scale is pro-
portional to the source distance. This results in a rapid
energy dissipation near to the source and the velocity pro-
file depends critically on the radius where the dissipation
sets in. But this initial radius is hard to estimate from first
principles.

We have used the spiral-like field geometry of a po-
lar flow as pictured in Paper I to justify the existence of
transversal field variations. This field geometry occurs for
a polar outflow of an axisymmetric rotator. The following
arguments give reasons why this field geometry is rather
special and may not be important in a general. The kink
instability leads to a break-down of the ordered spiral field
configuration. After some Alfvén crossing times the field
geometry will have changed so that the “longitudinal” dis-
sipation time will become important while the “transver-
sal” time scale grows large and can be neglected. On the
other hand the rotator may not be perfectly aligned and
non-axisymmetric field components are also present in the
polar outflow. So, we probably have always longitudinal
field variations in the flow so that the findings found in
our treatment of the “longitudinal case” might be much
more applicable and general.

We assume that the thermal energy flux is negligible
compared to the kinetic and Poynting energy flux. The
temperature is set to zero which simplifies the treatment
and allows an analytical integration of the dynamic equa-
tions. Setting the thermal pressure gradient artificially to
zero might appear to underestimate the acceleration. On
the other hand the energy equation takes care that all re-
leased magnetic energy shows up in kinetic form. In fact,
we overestimate the acceleration by doing so because the
energy part converted into heat reduces the the gain of
kinetic energy in the flow. Another physical argument ex-
plains why the flow stays cold: The acceleration expressed
by the scaling of the Lorentz factor gives Γ ∼ r1/3 for our
model. The release of magnetic energy must therefore also
scale with r1/3. In contrast to that, purely thermal acceler-
ation by adiabatic cooling leads to more rapid flow acceler-
ation where the Lorentz factor scales like Γ ∝ r (Paczyński
1986). Thus, heating proceeds slower than adiabatic cool-
ing so that the thermal pressure gradient is not important
compared to the magnetic pressure gradient which drives
the flow. The reason why Lyubarsky & Kirk (2001) find
a faster acceleration of Γ ∼ r1/2 in a similar model lies in
the different reconnection prescription and is not due to
their inclusion of thermal pressure.

In the optically thin regime part of the dissipated en-
ergy radiates away. There, the model over-estimates the
gain of kinetic energy. We cannot give arguments how
much dissipated energy escapes as prompt radiation so

that the total amount of released energy gives only an
upper limit on the Lorentz factor.

The photospheric radius determines the lower limit on
radius for the region in which non-thermal radiation is ex-
pected to originate. For typical GRB parameters describ-
ing the total luminosity, the baryon loading, the fraction
of dissipatable energy and the reconnection rate one finds
that a considerable amount of dissipation takes place in
the optically thin region. Part of the dissipated energy
is converted into non-thermal radiation. The remainder
still leads to an acceleration of the flow. This acceleration
is caused by the magnetic pressure gradient induced by
the field dissipation. Since the acceleration continues out-
side the photosphere up to the radius where all the free
magnetic energy is used up this non-thermal radiation is
emitted from matter with different Lorentz factors. The
observable spectrum in thus smeared out compared to a
spectrum from a uniformly moving medium. For a more
sound analysis of this topic one needs a model for the
radiation process.

The Poynting flux conversion happens at radii r <∼
1015 cm which is inside the distance ≈1016 cm where the
GRB outflow is expected to run into the external medium.
Thus, the Poynting flux can be converted efficiently. But
by applying the model to the Crab pulsar wind we come to
the same conclusions as Lyubarsky & Kirk (2001): the con-
version is inefficient since the observed pulsar wind bubble
is to small to contain the whole region where reconnec-
tion takes place. For the Crab pulsar the assumed initial
Poynting flux ratio is larger than for GRBs leading to
a much longer reconnection phase. The presented model
does not settle this Crab wind problem.

The most important parameter which controls the
amount of energy dissipated beyond the photosphere is
the initial Poynting flux to kinetic energy flux ratio. If its
value is around 100 or greater much non-thermal, prompt
emission is produced. If its value is of the order of 10,
however, all the Poynting flux energy is converted into ki-
netic energy and thermal radiation. Only prompt thermal
emission and afterglow emission is expected in this case.
The initial Poynting flux ratio is a measure for the baryon
loading in a sense that a high baryon loading corresponds
to a low initial Poynting flux ratio. Observations indicate
that X-ray flashes and X-ray rich GRBs are very simi-
lar phenomena which probably differ only by the amount
of baryon loading (Heise et al. 2001). In the context of
our model, X-ray flashes can be associated with low ini-
tial Poynting flux ratios. In this case, the X-ray emission
is thermal radiation from the photosphere. Increasing the
initial Poynting flux ratio leads to the emission of non-
thermal γ-rays in the optically thin region, thus produc-
ing X-ray rich and regular GRBs. If afterglows of X-ray
flashes could be observed they would yield information
about the connection to regular GRBs. Afterglows depend
less strongly on the initial Poynting flux ratio but rather
on the total luminosity of the outflow. Thus, X-ray flash
afterglows should be similar to afterglows of regular GRBs
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according to our model. In a future work we will investi-
gate the thermal emission more quantitatively.

The model predicts black-body radiation originating
from the photosphere of the flow. We can calculate the
radius of the photosphere and the Lorentz factor of the
flow there. Together with the temperature one is able to
calculate the luminosity if the thermal radiation. Since our
approximation treats the flow as cold we cannot give quan-
titative results in this respect. Though, one finds that the
Lorentz factor at the photosphere depends only weakly on
the model parameters. Therefore, the observable tempera-
ture kTobs = ΓphkT/(1+z) of the thermal component of a
GRB depends primarily on the redshift z and the temper-
ature in the comoving frame T . This result simplifies the
task to disentangle the effects of different model parame-
ters on the temperature. A detailed, quantitative analysis
of the thermal radiation will be done in a following study.
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