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Abstract. In this paper we present a holistic approach to CPU based
acceleration of the high dynamic range imaging (HDRI) pipeline. The
high dynamic range representation can encode images regardless of the
technology used to create and display them, with the accuracy that is
only constrained by the limitations of the human eye and not a par-
ticular output medium. Unfortunately, the increase in accuracy causes
significant computational overhead and effective hardware acceleration
is needed to ensure a utility value of HDRI applications. In this work
we propose a novel architecture of the HDRI pipeline based on CPU
SIMD and multi-threading technologies. We discuss the impact on pro-
cessing speed caused by vectorization and parallelization of individual
image processing operations. A commercial application of the new HDRI
pipeline is described together with evaluation of achieved image process-
ing speed-up.

Keywords: high dynamic range imaging, SIMD architecture, SSE,
multi-threading architecture, image processing, computer visualization.

1 Introduction

The advances in high dynamic range imaging (HDRI), especially in display and
camera technology, have a significant impact on existing imaging systems. The
assumptions of traditional low-dynamic range imaging, designed for paper print
as a major output medium, are ill suited for the range of visual material that is
shown on modern displays. The high dynamic range representation can encode
images regardless of the technology used to create and display them, with the
accuracy that is only constrained by the limitations of the human eye and not a
particular output medium.

The disadvantage of HDRI technology is computational complexity. A single
pixel in an high dynamic range image consumes 4 times more memory storage
in comparison to a low dynamic range image (3 floating point numbers (4-bytes
long each) against 3-bytes in the low dynamic range representation). This com-
plexity means that HDRI pipeline is not used in many applications which would
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significantly benefit from HDR accuracy. For example, processing of huge data-
sets from medical computer tomography or RAW photographs is problematic
for typical personal computers or laptops. Moreover, the constant increase of
image resolution and complexity of image processing algorithms will make this
problem even worse in the future.

In this paper we argue that by usage of modern CPU technologies, it is pos-
sible to accelerate the image processing of the HDRI pipeline significantly. The
acceleration can be achieved based on existing CPU capabilities: the SIMD in-
struction set, multi-processor and multi-core architectures. SIMD (Single In-
struction Multiple Data) instructions allow to speed-up processing of floating
point vector data, which can represent HDR pixels. Because of the indepen-
dent transformation of individual pixels, most HDRI algorithms are well suited
for parallel processing. Multi-threading architecture accelerates such processing
almost by a factor of the available threads.

A goal of efficient HDRI computing is to accelerate the whole HDRI pipeline
rather than to speed-up individual operations. In this paper we propose the
architecture of the accelerated pipeline which benefits from careful optimization
of HDRI algorithms and from effective RAM memory management. We also
introduce queueing techniques that enable grouping many simple operations into
one complex command path. This way automatic optimization of CPU hardware
usage is implemented and effective acceleration of complex algorithms is possible.

We review existing SIMD and multi-threading based technologies in section 2.
The concept of high dynamic range imaging pipeline and its possible acceleration
techniques are discussed in Section 3. In section 4 we present an architecture of
our novel HDRI pipeline which uses SIMD and multi-threading technologies to
speed-up data processing. We then describe a software package that operates on
the new HDRI pipeline (section 5) and discuss achieved results.

2 Previous Work

A general approach to image processing using SIMD and parallel hardware can
be found in a few software packages. The VIPS (VASARI Image Processing Sys-
tem) library [7] seems to be the most known LGPL system for processing huge
images. It divides images into small arrays and uses multi-threading to effectively
process them on SMP (Symmetric Multiprocessor) computers. Intel Integrated
Performance Primitives (Intel IPP) [8] is a library of multi-core-ready, optimized
software functions for multimedia data processing. Careful programming in plain
C/C++ code and compilation based on IPP compilers can speed-up applications.
The Image Processing Toolbox (IPT) [10] provides a set of functions for image ma-
nipulation and analysis. The IPT capabilities include SIMD and multi-threading
optimized color space transformations, linear filtering, mathematical morphology,
geometric transformations, image filtering and analysis. Acceleration is achieved
based on the O-Matrix engine [10] that supports fast matrix processing. Multi-
threading and SIMD architecture is also exploited by the GENIAL (GENeric Im-
age Array Library) [9] library to speed-up computation of signal processing



782 R. Mantiuk and D. Paja̧k

algorithms. The architecture of GENIAL is based on the same conventions as the
Standard Template Library (STL), consisting of containers, iterators, adaptors,
function objects and algorithms. The intensive use of templates makes it possible
for the library to automatically adapt calculations on containers to the specified
problem in order to achieve faster execution. There are a few acceleration toolkits
in the medical imaging community. ITK (Insight Segmentation and Registration
ToolKit) [11] is a library for image segmentation and registration. Another avail-
able choice, MITK (Medical Imaging ToolKit) [12] uses CPU SIMD instructions
to accelerate matrix and vector computations, and linear and tri-linear interpola-
tion computations. Both toolkits provide a general framework for medical imaging
rather than a set of highly optimized image processing functions.

All these approaches seem to be general and not optimized for HDRI process-
ing. In particular they are not intended for throughout rendering of the HDRI
pipeline. In this paper we propose a more efficient solution at the cost of reject-
ing generality of computations. We present a holistic approach to CPU based
acceleration of the HDRI pipeline. We don’t deal with GPU (Graphics Proces-
sor Image) acceleration techniques [1]. The usage of GPU seems to be promising
for fast HDRI processing but this technology is not common on many platforms
(e.g. mobile phones or PDA devices). Moreover, advanced GPU capabilities (e.g.
shader support) are not well standardized yet so we leave the GPU acceleration
as future work.

3 Acceleration of the HDRI Pipeline

High dynamic range imaging [2] is a new paradigm that involves a highly accu-
rate representation of images. As it originates from light simulation (computer
graphics rendering) and measurements, the pixels of HDR images are assigned a
physical meaning. This highly accurate representation of images gives an unique
opportunity to create a common imaging framework, that could meet the re-
quirements of different imaging disciplines.

Figure 1 illustrates an example of the HDRI pipeline [3] that starts with
acquisition of a real world scene or rendering of an abstract model using computer
graphics techniques and ends at a display. This pipeline overcomes shortcomings
of a typical graphics pipeline that doesn’t support devices of a higher dynamic
range or a wider color gamut [4].

The drawback of the HDRI pipeline is that much more data has to be pro-
cessed in comparison to a typical 8-bit pipeline. Pixels of an HDR image are
represented by a vector of floating point values: one 4-byte floating point num-
ber for each of 3 or more color channels (e.g. in the case of multi-spectral imaging
more than 10 channels should be supported). Number of bbp (bits per pixel) is
then four or more times higher than for 8-bit images. Additionally, it should
be considered that most HDRI devices generate huge sets of data because of
growing sampling resolutions of input and output devices. Like in typical im-
ages, dimensionality of HDRI images is important and change of context in both
horizontal and vertical directions cannot be neglected. Summing up, to achieve
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Fig. 1. High dynamic range imaging pipeline accelerated by SIMD and multi-threading
operations

the same performance as for the low dynamic range pipeline, the data in the
HDRI pipeline need to be processed much faster.

A recent development of CPU hardware allows for the speed-up HDRI process-
ing significantly. In particular the SIMD instruction can be exploited effectively
by processing many data in one CPU cycle. HDRI processing is susceptible to
parallelization so usage of multi-threading accelerates computations. To exploit
SIMD and multi-threading efficiently, we selected a set of algorithm crucial to
HDRI processing. Then, we propose a new architecture of the HDRI pipeline.

A set of selected algorithms is depicted in Figure 2. From the acceleration
viewpoint, the most important group of operations is matrix arithmetic. This
group covered both matrix-by-matrix operations (e.g. matrix multiplication) and
scalar-by-matrix operation (e.g. multiplication of all matrix elements by a scalar
value). Also, matrix manipulation algorithms, like transposition or vertical and
horizontal shift, should be considered. Channel masking and pixel masking can
eliminate selected color channels or pixels from pipeline processing based on
conditional expressions. The accumulation algorithms, such as computation of
a sum of pixel values in an image area, is time consuming and should be ac-
celerated. In many cases HDR images must be transformed by a non-linear
functions and Look-Up-Table (LUT) is the fastest and simplest way to proceed.
Finally, a selected group of advanced image processing algorithms are acceler-
ated. This group includes image scaling, color space conversions and color profile
conversions.
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Fig. 2. HDRI operations crucial for fast image processing

4 Using SIMD Operations and Multi-threading in HDRI

Processing

In Figure 1 a novel HDRI pipeline accelerated by CPU SIMD operations and
multi-threading is presented. The main goal of the pipeline processing is to
exploit the SIMD and multi-threading architectures efficiently. Moreover, data
interchange between CPU and computer RAM memory should be limited as
much as possible. All intermediate and temporary results should be stored in
CPU registers or CPU cache memory. If a larger temporary storage is required
(e.g. in local tone mapping operators [2]), algorithm could exploit L1 cache,
as it offers lower access latency and greater performance than system memory.
However in this case, an HDR image must be divided into suitable chunks due
to limited cache size.

Parallel processing is exploited in a new pipeline. We divide an HDR image
into arrays/chunks and the chunks are processed independently. The size of an
array is limited by the size of CPU L1 cache rather than the number of available
threads or processors. We noticed that even in a one-thread system, it is faster to
process small chunks of data rather than the whole image at once. In the pipeline
implementation a fixed number of threads (equal to the number of execution
units reported by an operating system) is created at run-time. Threads become
active only when new tasks are assigned to them and go to sleep right after they
finish processing scheduled tasks. Thread management is handled by operating
system. It is the operating system’s responsibility to identify Hyper-threading,
multi-threading or multi-processor hardware and manage threads efficiently.

The goal of SIMD computation is to perform a single operation on many data
elements. Modern CPU hardware is equipped with a set of SIMD arithmetic,
logical, comparison and conversion instructions. They process 128-bit words in
one CPU cycle so a 4-times speed-up of basic operations is potentially possible.
Almost all current CPUs offer the SIMD instruction set. Examples are SSE [5]
in Intel and AMD processors or AltiVec in IBM’s Power PC.
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HDRI processing is especially suited to acceleration based on the SIMD archi-
tecture. A common 4-channel RGBA representation (red, green, blue, and alpha
channels) of an HDR pixel can be considered as one 128-bit word and all channels
can be processed simultaneously. The CPU SIMD instruction set delivers most of
operations required in HDRI computing [6]. In the case of advanced operations
(like logarithm computation or exponentiation), which are not available, we use
existing instructions to approximate results.

For example to compute log2(x), we use specific features of a single precision
floating-point number representation. As defined in the IEEE 754-1985 specifi-
cation, a single precision number is described by the equation: s ∗ 2e ∗ m, where
s is a sign bit, e is an 8-bit exponent and m is a 24-bit normalized mantissa. We
calculate the log2(x) value by extracting the exponent from the number repre-
sentation and adding it to the approximation of log2(m) of extracted mantissa:
log2(x) = log2(2

e ∗ m) = e + log2(m), where x > 0. In our implementation we
use the Chebyshev mini-max fifth degree polynomial to approximate the func-
tion log2(m). This technique results in a small relative error (10−6) and can be
implemented very efficiently on SIMD architecture.

Most of the operations performed inside the HDRI pipeline are executed on lu-
minance (1 channel) value of HDR pixels. This makes the calculation even more
efficient as we process 4 pixels in each instruction. An example of this set of
operations is a Look-up table transformation which lets the user apply a custom
non-linear transformation on input luminance values (e.g. custom global TMO
curve). Given a set of non-overlapping input ranges ([a0, b0]..[an, bn]) and their
mapped counterpart values ([c0, d0]..[cn, dn]) we transform luminance value l us-
ing the formula: le = cx +((l−ax)/(bx −ax))∗ (dx − cx), where ax ≤ l < bx. The
most time consuming task is finding the right input range for every pixel. By us-
ing SIMD selective write operations and bit masking we speed-up the procedure
by finding the ranges for 4 pixels at the same time. Because of the characteristics
of image data (neighbourhood pixels have relatively small differences in lumi-
nance values) the performance drawback coming from redundant loop passes
(some pixels in the vector might have their range locked but we continue the
search until ranges for all 4 pixels are found) is, in most cases, negligible.

5 Example Application: The HDRI Library

We implemented the HDRI pipeline as a Windows dynamic library. All public
methods in the library are accessed through a simple C API similar to OpenGL
with internal state machine on the library side. The library uses multi-threading
and vector processing capabilities. The functions are manually optimized with
intensive usage of MMX/SSE/SSE2 intrinsic code. The initialization code is able
to detect the features of the CPU (by invoking the cpuid instruction) and choose
the best possible code path for the library methods. Also a special 64-bit version
is available for Win64 systems (additional performance gain comes from the
increased number of CPU SIMD registers). The library itself was implemented
in C++.
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The activity diagram in Figure 3 shows simplified processing stages of HDRI
pipeline. Actual pipeline stages implementation is much more complicated and
includes additional features/modules. We skip them because they do not influ-
ence the design of the pipeline acceleration methods.

A synchronization of all working threads is required to gather the results,
calculate required image specific factors and then move to the next stage. The
synchronization of threads is implemented via the Win32 event system which
is known for low latency and quick kernel dispatching time. Even if we use the
most efficient synchronization method available, this task tends to be the slowest
element of the pipeline processing (the delays are not even correlated with image
data size). By carefully designing the pipeline stages and operation types at each
stage we minimized the synchronization count to the absolute minimum.

Besides the fixed functionality pipeline we have implemented a mechanism
which lets the programmer combine many simple SIMD accelerated functions (ad-
dition, multiplication, division, etc.) with their corresponding arguments into one
complex command, which is then executed by multi-threading, chunk processing
engine of the pipeline. This queueing method offers additional flexibility to com-
putational abilities of the library, however it comes with a price of degraded local-
ity of calculations and increased memory bandwidth usage. Thus it is not able to
compete in terms of performance with the fixed functionality pipeline.

A set of 5 HDR images (6 M-pixels each) was used to conduct performance
tests of the library. The tests covers both low level (basic data processing oper-
ations) and advanced HDRI processing operations. The timings from the upper
part of table 1 are arithmetic means of results we got for individual test images.
The lower part of the table covers tests for execution of the whole HDRI pipeline
starting from HDR image blending (for 5 input images) and ending at tone map-
ping (TMO) and LDR image generation. The test platform was a Windows XP
based PC equipped with Athlon X2 3800+ dual core CPU and 2GB DDR RAM.

Noticeable speed-ups are visible in both internal functions as well as in overall
pipeline performance. The computational power of SIMD architecture is espe-
cially exposed in calculation of log-average (arithmetic mean of logarithms) or
sRGB gamma correction where approximated functions are used instead of their
built-in counterparts.

Decreased acceleration ratio of functions with conditional execution (compare
timings for log-average and conditional log-average) is caused by the streaming
nature of SIMD computation: we calculate values of all elements in the vector
and write the result depending on the condition bit mask. In the case of SISD im-
plementation we only calculate the results for elements which pass the condition
statement.

Operations performing well on a super-scalar FPU (e.g. image blending) or
resistant to vectorization due to algorithm nature (tone mapping) still take ad-
vantage of parallel processing and speed-up close to the theoretical limit of 2
(number of cores in our test system). False color image generation1 performance

1 A process of encoding the HDR image luminance into an LDR image where certain
luminance values are mapped to a predefined RGB triplets from LUT.
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Fig. 3. Selected HDRI library pipeline stages (simplified). The default configuration
of the HDRI pipeline combines a specified number of the input HDR images into one
intermediate image, which is then processed and written as an output LDR image. Most
of the functions work on the luminance channel which is extracted in the preprocessing
stage. At the end of pipeline the results of luminance processing are applied on all
channels of input HDR image.

does not scale linearly with the number of available execution units and seem to
be bound by memory bandwidth.

We have compared our implementation with the VIPS library in low level func-
tion performance. All tested functions of HDRI library performed better than
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Table 1. Computation time of internal pipeline functions. For SIMD implementation
both single-threaded (st) and multi-threaded (mt) tests were performed. The speed-up
is a ratio between measured time of a single-threaded FPU code and SIMD multi-
threaded implementation.

Operation Time [ms] Speed-up
FPU(st) SIMD(st) SIMD(mt)

HDR image blending 257 238 139 1.85
Log-average 395 33 19 20.79

Conditional log-average 238 43 25 9.52
XYZ to RGB conversion 64 38 20 3.2

Conditional XYZ to RGB conversion 90 49 22 4.09
sRGB gamma correction 1971 302 157 12.55

Global photographic TMO [13] 3146 590 360 8.74
Gamma TMO 3356 621 375 8.95

False color image generation (LUT example) 690 321 220 3.14

their VIPS equivalents. For example, the computation speed of log-average is
about 11 times faster in our solution (both test programs utilize multi-threading
architecture). This was expected as VIPS library is architecture independent
and does not use SIMD instruction set or math functions approximations.

6 Conclusions and Future Work

The limitations of the existing low-dynamic range imaging technology can be ad-
dressed and eliminated in the HDR imaging pipeline that offers higher precision
of visual data. In this work we outline acceleration techniques for processing
HDR images. We use the SIMD and multi-threading technologies available in
present CPU hardware to overcome computation bottlenecks. Those technolo-
gies, together with the proposed novel data processing architecture, make the
HDRI pipeline as fast as the traditional pipeline. In the final section of the paper
we describe the software library implemented based on the proposed design. The
utility values of this library was proved in commercial applications (they will be
available on the market in the near future).

Another increase of computation speed of the HDRI library could be achieved
using specialized instructions from the SSE3/SSE4 extensions (e.g. usage of hard-
ware dot product and horizontal data processing instructions could speed up
accumulation operations by a factor of 4). At the time of writing of the imple-
mentation the CPUs with SSE3/SSE4 support were not propagated enough in
the market to count this code path in the library design but we plan to use those
operations in the future. We have also been extending functionality of the library
to accelerate more complex image processing operations (e.g. histogram compu-
tation or Gaussian pyramid usage). In the future we plan to port the library to
GPU hardware.
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