
Acceleration of Join Operations
by a relational database processor, RINDA

Tetsuji Satoh, Hideaki Takeda, Ushio Inoue, Hideki Fukuoka
NTT Communications and Information Processing Laboratories,

Yokosuka, Kanagawa 238-03, Japan
e-mail : satoh%nttbss.ntt.jp@relay.cs.net

Abstract : Fast join methods implemented in a relational
database processor, RINDA, are described. RINDA per-
forms complex queries including sorts and joins with spe-
cialized hardware. Join operations by RINDA are exe-
cuted in three phases: filtering phase, sorting phase and
merge-join phase. In the filtering phase, unjoinable tuples
are removed with hashed-bit-arrays. Remaining tuples
are sorted in the sorting phase. Sorted tuples are merged
and connected together in the merge-join phase. Iterating
operations in the filtering and sorting phases are rapidly
executed by RINDA’s specialized hardware. Especially in
the filtering phase, a new multiplication-folding method is
used as a hashing function to set and refer hashed-bit-
arrays. It strongly reduces collisions for any type and
length of keys. Three kinds of join algorithms, nested-
loop, single-table filtering and dual-table filtering algo-
rithms, are dynamically selected according to the number
of tuples to be joined. Performance evaluation shows
RINDA accelerates join operations about ten times com-
pared with conventional software systems.

1. Introduction

In recent relational database systems, high speed
query execution are required for retrieving over 1-Giga
byte databases. However, non-indexed queries which
access all data objects stored in disks take a lot of time
when they are executed by general purpose computers
because these computers aim to achieve high performance
for complex operations with a few data objects. Database
machines have been studied and developed to realize
high-speed execution of database operations based on
many iterative data comparisons and replacements.

Database machines can be classified into two types.
The first is designed to solve the I/O bottleneck between
CPUs and DISKS and the second type solves the CPU
neck caused by sorts and joins. CAFSl is in the first
category and uses special purpose processors attached to
disk controllers. Each processor executes tuple selections
and restrictions within tuple read out time from disks.

DATABASE SYSTEMS FOR ADVANCED APPLICATIONS ‘91
Ed. A. Makinouchi
@World Scientific Publishing Co.

GRE02 with a special hardware sorter and the IDP3
expanded vector processor which executes database opera-
tions are of the second type. The Server/80004 series
database processor is a hybrid for solving both the I/O
and CPU necks. It consists of many micro-processors for
I/O operations and a specialized RISC processor designed
for database operations.

RINDA is a new relational database processor com-
posed of CSPs and ROPs. The CSP, Content Search Pro-
cessor, executes tuple selections and restrictions within
tuple transfer time from disks. The ROP, Relational
Operation accelerating Processor, mainly executes sorting
and accelerates join operations by using specialized
hardware. Thus RINDA executes non-indexed queries 100
times faster than conventional software database manage-
ment systems since both I/O and CPU bottle necks are
solved.

This paper presents fast join algorithms based on the
three-phase join method6 applied in RINDA. The three-
phase join method consists of filtering, sorting and
merge-join phases. In the filtering phase, unjoinable tuples
are removed from joining tables. Remaining tuples, that
is the candidate tuples of the join, are sorted in the sort-
ing phase. After sorting tuples of joining tables, those
tuples are merged and connected together in the merge-
join phase. Operations in the filtering and sorting phase
are rapidly done by specialized hardware in the ROP. The
merge-join phase is done by software in a host computer
because the condition of tuple connection depends on the
user’s requirement. The work load of the merge-join
phase can be almost entirely eliminated by filtering
unjoinable tuples and sorting the two tables.

Hashing functions for filtering unjoinable tuples are
very important. To filter all unjoinable tuples, the hash-
ing function used to set and refer hashed-bit-arrays must
not collide in any key data types and length. If a collision
occurs, unjoinable tuples remain by mistake. Therefore, a
new multiplication-folding method based on the rotation-
folding7 and multiplication8 methods was implemented.

In section 2, we discuss the problems of conventional
relational database management systems and solutions
offered by the RINDA system. A fast join algorithm based
on the three-phase-join method is discussed in section 3.
In section 4, the multiplication-folding method for filtering
functions is proposed and evaluated using a large number
of actual keys. In section 5, RINDA architecture for
accelerating join operations is described. The performance
enhancement of join operations by RINDA is also

243

evaluated. 3. Accelerating Methods for Join Operations

2. Problems of Conventional Systems and Solutions
offered by RINDA

3.1. Design Consideration

The performance of relational database systems has
been improved by the effective use of indexes. However,
some types of queries, i.e. selection by non-indexed
columns, sorting after selections and aggregation for sta-
tistical analyses, cannot take advantage of them. These
queries are basically evaluated by iterative comparisons
for a large number of tuples read out of disks. Therefore,
they consume a great amount of CPU and IO time.g The
amount of CPU and IO time increases according to the
number of tuples in a table. Unfortunately, queries includ-
ing join and sort operations need much more CPU time.
For instance, sorting operations for n records need at least
n*log(n) times of comparisons each of which is a very sim-
ple operation. However, the conventional general purpose
computer is designed to rapidly execute complex numeric
operations.

RINDA achieves high-speed executions of database
operations by using specialized hardware. It aims to
decrease both CPU and IO time. A typical RINDA sys-
tem organization is shown in Figure 1. RINDA is com-
posed of CSPs and ROPs each of which is connected to a
host computer by a channel interface. The CSP directly
searches tables stored in disk volumes, selects tuples and
columns requested by a query, and then transfers the
results to the host computer as a temporary table. The
ROP sorts tuples in a temporary table transferred from
the CSP via the host, and then returns a sorted tem-
porary table back to the host. Unjoinable tuples are
removed within sorting term.

Conventional join algorithms mainly comprise three
groups: nested-loop join algorithmslo , sort-merge join
algorithmslo and hash-join algorithms.ll In nested-loop
join algorithms, each tuple in the first table is repeatedly
compared with all tuples in the second table. Thus, this
algorithm can be used only if both tables are small
because, although it is easier to control than the others, it
requires very large number of comparisons. In hash-join
algorithms, both joining tables are split into many packets
by a hashing mechanism. Actual join operations are exe-
cuted between split packets in which every tuple has the
same hashing value. Therefore, hash-join algorithm is suit-
able for parallel execution. In sort-merge algorithms, the
amount of merge-join computations decreases to a linear
order by separating sort operations for both tables. We
selected sort-merge algorithm for join operations in the
RINDA system because sort operations are rapidly exe-
cuted by using specialized hardware.

As mentioned above, the three-phase join method
based on the sort-merge algorithm is implemented in
RINDA. It consists of filtering, sorting and merge-join
phases. Unjoinable tuples are removed in the filtering
phase. Remaining tuples each of which is a candidate
tuple of join in both tables are sorted in the sorting phase.
After that, sorted tuples are merged and matched tuples
are connected together in merge-join phase.

The concepts behind how the filtering and sorting
phases are realized by hardware are described below.

The RINDA system has increased the cost-
performance ratio about an order of magnitude compared
with conventional software database management systems
on a general purpose computer.

In the first filtering phase, unjoinable tuples are
removed by a filtering method with hashed-bit-arrays.12
Remaining tuples after the filtering phase are sorted and
then merged. Thus, if all unjoinable tuples are removed
in the filtering phase, useless sorting and merging opera-
tions for unjoinable tuples can be eliminated. However, a
few unjoinable tuples inevitably remain because of colli-
sions of hashed results. Therefore, a refined hashing func-
tion is required because the number, data type and distri-
bution of the key are unknown before the hashing opera-
tion. Moreover, operations in this filtering phase are done
on the largest amount of tuples in the three phases.
Therefore, we decided the filtering operations should be
executed by specialized hardware.

Host Computer
Channel I/F

;.‘~-~-.‘ _ R 1 N D Am ____ V-M..;
r I
CSP DKC

.___ __-_- _._______._.~___________._.
II

I II t=

CSP: Content Search Processor
ROP: Relational Operation

Accelerating Processor
DKC: Disk Controller

Fig.1 RINDA system organization

Sorting operations are well known to consume much
computing power. We also decided sorting operations
should be executed by specialized hardware. The number
of keys and its data type are generally changed dynami-
cally. Thus, we implemented a multiway merge sorter13
that easily handles any number and types of keys. The
multiway merge sorter realizes a compact large-capacity
hardware sorter.

In the merge-join phase, the number of input tuples
are decreased by filtering operations and they are already
sorted. Therefore, merge-join operations are executed
with little computation. Tuple connection based on merg-
ing is assigned many variations by users. That is the rea-

244

son why merge-join operations are execute by software on
the host computer.

3.2. Three-Phase Join Methods
Three-phase join can be attained through single table

filtering and dual-table filtering methods. These methods,
shown in Figure 2, are described below.

(a) Single-table Filtering Method:

Temporary tables for join operations, R’ and S’, are
made by the CSP from the base tables, R and S, respec-
tively. Tuples in the first table R’ are input into the ROP
to set a hashed-bit-array and to be sorted. Sorted tuples
are output from the ROP as a sorted table R”. After
that, tuples in the second table S’ are input into the ROP
to refer the hashed-bit-array and to be sorted. Unjoinable
tuples in S’ are removed by this set and refer operations
to the hashed-bit-array. Sorted tuples are also output as a
sorted table S”. Finally, each tuple of both sorted tables,
R” and S”, is merged and connected in host computer.
Thus, unjoinable tuples in the second table S’ are
removed in the single-table filtering method.

(b) Dual-table Filtering Method:

Tuples in the first table R’ are input to the ROP
only for setting a hashed-bit-array. Tuples in the second
table S’ are then input for filtering unjoinable tuples.
Remaining tuples in the S’ set another hashed-bit-array
and are sorted as a sorted table S”. Tuples in the R’ are
then input again for filtering using the second hashed-bit-
array set by remaining tuples in the S’. Remaining tuples
in the R’ are sorted as a sorted table R”. Finally, each
tuple of both sorted tables, R” and S”, is merged and con-
nected in the host computer. Thus, unjoinable tuples in
both tables are removed in the dual-table filtering
method.

Join operations based on either method can be done
when the number of remaining tuples after filtering is
below the capacity of the sorter. Therefore, tables whose
tuples are over the capacity of the sorter can be handled
if the number of tuples in the filtered table is below the
capacity. Moreover, both the time of tuple transferring
and join operations in the host is decreased by filtering
unjoinable tuples.

4. Hashing Function
Collisions of hashed results generally occur when

unknown keys are hashed. Especially, in the join opera-
tions, keys may be composed of several columns, each of
which has a different data type and non-uniform distribu-
tion by the former selection operations. In this case, the
probability of collisions will be increased. Unjoinable
tuples cannot removed when collisions of hashed results
occur. Therefore, a sophisticated hashing function is
necessary for decreasing the number of hashing collisions.

An ideal hashing function can distribute all keys ran-
domly in the addressing space of a hashed-bit-array. In
papers (7) and (8), conventional hashing functions were

compared from the view point of collisions using fixed-
length short keys. The hashing functions compared
included division, multiplication, folding and other
methods. The division method exhibited a good result
with fewer collisions for the unknown set of keys. How-
ever, in the filtering phase of join operations, the division
method cannot be used directly because keys may be long
and of variable-length. The requirements of hashing
functions for filtering operations are as follows:

b)

cl

d)

The hashing table can be composed of a bit array.
Loading factor, i.e. the number of hashing keys over
the size of a bit array, is slightly small.

It is important to decrease the collisions, but the
operation for overflow is not necessary.

Any keys having various data types can be hashed by
the same hashing function.

Any keys with long and variable-length can be hashed.

For hashing long and variable-length keys, the
exclusive-or method is available. Keys are divided into
some fixed-length fragments. These fragments are folded
by exclusive-or logic. However, in character strings, espe-
cially in Japanese kanji strings, the probability of ‘1’
occurrence in each bit is not even. Thus hashed results
have biases by the simple folding method with one or
two-byte fragments. To solve this problem, fragments
should be folded after shift or bit-order reversed opera-
tions.

A new multiplication-folding method for key hashing
was developed for RINDA. This method, which we call
the RINDA method, is composed of a folding method with
bit shift operation and a multiplication method for fixed-
length fragments. The multiplication method is applied to
randomize the character code, and the folding method is
applied to handle variable-length keys. The RINDA
method is achieved by compact specialized hardware such
as exclusive-or and simple multiplication circuits.

The RINDA method was evaluated by the large
number of actual keys. The hashing effect of the RINDA
method is compared with an ordinal bit-shift folding
method in Figure 3. The horizontal axis is the number of
collision keys, which means the number of different keys
having the same hashing result. The vertical axis is the
number of keys in which collisions occur. The ordinal fold-
ing method is only shown in the six-bit shift case which is
the best one within zero to seven-bit shift cases. Figure
3(a) shows the result for random numeric keys with 16-
byte fixed length. Figure 3(b) is for variable length keys,
each of which is a headword of an English dictionary.
Both are evaluated using 235k keys.

The results of evaluations indicate the RINDA
method achieves better effects than the ordinal method in
all cases. Especially, for headword keys which have key
distribution bias, over 80% of the keys were hashed
without collisions by the RINDA method. On the other
hand, hashing with the ordinal method was below 60%.
Moreover, compared with the number of collisions, the
RINDA method gets similar hashing results in both cases,

245

Base tables Phase 1 Phase 2 Phase 3

Hash
I ~-~~-~--_~---~-~~~--~--~~~~

-R-u-P-'

output

,

6

T

(1) Single-table Hashing Method

Base tables Phase 1 Phase 2 Phase 3
- - ---- ----,

output

6

T

(2) Dual-table Hashing Method

Fig.2 Sort-merge Join Methods using RINDA

100%

___.._________._________________________-~-
-RINDA method
-Rotation-folding

(with 6-bit shift)
_____ -_-__ _ _.-- _ -.._ ____-----___

100%

-.--_____-.___._._____________________~~.
-RINDA method
-Rotation-folding

(with 6-bit shift)

0 1 2 3 4 5 0 1 2 3 4 5
Collision [times] Collision [times]

(a) Numeric keys <16-Byte fix> (b) Headword keys <Valiable length>

Fig.3 Hashing Effect on RINDA method (235k keys/lM-bit cells)

246

while the ordinal method is influenced by the distribution
of keys. In the worst collision case, five or more head-
words, which is over 10% of all keys, have the same
hashed result by using the ordinal method. In the
RINDA method, however, collisions occurring between
three or more keys were rare.

(a) Internal Key
Tuples are generally composed of several columns

each of which has a different data type such as an integer
or a decimal number with or without sign or character
string. Null value, which means the value of that column
is undefined, may appear.

Now, we discuss the relationship between loading fac-
tor and collisions. The probability of collision occurrence
was evaluated using several sizes of bit-arrays with the
same number of keys. In Figure 4, the loading factor,
that is key numbers over the bit-array size, is covered
from 1 to l/8. Wheu the loading factor is 1, that means
the number of keys equals the number of cells of the bit-
array, about 40% of the keys were hashed without colli-
sions. The remaining 60% of the keys caused collisions.
When the loading factor reaches to l/4, the probability of
collisions decreases to 20% and the number of collision
keys, if collision occurs, is only two in most cases. The
probability of collisions is decreased according to loading
factor decrease. Therefore, in the filtering operation with
hashed-bit-arrays, key collisions can be reduced by
increasing the size of the bit-array. This means increasing
the size of the bit-array is necessary when the number of
keys increases.

The ROP has key-extract hardware which composes
internal keys from tuples. This hardware translates from
the tuple having several kinds of data types to a compar-
able key and makes it fuced-length from variable-length or
the null value. Therefore, filtering and sorting operations
for fuced-length keys are rapidly executed in simple
hardware.

(b) Working Memory Storage:

5. Implementation and Performance Evaluation

The internal key is used in the ROP for realizing
small sized and easy controlled hardware. Original tuples
must be stored to make an output temporary table. Thus,
each key has a pointer assigned to the tuple stored posi-
tion. After filtering and sorting operations, appropriate
tuples are read out by the pointer attached to the key,
and then transferred to the host as a temporary table.
Incidentally, hashed-bit-arrays need some amount of capa-
city as discussed in section 4. Therefore, three types of
memory storage for storing keys, tuples and bit-arrays
must be prepared in the ROP.

5.1. Join Implementation in RINDA

Dynamic optimization of join methods are imple-
mented in the RINDA system. The optimal join method,
in single-table filtering, dual-table filtering or nested-loop
join methods, is selected by the number of tuples counted
by the CSP. The nested-loop join method is performed
when both temporary tables read out by CSP are small
and can be joined without extra-IO operations. The
single-table filtering method is performed when the tem-
porary table is small enough compared with the other. In
other cases, the dual-table filering method is performed.

A block diagram of the ROP, which performs filter-
ing and sorting operations, is shown in figure 5. ROP
characteristics for join execution are as follows:

Single working memory storage is implemented in the
ROP for storing keys, tuples and bit-arrays. This storage
unit is compact because it is composed of large capacity
RAM chips. The boundaries between key area, tuple area
and bit-array area are dynamically moved for storing any
length keys and tuples. The size of the bit-array is
assigned by the constant ratio of the working storage
capacity to keep loading factor low. If the capacity of the
storage is increased, so is the size of bit-arrays. Keys and
tuples are stored in the remaining area of the working
storage. The boundary between keys and tuples moves
dynamically because the length of each tuple is variable.

---------_-_.__._-..____________________-

Load fatter

prom/To HOST

0 12 3 4 5
Collision [Times]

ROP Memory

Channel I/F Tuple Transfer Tuple Area
fi

__-.._-----.__._.

+ Sorter Key Area

Key Extractor _..___.-.-..._...
B1t Array

Fig.4 Hashing Effect for Load Fatter Fig.5 ROP Block Diagram

247

Elapsed Time
0 2 4 6 8 10

(a) Table size: 10k

0 2 4 6 8 10
t

(b) Table size: 1OOk

Fig.6 Performance Improvement of Join operation
(Normalized by time with RINDA)

5.2. Performance Evaluations
The performance of a two table join operation by the

RINDA system was evaluated using the Wisconsin Bench-
mark.14 Elapsed time of the join for 10,000 and 100,000
tuples are shown in Figure 6. The time is measured in the
host computer from the start of execution of the query to
the complete storing of the join results into a temporal
table. The RINDA system was composed of a small-sized
DIPS-VJOE host computer, two CSPs and an ROP.

RINDA accelerates join operations about 10 times
independent of the size of tables. The CPU time of the
host was dramatically decreased by using RINDA. The
reasons of this acceleration with RINDA are as follows.

Join operations of these queries are performed by the
single-table filtering method after 10% selection by CSPs.
In the case of 100,000 tuples, the selected 10,000 tuples
are input in the ROP. They set the hashed-bit-array and
are sorted. Then, the other 100,000 tuples are input to
the ROP and filtered by referring to the hashed-bit-array,
In the Wisconsin Benchmark, the number of tuples after
filtering is 10,000 by a collision-free filtering operation
because the join column is a unique attribute. Thus, the
time of tuple transferring from the ROP to the host and
storing as a sorted temporary table is decreased substan-
tially. Moreover, tuple comparing time in the host is
dramatically decreased because most unjoinable tuples
have already been removed by the ROP.

6. Conclusions
Join accelerating methods have been described.

These methods are implemented in the relational database
processor, RINDA.
(1) The three-phase join method was implemented for

accelerating join operations. It consists of the filter-
ing phase which removes unjoinable tuples, the sort-
ing phase for remaining tuples and the merge-join
phase for connecting appropriate tuples. In RINDA,

the filtering and sorting phases are directly performed
by specialized hardware.

(2) A multiplication-folding method for the hashing func-
tion of filtering operations is used for hashing any
type and length of keys.

(3) According to the performance measurements, RINDA
accelerates join operations 10 times compared with a
conventional software system.

Acknowledgments
The authors would like to thank Masato Haihara and

Kenji Suzuki for their useful suggestions and discussion.
The authors are also grateful to Toshio Nakamura and
Jyunichi Kuroiwa for their helpful assistance with the
measurements.

References

1. Babb E.:, “Implementing a Relational Database by Means of
Specialized Hardware,” ACM Trans. Database Systems, vol. 4,
no. 1, pp. l-29, 1979.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Kitsuregawa M. and Yang W. et al., “Implementation of LS1
Sort Chip for Biiodal Sort Memory,” Int’l Conf. on VLSI’89,
pp. 285-294, Aug. 1989.

Kojima K., Torii S., and Yoshizumi S., “IDP- A Main Storage
Based Vector Database Processor,” in Database Machines and
Knowledge Base Machines , ed. Kitsuregawa M. and Tanaka H.,
pp. 47-60, Kluwer Academic, 1988.

Britton Lee Inc., Server/8000 for use with ShareBose II
Software, Dec. 1988.

Inoue U., Hayami II., Fukuoka H., and Suzuki K., “RINDA - A
Relational Data-base Processor for Non-indexed Queries,” Int’Z.
Symp. on Database Systems for Advanced Applications, pp. 382-
380, Apr. 1989.

Inoue U. and Kawazu S., “A Relational Database Machine for
Very Large Information Retrieval Systems,” in Dafabase
Machines, NATO ASI Series, vol. F24, pp. 183-201, Springer-
Verlag, 1986.

V.Y. Lum. P.S.T. Yuen, and M. Dodd. “Kev-to-Address
Transform ‘Techniques: A Fundamental Performance Study on
Larae Existing Formatted Files,” Comm. of the ACM. vol. 14.
no. 2, pp. 228r239, 1971. ’

G.D. Knott, “Hashing functions,” Computer J., vol. 18, no. 3,
pp. 265-287, 1975.

Boral H. and Redfdd S., “Database Machine Morphology,”
Proc. of 11th Int’l. Conf. on Very Large Databases, pp. 59-71,
1985.

Blasgen M.W. and Eswaran K.P., “Storage and Access in Rela-
tional Data Bases,” IBM System Journal, no. 4, pp. 363-377,
1977.
Kitsuregawa M., Tanaka M., and Moto-oka T., “Application of
Hash to Data Base Machine and Its Architecture,” New Gen-
eration Computing, vol. 1, no. 1, pp. 63-74, 1983.

McGregor DR., Thomson R.G., and Dawson W. N., “High Per-
formance Hardware for Database Systems,” in Systems for
LaTge Data Bases, ed. P. C. Lockemann and E. J. Neuhold, pp.
103-116, North-Holland Publishing Company, 1976.

Satoh T., Takeda II., and Tsuda N., “A Compact Multiway
Merge Sorter using VLSI Linear-array Comparators,” Znt’l.
Conf. on Foundation of Data Organization and Algorithms, pp.
223-227, June 1989.

Bitton D., Dewitt D. J., and Turbyfil C., Benchmarking Data-
base Systems - A Systematic Approach, CTSR #526, Univ. of
Wisconsin-Madison, 1983.

248

