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ABSTRACT

In this paper we present the theory of depolarization in circular
accelerators. The spin equation is first expressed in terms of the
particle orbit and then converted to the equivalent spinor equation.
We then solve fhe spinor equation for three different situations:
1) A beam on a flat top near a resonance, 2) Uniform acceleration
through an isolated resonance, and 3) A model of a fast resonance
jump. Finally, we calculate the depolarization coefficient, £, in
terms of properties of the partiéle orbit and apply the results to a

calculation of depolarization in the AGS.
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I. INTRODUCTION

The pfoblem of acceleration of polarized particleé has beeﬁ
analyzed by numerous authors,l‘-5 and polarized protons haQe, in fact,
been successfuliy accelerated to 12.75 Gev at theAArgonﬁe ZGS.6 The major
problem is the resonant depolarization that occurs when the perturbing
fields, as seen by the pafticles, contain components with'frequency
equal to the spin precession frequency. These resonances occur
whenever the spin preceésion frequency, “ = YG, is a combination of
the frequenc& of oséillation of the particle-and the‘periodic spatial

variation of the guide field, i.e. when

n=%kork=®v

where k is an integer and v is the Betatron oscillation ''tune"
(the betatron oscillation frequency in units of the revolution
frequency). VY is the relativistic energy factor, and G is the

anomalous magnetic moment coefficient
G =g/2 -1 .

Higher order resonances, where v in the above equation is reﬁlaced
by a linear combination of the frequencies of the three degrees of
freedom, may sometimes be important but aré not considered here.

The aim of the present paper is to present in detail the
theory of depolarization resonances in a fashion applicable to
any proton accelerator, to express the results in terms of the properties
of the particle orhit (similar to Couramt;3 and Etnst4), and to
obtain expressions suitable for numerical calculations, Part of this
paper is an elaboration of a short‘paper which appeared previously,7

and some of the treatment here is equivalent to that given elsewhere.



II. THE SPIN EQUATIONS

~ Froissart and Stora1 have shown with the{theory of Bargmann,
Michel and Telegdi,s that the spin of a particle. taken as a classical
normalized vector g in a static magnetic‘field obeys ;he equation;
§=egx[(1+yG)BL+(1+G)B] '(1)
~dt  ymc :
o (in gaussian units)
K

where BL and B“ are the portlons of the magnetic f1e1d transverse and

' parallel to the 1nstantancous velocity of the particle. At the same

time, the velocity ofﬁthe particle obeys the Lorentz force equation, -

>
dv e’

e > 8 % ' ‘ '
at  yme © o S (2?

Using this we may rewrite (1) in terms of the motion of the particle.

This is straight forward for the second term; for the first term
we prbcegd as follows:

We assume that the particle moves in the vicinity of a planar
reference‘érbit and is characterized by the Frenet-Serret curvilinear

coordinates,’

-
Cc

a /////;,———————-‘\\
T 2Q //
\\\\\\
B /

e Fig. 1. The Coordinate System:"



§ = distance along the reference orbit,
p(s) = local radius of curvature of the reference orbit.
-+ . ’
ro(s) = the reference orbit.
-+ -+ X :
b = dro/ds = the unit tangent vector,
.’ » > 3 . —’
a = unit vector in the orbit plane perpendicular to b and
directed outward,
-+ . . .
¢ = a Xb = the binormal or vertical unit vector,

We also have the following relations:

E:E £=.'§. é’.—o 3
ds o ds ) ds - 3

Ap arbitrary point near the reference otbit is characterized by the
coordinates (x, 8, 2):

? = ?o(s) + x 24z 2 ’ . 4)
The velocity of a particle is

-+ -+ :
_dr _ds dr _ds (3 N A
= = = 3t {xa+(l+p)b+z ¢y (5)

[a N

R
v t t ds

where a prime denotes differentiation by s, Keeping terms linear in

s, X, z and their derivatives we find that
- 12 ds X
ve vl = a+) (6)

so that to first order

v = v(x'z +B+ 2 ¢) (a) =
. 4 .
and V= vl (x"~ %) 2+ "E— B+ 2" (b)

Transforming to s as the independent variable while using (2) and

(7) we obtain

’
3451—2(-\;x3)x—\;=Bp(1-§){(x”—-:—_)g-z;+§g} (8)
v
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where Bp = ymcv/e is the magnetic rigidity of the particle. To obtain
By in terms of the particle coordinates, we note that, on the reference

orbit, the guide field is just
' ' : -+
B - _ (3ol . (9)
o p : '

Assuming that -the longitudinal field BS on the reference orbit

is zero, we use Maxwell's curl equation to note that

s s Qi1
a?Bs"asBz"dea(ﬁ> (10)
Thus,
| - P A ’ ‘
D= =)z o\ g ) (11)

and to first order

B||—B +zB
(o]

2z
B" - Bp ds ( ; )

o
he)
N
.Q-IQ-
/2]
TN
D=

IR

. (123.
The spin equation (1) now becomes, to first order ih~z-and X,
g _ = T 1, + 2 3 ' £\
-—=sx{1c[x”--c-z"a+—b]-'1+c(—)b}
ds f +6) |( p) b _ (1+0) \ 7 .
I
=S XF } i - (13)
where
. vIl
F=F, 2+F B+F,c=-(lG)z" &+ [(1+vG) E . (140) ( ) J 4
1 2 3 p
+ (I+yG) \x L ) P (14)



: -+ 2+ 4 L
Spelling out the components, S1 = §°a, 82 = S«b, S3 = Sec and noting

(3) we find,
ds -

1_ 1 -
s 'Sz[of'Fs,_l S3 Fy (@
E='Sl [ 'p—-+ F3 | + S3 F1 (15)
és, -
T "S51F"5 6 ()

It is convenient to change the independent variable to the turning

angle of the reference orbit

ds

]
e:r
Jjo P

(16)

since in the field free sections € and the spin vector both remain fixed.

With these changes we find,

as ‘
® S mTS3 ()
as, . }
B - Sy -tsy (b) 17
ds
552 = r S1 + t 52 (c)
where
, ’ .
w= - (l4p Fg) = vG - (I4vG)p x” = vG (a)
N .
r=p F, = (102 - g (140) ( =) ® ay
ts -p F1 = (1+yG)p 2" o - (o)

* ' R '
Note: - We let n = yG since the second term is small and averages to zero.



In the absencg qf transverse motion.r = t = 0, thus we obtain to

lowest order: o

S1 = sin o« cos j vGde (a)
S, = sin sinI vGde (b) (19) -
S3 = cos o (c)

- _ _
where S has been implicitly normalized by setting cos o = S3, the
vertical component of the spin, This motion is simply a .precession

ground the z axis with'a frequency of vG.

Using this solution in the presence of transverse motion, ﬁhe

lowest order change in cos « is given by:'

%3 (cos @) = sin a {Ar,cos f YGdG + t sin j vGde } : (20)
IfAr aﬁd t possess components of frequency yG, the above equation
yields a secular increase or decrease in the polarization angle «.
If the agcelerator field is '"perfect" and is periodic with P periods
per circumference, 2z and therefore r and t will contain components of
frequency kP + y, where y is the betatron oscillation frequency and
k is any integer; thus resonance occurs at energies where yG =AkP tv.
In the presence of imperfection the P periodicity is broken
. (P = 1) which, 6f course, ylelds vesonances at vG = k £y. But more
importantly, the errors iﬁﬂthe guide field induce errors in the
équilibrium orbit that necessarily contain all integral Fourier
components (since the errors are repeated each cycle or every 2T of
turning angle); thus, resonance also occurs when yG = k: (A detailed

discussion of the relative sizes of each of these three types of resonances

will be left to section VJ.



If a resonance céndition is satisfied, the subsequent chaﬁge iﬁ o

- will not be small. This means our neglect of the second terms in

(17a) and (17b) is not justified,. since without these ter;ns the length

of the spin vector is not comserved. So to examine in detail the behavior
a't or near resonance, we must consider the fx'111>set of 3 equations (17).

Let us first, however, put these in a more convenient form.

We introduce the complex quantities,

S+ = S1 + 1 S2 (a)
‘ (21)
S_ =‘S1 - i 82 (b)
and the function (,
() = - t-ir ‘ L (22)
With these changes our three spin equations become
ds :
+ . i »*
T —1nS++2g S3 (a)
ds _ i
@ iwsS_ -3¢ S4 (®) (23)
dS3 .. *
3 - LEs -¢c s) (o)
where [(8) = - (L+G) (pz"+1z') + 1p(1+C) (alp)’ . (24)
and %(0) = Gy(6),
To recépitulate, if ¢ contains a Fourier component ee-l Koe,'

resonance occurs when ¥ = vG = noe On the other hand, the set of

harmonics which comprise [ are given by:

P
]

P v "intrinsic harmonics_"
' ' (25)

k £y or K "{mperfection harmonics"



and the Fourier amplitude, €, for a particular harmonic, My iévgiven

by:

(4]
]

‘. 'y - p2m L
1
= [, e ! %P

%; § 5%5} \ei uée(s)as

We leave the calculation of € to section V while in the next section we

(26)

introduce the spinor formulation of equations (23) and present some specific
solutions.
' III. QUANTUM MECHANICAL FORMULATION

A) The Spinor Equation

fh; easiest way to solve ‘equations (23) is by qﬁantuﬁ meohanical‘fechni-
ques. By the correspondence principle, the expectation values of quanthﬁ‘
mechanic#l bperators.satisfy the classical,equations.bf motion of the corres-
ponding varigbles. Therefore, if we interpret-$+, S, S3 as the expectation
values of the quantum mechanical operators Oy O_s T33 and 1f we solve the
Schrodinger equation for a suitablé hamiltonian, we have solved the classical
equations,

We suppose the épin is % so that Qe'may deal with 2 component spinors.
This is, of course, physically egact if we are deaiing with spin % particles
(protons apd electrons). Howgver, even if the actual particle is, say, a
déuteronAwith spin 1 (3 spin states), tﬁe classical equations are the |

same (see Bargman et.al.)% and our solution for the classical equations

is still valid, although we do not treat the three spin states properly.



Taking § as our time variable, we look for a Hamiltonian with which,

dy - i Hy
Eg =2 ' (27)
where § is a two component spinor and-

+

The ci's are the Pauli matrices, and we recall that:
_ (o1 _{0=i /1 0
o, = o, = o, =
x 1 0 y i 0 z 0 -1

(29)

o = % (o ¥ iy (o 03] — 2 15%%
o.=% (g, - ioy) » [0y c,] = +2 oy
(94 o] < %,
From (27) we find that .
§§i ) %ﬂﬁ[“i’ HI¥ | (30)
and one can quickly verify that if we set )
H =<_2* E) (a) |
or alternatively (31)
H = -uo, + Cc+ + C*o_ (b)

we obtain the set of equations (23). To restate the broblem, we now
must solve the time dependent Schrodinger equation (27) with the time
dependent Hamiltonian given above.

In the acceleration process u = yG increases with time (or 8) and

passes through a resonance value N kP + vy or k. In order

to analyze the effect of a particular resonance we will assume that

the resonances are well separated so that each Fourier component of d

-in 6
o

can be treated separately. 1In particular we set T = ce ,



and from.equations.(27) and (31) we obtain

-H eéb%e. - '
dy _ 1 ¥ (32)
de 2 s

* in
c ei 08
Let us now examine some specific solutions to equétion (32).

B) Solutions to the Spinor Equation

1. (n-no) = constant. The solution of the spin equations for a
beam circulating at constant energy, = a conotant, is useful In un-
derstanding the spin behavior in the neighharhoed of a rcaonance.

T:anéform Eq. (32) to a new rotating coordinate system by,

-4 n,00 4
y=e 2 "%z | (33)
We then find
g _if-6 €,
a.e "2 ( Y A A (34)
where 6§ = u - R and we have let & be real and posiﬁive for convenience.

We diagonalize and obtain the following normal modes:

P (8) = e , @ (8)= e (35)
+ _ [3=% : A+
2x 2)
where A = +',éz + 62 .
The general solution is given by
P - c+."_p+ + C__q..'_, .
wvith . ‘ |c+|‘z + |c_[2 =1 (36)

We are interested in the vertical projection of the spin, which is

- 10 -



2 2, & .1 € ' -
s, =¢fo o= (c |"-[c_|D) 1+ 2[c,|lc_| x cos(re+a) (37)

where A is just the relative phase of C+ and C_. The equation‘just
solved is a single particle equation. Since A is different for different
particles, the 2né term in Lq. (37) yields a spread in SZ; however, if

we are interested in an average éver particles, the second term does not
contribute. In the subsequent discussion we will drop the 2nd term in
Eq. (37) and all values will>be average values,

Notice that for pure states S = ¢ §/x and fcr 6 >>€,5, +Ii 1, a
spin up state and a spin down state as one would expect. But if we begin
with Sz =+ 1 and § = - » and allow § to vary only slowly (adiabatically),
then @,@+ andcp_ all obey the same equation so that C+ and C. are invariant.
As we approach the resonance, Sz+-6/k; and as we pass through the
resonance (adiabatically), .6 changes sign so that as 8 >+ ©5, > - 1.

This spin flip is just the so called '"fast adiabatic passage through
resonance' well known from the theory and practice of Nuclear Magnetic
Resonance.

The salient po;n; here is that in spite of the apparent depolari-

zation (Sz = §/)) near the resbnance, if we vary § adigbatically, the
‘depolarization is only apparent since the spin will reorient itself as
§ » t o, |

2. n-n, = «p, Eqﬁation (32) h;s also been solved exactiyl for
this case. Altﬁough Froissa;t and Stora obtain the ex;ct solution in
terms of confluent hypergeometric functiéns, the result usuaily quoted is
obtained from the asymptotic form. Let us just examine this asymptotic

region. Transform Zq. (32) to the "interaction representation' by

- 11 -



the-transformafion:

¥ = e-i/ZO ndeoz £ (38)
thep o eéix
d _ i ) '
@ =1 - £ (39)
do 2 <ée-ix o
where ‘
- 0
X =-£ (1~%)de = a 6%/2. (40)

Now let £ = (Z), and Lq. (39) becomes

2 : 2 _

af
9f _ jae & 4+ o, C4)
02 - @ 13 ,

It is easy to show that Sz is now given by

s .
z

1

€% < |gl? = 2le2 -1, - (42)

The behavior near 6 = 0 is just harmonic as one can see by dropping the

middle term in Eq. (41). On the other hand the behavior as 8 » = is

dominated by the 2nd two. terms so we have

.o df €2 :
- 1a6:35-+ Z—-f =0 as 6 - =, . (43)

This can be readily integrated to yield

i

2 w
f(e= -1 de
2 -wlde 8 G

If we seleét the physically meaningful path around the pole in -

Eq.bﬁd) (|£]<1), then we obtain

£ (=) - eﬂng/4a

f(-=)

(45)

- 12 -



S0 that if Sz(—w) =1, then from Eq. (42)

2
s, (=) =2e"° f2 4. (46)

This is the result of Froissart and Stora which they obtained by using
~ asymtotic forms of the exact solution. Equation (46) is particularly useful
when calculating depolarization due to normal, 1inear‘acceleration prov%deq
the resonances are well separated. It,is also useful for determining
the acceptable ezla for an adiabatic passage through resonénce; however,
in applying the above formula one must be sure the asyﬁptotic form is
applicable. |

' LetAus anticipate the results of section V by referring to fig. 2
which preseﬁts calculations of € for all the resonances-in the Brookhaven
AGS. Also presented in the figure is the effect of these resonances
calculated with the results of Froissart and Stora,"Eq. (46), using the
normal AGS acceleration rate (o = G dy/dt). One can clearly see from
this figure that a polarized proton beam will quickly bécomé
depolarized unless something is done to counteract the effect of the
resonances. In the next section we describe a cure for the intrinmsic
resonances.

IV. THE RESONANCE JUMP
The standard method5 for déaling with the intrinsic resonances is

to "jump" them by changing the tune, v, abruptly as u approaches a
resonance, X _ = kP * v, during normal acceleration. This change in v
increases a in the neighborhood of the resoﬁance, and qualitatively,
using Eq. (46), one would expect much improvement if a is made

sufficiently large. However, Eq. (46) is not strictly applicable

- 13 -



in this case,. and we expect the si;e‘of the resonance jump t§ be aAsignifi—
cant féétorAalso.v To see this quantitatively we will considér the following.
realistic model: |

1. Let " be an isolated resonance.
2. Let K—i% vary in a three step pfccéss,

- ® to - 6, very slowly, adiabatically
o dlu-w) v
% _,”b = - 6 to 6, fast jump, et S
§ to =, again adiabatically.
A. The tails.of the resonancé, =W - —® to -~ & and § to @'
i :

adiabatically. The solution to spin equation with adiabatlé variation

has been given in Eq. (35). Let us consider the initial condition

Sz(—w) =+ I. This is equivalent to

. 1 : .
@ (=) = (0) (47)
which adiabatically transforms to
P _(-6)= - - (48)
The spin up spinor on the cther ‘side of resonance is given by
A+S
)
ORI (49)

and this adiapa;iéally transforms to

o -(2) o

-14 -



and similarly foGC_(G).
A general spinor at § is, of course,
P (8) = Cp (8) +C_p_(8) 6D

so as we vary 8 + + « adiabatically, we find,
c, '
P (o) = CM. (52)

We can calculate'sz (4=) by
s (4) =T (he)o oo (i) = 2]c,|% - 1. L (53)
z z +
All that is necessary to complete the calculafion is to‘calculate |C+|.
after the jump. |
B. The resonance jump, N 6§ to §, 8 + - 6/a to §/a.
In the region frém ~ § to § we 1et:z¢—z4.0 = ab. Since we kﬁow the exact
solutions for this problem, ! we could simply use the results of Froissart
and Stora integrated from -8/a to 8/a. However, since the jump is a
"fast" jump (ﬂsz/u << 1), and since we seek simple formulae, we wil}

use a scattering matrix approach instead. We introduce the scattering

operator, U, in the interaction representation by

£(0) =U®B,8 ) E®), (54)
then we find from Eq. (39)
0 Eeia62/2
du _ i
@ -2V 1a67/2 0 (33
€e :

where U is a 2 x 2 unitary unimodular (SU2) matrix. If we keep the first

2 terms In Lhe standard 1iterative solution of Eq. (55), we obtain

2 8

V(e e, + (%) _g _gelV(el)V(ez)deldez + +ee(56)

(o] [o] o

: 9
i
U(e,eo) =1+ 5 _g

- 15 -



where I is the identity. Written explicity,

22 o

Ezj'e Iel /200,850 J'9 1083/2.

1-5-] ao | do, e+ ---. £ o e + ¢t

g PP 2 4 4° .
o/ [o] ) o]

u(,6 )= (57)

2 20
N et - £ fde fde emlz(el-ez)
ie |7 dp e + veo | - |
2 j; 1 A 1 T2 4+.

(o] (o]
(o]

We know the spinor at - §; to calculate the spinor at § after
scattering through the resonance, simply transform U to the same
coordinate system aSCP_(—G). Then our spinor at § is given by

- -i‘(az/zm)cy » i(sz/zm)oz A
P8) = e 2 U(s/a,-8/a)e ®_(-8) (58)

Now the calculation of C+ is just a projection onto the basis spinor
at §;

c, = @ (8) (&) | (59)

or using (48), (49), and (57)

*
2 1.t 2
- . €. 1Y ... LR _ *, bU
Cp = 1-g Tz hrigy ity (V)
where . ' ) ) 8/a

-i§%/2a f iag“/2

I, =e e e de (61)
-t L0y

(Il is a combination of Fresnel integrals)
It is instructive.at this point to compare this result to that

of Froissart and Stora. In that case f plays Lhe role of Cy»

—ne?/&a mel

f=e- :1—.40'

for "fast" passage. (62)

- 16 -



If we let § + » in Eq. (60), the last term goes to zero, 6/ + 1
N : .

and LI, > (2m/0), thus we recover Eq. (62).

On the other hand we can also consider the case when o + ®, an
instantaneous crossing. In this case C+ -+ §/)2 so that
o2 2 2
s -2 _ 1. $ _62 as a > ® (63)

z AZ ‘62+e

S50 we are left with substantial depolarization even when the
resonance is crossed instantly. We will soon see'fhat this can be
the dominant effect even when o is finite. It is easy to understand
the preceeding effect by examining the spinors in 648).and (49). Since
C, in the above case is the overlap of the eigénfuncgions at §and - §,
the depolarization is due to their mismatch. The spinors in (48). and
(49) are out of phase by eiﬂo’z so their overlap.islnot unity. This
phase difference is due to the reversal of the effective field in which
the spin is precessing. One might say our ﬁtop" has found itself sud-
denly with a torque of the opposite sign. The point, however, of this

exercise is recognize the relative importance of § and €, e.g., when

§ = ¢ we obtain complete depolarization.

Returiing to Eq. (60) nntice that the argument of the exponential

in the integral is always quite small. For example, if we use the

parameters for the proposed polarization of the‘AGSBI) then § = 0,125,

a = 0.0597, so (62/2a) 0.131. So we can expand the exponentials to

evaluate Il-

9 .
) C8%\(5 L e g,003)
Il = 2 (l - i 2a><& + 6 (§/a) > (64)
'63 -
I1 = 2 (8o - 1'2) + higher order terms.

3a

- 17 -



with this we find

- 2.2\ .
N e § 8
C+ = <1 - > )A . (65)
60, :
which together with Eq. (53) yields
2 2 2.2 2
- 8 .
g =~ 8§ -¢€ _ 2§ (66)

z 5242 302 (52+€2)
restrictions: 62/2a << 1, valid to order (sz/a).

Equation (66) is the final rcsult for the depolarization due to a
resunauce Jump, ‘The domipant effoct is mot Jdependeut én thé rate of
passage through the resonance, but rather on the size of the resonance
jump as compared to the widﬁh, €, of the resonance. Consider, for
example, the resonance at u = v in the AGS. From Table 1 we see that
the total depolarizafion'calcuiated with Eq. (66) is 0.969. However,
the first term in Eq. (66) yields P/Po = Q.970 while the 2nd term gives

~only an additional - 0.001. This'&oes noé mean that the rate of passage
is unimportant sincé the dependence is l/az. However? it is clear in the
above example that an increase in a has little effect on the depnlarization.
The alove result 1s primarily for resonances which are quite strong
(e-“E¥/4a = 0.005, ¢ = Gdyﬁdt):so that the statement of adiabatié approach
and departure applies. If this condition is not satisfied, Eq. (€6) should
be considered a lower hannd on S . |
~.Iu all the solutions given in the previous two sections the critical
parameter is e,.the strength or width of a resonance. In the'next section

we develope an expression suitable for the numerical calculation of € in

any accelerator.

- 18 -



Table I
The Resonance Jumps

Depolarization Due to AGS Intrinsic Resonances Magnet full field risetime
= 2 usec (4w/3 radians). 6 = 0.125, o = dv/d6 = 0.0597, v = 8.75.

' Polarization

GYres™ B/Pg

kP £ v Yres € : Eq. (66)
12—y 1.81 0.0054 0.996

0+v .4.88 0.0154 | 0.969
24—y 8.51 0.0006 - 1.000
124v 11.57 0.0054 0.996
36-v 15.20 0.0137 0.975
244y 18.26 0.0010 1.000
48-v 21.89 0.0015 1.000
36+v 24.96 0.0266 ~0.911
60-v 28.86 ’ 0.1576 ' ———
48+v : 31.65 0.0023 A 0.999
Resultant polarization after acceleration up to:

36+v 24,96 0.853

*An effective fast passage through this resonance is impossible;

howevef, slow spin flip may.Be possible.

V. THE DEPOLARIZATION COEFFICIENT, €.

A. The Types of Resonance

Before we calculate ¢ for a particular resonance; let us first
examine the three different types of resonances which are possiblé:
1. n, = k? + v,-those which are due to the betatron oscillatiops
of the "perfect'" machine.
A 2. ny = k i:Q, those which are caused by.the gradient errors

present in an actual machine,
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3. m, = k, those which are caused by errors in magnet alignment
or field.
First we write the z motion as:

z=12z_ +2z (67).

where z, is the displacement of the equilibrium orbit due to errors of

type (3), and Zg is the vertical betatron oscillation of the actual

machine, These obey

un

s

]
o

+ K(s) 2g (a)
‘ (68)

”
+ K
z, (s) z,

F(s) (b)

where K(s) = B'/Bﬁ is the actual focusing function (including errors),
.and F(s) is a measure of the field error on ideal equilibrium orbit.

Solving equation (2a) we find for the betatron oscillations11

2g = 5 /EB®) [e'i[“e'x(e)] +e.e. ] (69)

5% is the betatron oscilla;ion phase,

x(@) =v J (1/p - 1/yB) ds, B is the Courant-Snyder amplitude function,

where vB-%(8) =V

Ob——

and 2 is the emittance,

- Now, if we selgctiany on? point on the circumfgrence, say 90, X(éo) i;
just a phase shift, and as the particle ‘passes'eo on successive .
revolutions,.ﬁe see it trace a vertical oscillation of gmplitude JE_EZE;)
and frequency'v.' So in the ideal machine since /B has periodicity P,

zB contains frequencies kP +v, On the othcer hand, il we allow gradient
crro¥#s to be present, our tocusing function K and therefore B are on1§
bstrictly periodic with period of one cycle (P.= 1), These errofé.shift

the tune slightly and also introduce integer frequencies into fB. Thus,

ZB will contain frequencies k + v,
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To see the effect of errors of type (3) we note that F(s) and, thus,
z, in equation (§8 b) contains all integer Fourier frequencies. One
finds upon solving this equation that the size of particular componenf
of z, depends critically on the proximity of i;s frequency to Q (zé is
largest when k is near-v).11 Since these equilibrium orbit distortions
may'be rather large in any particular accelerator, we must consider
their effect onh depolarization. This is not difficult since'within
any given magnet if we neglect its small misalignment, z, also obeys the
homogeneous equation (68a), and we may therefore write

" =
z"” + K 2=0 (70)

(within a magnet)

Since 7 and thus e depends critically on the magnitude of z
oscillating at a particular frequency‘xo,Aone can order the sizes of the
various resonances as kP £ v > k > k * v, while remémbgring that for
k v v, the integer imperfection resonances may be as large as the iptrinsié

resonances.

B. Calculation of ¢

The Fourier amplitude of { which determines the depolarization

at a particular resonance o is given by

e = L Qﬁi; einOe(s)ds
21 p(s)

(71)
As we have seen, this is essentially the width of the resonance. In
most accelerators, the lattice consists of discrete sectors with locally

constant field and gradient.separated by field free sections. It is,

therefore, convenient to break up the integral into contributions
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from separate magnets as follows:

€= ¢ : (a),
latti -
5y attice _ , | (72)
em = j Ls) eiuoe(s)ds . (b
31 p(s) o
where 1 and s2 lie in the field free region just outside the magnet

ends, i.e.,’

K(s;) = K(s,) =0 o
1 (73)
=1 -
p(sl)—p(sz) 0
From Eq. (24) our expression for ¢  is now,
: r‘2 , , . R .
. L w2 e (2 | e
LR {(H"o) I e ) gt 0
L b

where we have set vG = N since we want €0 at a resonance, We begin by

evaluating the two integrals,

- xmy :
I,= _f -:- eMuds _ (a)
. , ' ‘ (75)
1y=[(2) o ()
‘ P
Remembering that 1/p is aistep function, we can integrate by parts,
A s -
in

I, = 1 I z' ™ eds -1 (z’eln°e2 z.e °61) - -—% f zeinoeds (76)

p | o5,
and -
3
s 2
2 in
e (2 ), gl e @
P 1 P ]
1
5, ‘ e
ing i 6 :
I3 =-=3 ze "O0°ds | . (b)
P 35 '
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where we write z, for z(sl); etc,

Our expression for s, now becomes,
2 ' “ 2
= o _L { J n inoe _0 - I i% e )
€ 5 (L+no)' . z e. ds + pz (uo G) . ze "o ds

(141 ) ,
+ i = (zzem062 - zlelnoel)} -

o (78?

If we integrate first over the ends of the magnet, the second

-

integral gives no contribuﬁion (z is continuous); however, the first
gives a contribution due to the edge focusing of the magnet.

If the magnet has edges at angles §1 and §2 to the curvature vector

(as, for example, at the ZGS) then at the ends

_1T ey 4 s ] |
€ is taken as positive if the edge produces vertical focusing. (For a

rectangular magnet such as those used at the Brookhaven AGS, § = 4/2p

where £ is the magnet length), So the contribution to € from the ends is:

. e - e -
1 (21 ingdl, 22 , oi*o ) (80)
tom () (5T 7 0T T 5e
Using (80) and (70) we Qave,
)
. P :
e = _1__ {(_%O(KO'G) - (1+K ) ) { z”elnoeds
m 27 i S o /)
s
0 K 1
(81)
() (E.+H) () (B -1) o
+ [] 1 zlem‘-"gr1+ o > 2 zzel""ez
p .

where we intcgrate now over the interior of the magnet where p and K

are constant,
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In order to evaluate,

s2'
. I[‘ = ‘[ z”ei”'oe
’ s
1

We integrate successively by parts and.find that,
N s 5 2
' 2 in 2
I = (Z emoe) | - =2 (zel"o?) | +21
4 s s K 4
1 1 °°f
or
in -} in
r L _° o2 _ ¢y __0 ing®,
14 =(ZZ 5 _zz)err (z1 , P z])e 1
: » 1 - n 2/Kp2

However, from accelerator theory we know tha;,lq

%2 cos® Elng %1
= /K
z2" - /K sing cosy ' zl'

where ¢ s /K (sy-8;) = /K 1, £ being the length of the magnet.

.Solving these equations for z2' and zl' we obtain,

/K z
| S - )
2y = sing /K ctn€pzl ,
JK z ,
r _
Z9 '- sing + /K.ctpcpzz
If we now define
0 = (62-'-61) =4L/p
and note that
i, _ ind iud
zle 2 = zle e 1
_iWd, _  =in® iud
zze 1 z2e e 2
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(h)
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(a)
(85)
(b)
(86)
(a)
(87)
(b) o



we obtain,

_ Koz ( /k(cos@-e l?g) o ius8
L% 3 sin =) ze %l
4 Kp -Ko. A P P
(88)
-ing in L s
+ ( /k(c?sggg ) o ) . elncpz}
sing p 2
so if we let
2 .
C= Ko (1+Ko) ~ Ko(no-G) /K ggosm-elnqg) + My }
" Z-sz sing p
o
we have
' (14% ) ,
I S o . in 8
e, = or i( C + ~—;——— (§1+1) ) z1e 1
(89)

' (1 ) N4
+ < ¢+ — = (5,-1) ) z2e1“°92 }

and ¢ = L €
m

Now for n, = kP +y, the contribution to the sum from zeAWill be zero and so

we need only evaluate (89) for z = 2g (see Eq.(69). On the other hand, when n = k
then the contribution from zg to the sum is zero; so we_may‘evalua;e

€, with z = ze; Either of these vertical &isplacements may be evaluated

for a given magnet in a giveﬁ accelerator by using a compﬁter program such. '

as SYNCH or AGS. One can then perform the sum to evaluate €.

In Fig. é we present thg results éf this section applied to a calcﬁlation
of the widths of depolarizing'resénances in the AGS at Brookhaven National
Labératory.v Notice that the intrinsic resonances are significantly larger.
tﬁan most of the imperfection resonances; however, some of the imperfection
resonances are large enough to cause substantial depolarization during

normal acceleration. The set of imperfection resonances plotted are those
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obtained from a particular random set of magnet errors. For a different
set of errors of the same magnitude,we obtain results which are qualitatively

the same although different in detail.

107!
N x o/
99 %
______ . S S PPPPPI fhaghd
10724 = . . x , SPIN
: Uy ~ |FLIP
- X
10-3 . X
_____ X ol %
X T [ DEROL
- . ”H l'
: 5 10 15 20 25

PROTON ENERGY (GeV)

Fig. 2; AGS Resonance Strengths, €. 'AGS emittance = 10 n/yfmr—mm, magnet

errors = + 0.1 mm, x - Intrinsic resonances; [ - imperfection resonances.

'

e VI Dlscﬁssion
We have presentéd here a discussion of the theor&_of depolarizing
resonanceg in proton acceleratoréi of thé two types.of resonances, tﬁe
intrinsic resonances are the most troublesome.. Table 1 shows the theory
of‘resonance jumps applied to the AGS at Brookhaven Mational Laboratory.
As you can see, for the values of the.parameters chosen the total depolar-
~dizatlon at 26 GeV is only L15% (for ﬁure details of the propésed design
see Ref. 9 ). The depoléfization'due to a resonance'jump has ‘also been
12

studied by Turrin. “ He used a different model, but his results yield

numerical values essentially identical to those in Table 1.
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One of the intrinsic resonances shown in Fig. 2 is sé strong‘that
the resoﬁance jump method does not work. In this case it might be
possible to traverse the resonance slowly,.inducing the beam to flip its
spin. But there is a problem with that approach. Even thougﬂ the €
shown .is quite large, it represents a 95% betatron amplitude. The beam
has a distribution of amplitudes and therefore a distribution of e's.
This means that while the spin of the large amplitude particles may
flip, the spins of particles at very small or zero amplitude will not.
One way to side step this is to provide the beam with a coherent ampli-
tude so that all particles will have a non zero, large €.

However, this is not the only problem. Figure 2 shows the many
imperféction resonances present due to magnet errors. These errors
can in'principle be tuned out by using corréction dipoles. 1In fact,
‘this method has been quite successful at the Argonne ZGS and is pro-
posed for the Brookhaven AGS.lO To accomplish this the spin itself is
used as-an indicator to édjust the phase and magnitude of the correction.
This is fine so long as the resonances are well separated (or compensated
for by tune shifts). However, the large resonance at 60-v in the AGS is
very close to imperfection resonance No. Si. Since they are so close,
they probably cannot be crossed separately, and strictly speaking, the
theory of isolaéed resonances does not apply inlthis case. This remains
an unsolved problem.

Finally we should mention an entirely:different approach to elim- -

inating resonances by modifying the precession of the spin, the so called
Siberian Snake.l3 In this method one introduces precessions about a hor-
izontal axis which effectively change the spin precession frequency to

1/2 at all energies. In doing so one sacrifices the polarization at most

points along circumference in favor of knowing the polarization at one
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point. Although this method is well founded in theory, it has yet to be

tested experimentally. A Siberian Snake would be necessary for polarizing

a high energy storage ring such as ISABELLE since the resonances would be too

numerous to cross effectively; however, that is another story.

11.

12.

13.
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