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Abstract To test the role of large-scale magnetic fields in
accretion processes, we study the dynamics of the charged
test particles in the vicinity of a black hole immersed into an
asymptotically uniform magnetic field. Using the Hamilto-
nian formalism of the charged particle dynamics, we examine
chaotic scattering in the effective potential related to the black
hole gravitational field combined with the uniform magnetic
field. Energy interchange between the translational and oscil-
latory modes of the charged particle dynamics provides a
mechanism for charged particle acceleration along the mag-
netic field lines. This energy transmutation is an attribute of
the chaotic charged particle dynamics in the combined grav-
itational and magnetic fields only, the black hole rotation
is not necessary for such charged particle acceleration. The
chaotic scatter can cause a transition to the motion along the
magnetic field lines with small radius of the Larmor motion
or vanishing Larmor radius, when the speed of the particle
translational motion is largest and it can be ultra-relativistic.
We discuss the consequences of the model of ionization of
test particles forming a neutral accretion disc, or heavy ions
following off-equatorial circular orbits, and we explore the
fate of heavy charged test particles after ionization where no
kick of heavy ions is assumed and only the switch-on effect
of the magnetic field is relevant. We demonstrate that accel-
eration and escape of the ionized particles can be efficient
along the Kerr black hole symmetry axis parallel to the mag-
netic field lines. We show that a strong acceleration of the
ionized particles to ultra-relativistic velocities is preferred
in the direction close to the magnetic field lines. Therefore,
the process of ionization of Keplerian discs around the Kerr
black holes can serve as a model of relativistic jets.

a e-mail: zdenek.stuchlik@fpf.slu.cz
b e-mail: martin.kolos@fpf.slu.cz

1 Introduction

In the processes occurring around black holes the magnetic
fields can be relevant due to several reasons. The local mag-
netic fields in the Keplerian accretion discs are assumed to be
the source of the basic viscosity mechanism of accretion due
to the magneto-rotational instability [1]. The kinetic dynamo
effect in collisionless plasma in accretion discs can create
global toroidal magnetic fields [2]. Many of the observed
black hole candidates are assumed to have an accretion disc
constituted from conducting plasma which dynamics can
generate a regular magnetic field. The kinetic effects of colli-
sionless plasmas could generate equilibrium configurations
of plasmas in various conditions under combined gravita-
tional and magnetic fields [3–5] or could govern transitions
from neutral to ionized equilibria of accretion discs [6].

If a rotating black hole carries by itself an electric charge,
being described by the Kerr–Newman background, it has its
intrinsic electromagnetic field that could influence dynamics
of charged particles in accreting matter [8,9]. The equations
of motion of the charged test particles are then separable and
integrable and the motion has regular character [10–15].

The physical processes in the surrounding of black holes
could be influenced also by large-scale magnetic fields not
related directly to the black hole. Such magnetic fields could
be of cosmological origin [16–21] or they could be related to
some source that can demonstrate a complex structure in the
vicinity of field source, but at large distances, their character
can be simple and close to a homogeneous magnetic field
(see Fig. 1) – for simplicity, such magnetic fields are con-
sidered to be asymptotically uniform as discussed in [22].
The motion in the gravitational field of a black hole com-
bined with an external electromagnetic field is not separable
and has in general chaotic character. There is a large vari-
ety of studies of the charged test particle motion in such
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Fig. 1 Black hole immersed in an external electromagnetic field. Large-scale electromagnetic field can have dipole character for a magnetar, but
at large distance from the source its character can be simplified to almost uniform magnetic field in finite element of space as shown in [7]

combined fields [10,23–29]. The energy from a collision
of the charged particles in the vicinity of the horizon of a
black hole or a naked singularity immersed into an external
magnetic field can cause particle acceleration [30–33]. Of
special interest is existence of off-equatorial circular orbits
of the charged particles [34,35] and related existence of
toroidal charged-fluid configurations levitating off the equa-
torial plane [7,36,37].

Recently, it has been found that the center of the Galaxy
has a strong magnetic field around a supermassive black hole
that is not related to an accretion disc [38]. Therefore, the
possibility that black holes can be immersed in an exter-
nal, large-scale electromagnetic field has to be taken quite
seriously. Moreover, it has been demonstrated that a black
hole located near the equatorial plane of a magnetar will be
immersed in a nearly homogeneous magnetic field if the dis-
tance to the magnetar is large enough [7]. Hereafter in this
paper we will concentrate our attention on the particular and
simplified case of a black hole immersed in an asymptoti-
cally uniform magnetic field known as the Wald solution for
a magnetized black hole [22]. We shall study the dynamics
of charged test particles in the combined gravitational and
electromagnetic fields of such configurations, assuming for
simplicity that the symmetry of the black hole spacetime is
in accord with the symmetry of the asymptotically uniform
magnetic field, i.e., the symmetry axis of the Kerr space-
time is aligned with the field lines of the uniform magnetic
field. Then the equations of motion of the charged test par-
ticles allow for existence of motion constants (energy and
axial angular momentum) simplifying thus significantly the
treatment of the motion at one side, and keeping the relevant
signatures of the interplay of the gravitational and magnetic
fields on the other side.

The motion of neutral test particles is not influenced
by magnetic fields satisfying the condition of the test field
approximation, B ≪ 1019 M⊙/M Gauss, which is satisfied
even in the close vicinity of magnetars. However, the motion
of the charged test particles in the close vicinity of a black
hole horizon could be strongly influenced even by relatively
weak test magnetic fields [29]. For a charged test particle
with charge q and mass m moving in the vicinity of a black
hole with mass M surrounded by an uniform magnetic field
of the strength B, one can introduce a dimensionless quan-
tity b that can be identified as relative Lorenz force [24]
b = |q|BG M/mc4. This quantity can be really quite large
even for weak magnetic fields due to the large value of the
specific charge q/m.

Recently a variety of phenomena related to the combined
gravo-magnetic effect on charged test particle motion has
been studied. The study of the charged particles ‘kicked’
from the innermost stable circular orbit (ISCO) in the equa-
torial plane and hence escaping to infinity along the axis of
symmetry has been treated in [33] – because the charged
particle motion in the vicinity of a black hole immersed
into magnetic field is chaotic, the resulting final ejection
velocity does not depend continuously on the initial con-
ditions [28]. It has been demonstrated that collisions of par-
ticles in the vicinity of black holes could be enhanced by the
external magnetic fields [39–43], but these processes can be
observationally efficient especially in the field of Kerr naked
singularities [44]. The relation of the quasi-circular equa-
torial motion of charged test particles around black holes
immersed in the magnetic field to the high-frequency quasi-
period oscillations observed in some microquasars has been
demonstrated in [29]. Synchrotron radiation of the charged
particles following quasi-circular orbits in the combined
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gravitational and electromagnetic fields has been studied in
[10,45].

The energy of a rotating black hole immersed into a mag-
netic field can be extracted due to the Blandford–Znajek
process [46] and demonstrated by relativistic jets, i.e., colli-
mated streams of particles escaping the central object along
the axis of rotation with relativistic velocities. In the present
paper we explore the mechanism hidden behind the charged
particle ejection using the theory of chaotic scattering in the
combined effective potential of the black hole and the asymp-
totically uniform magnetic field. The energy of the charged
particle in such combined fields can be separated into two
modes, one related to the direction along the magnetic field
lines, the other to the perpendicular directions. We are able
to demonstrate that an energy transmission mechanism, i.e.,
the interchange between the two energy modes of the charged
particle dynamics due to chaotic scattering in the deep grav-
itational field near the black hole horizon, can provide suffi-
cient energy for ultra-relativistic motion of the charged par-
ticle along the magnetic field lines. As a source of charged
particles, we explore a model of ionization of test particles
forming a neutral accretion disk, where no ‘kick’ is needed
for a charged particle (e.g. a heavy ion or proton) to leave the
circular or quasi-circular orbit. The ionization can be realized
by an irradiation of a part of the originally neutral disc when
an electron carries the “kick” of the irradiation, while the
heavy ion only feels a switched-on Lorentz force. Moreover,
heavy ions following off-equatorial orbits in the combined
gravo-magnetic fields [34,35] could also be accelerated in
the fields as an irradiation of such a heavy ion can increase
its specific charge due to increasing the degree of ionization.
We expect that our introductory study can be of relevance for
understanding of various astrophysical phenomena observed
in the systems where compact objects (black holes, naked
singularities, neutron stars, quark stars) with strong gravity
are assumed.

Throughout the paper, we use the spacetime signature
(−,+,+,+), and the system of geometric units in which
G = 1 = c. However, for expressions having astrophysical
relevance we use the speed of light explicitly. Greek indices
are taken to run from 0 to 3.

2 Charged test particle dynamics

We use the Hamiltonian formulation for dynamics of charged
test particles with specific charge q/m in the vicinity of the
axially symmetric black hole immersed in an external asymp-
totically uniform magnetic field. The dynamics of the neutral
test particle motion governed by the geodesic structure of the
black hole geometry can be obtained by putting q = 0 in the
Hamiltonian formalism.

Kerr black holes are described by the Kerr geometry,
which is given in the standard Boyer–Lindquist coordinates
and the geometric units in the form

ds2 = −
(

1 − 2Mr

R2

)
dt2 − 4Mra sin2 θ

R2
dtdφ

+
(

r2 + a2 + 2Mra2

R2
sin2 θ

)
sin2 θ dφ2

+ R2

�
dr2 + R2 dθ2, (1)

where

R2 = r2 + a2 cos2 θ, � = r2 − 2Mr + a2, (2)

a denotes the spin and M the gravitational mass of the space-
times that fulfill the condition a ≤ M for black holes, and
a > M in the naked singularity case. The physical singular-
ity is located at the ring r = 0, θ = π/2, which can be well
characterized in the so-called Kerr–Schild “Cartesian” coor-
dinates that are related to the Boyer–Lindquist coordinates
by the relations [47]

x = (r2 + a2)1/2 sin θ cos
[
φ − tan−1

(a

r

)]
, (3)

y = (r2 + a2)1/2 sin θ sin
[
φ − tan−1

(a

r

)]
, (4)

z = r cos θ. (5)

Because of the axial symmetry we are interested only in
constant φ sections of the whole spacetime; we are free to
choose

φ = tan−1 (a/r) , (6)

obtaining the coordinate transformation in the r–θ (x–z)
plane

x =
√

r2 + a2 sin θ, z = r cos θ. (7)

At the x–y plane, the physical singularity is located at x =
±a and z = 0.

The Kerr metric (1) is asymptotically flat, i.e. far away
from the black hole (r → ∞), the Kerr metric becomes
to be Minkowski flat metric. The Kerr asymptotic limit can
be obtained by taking M = 0 in (1) and rewriting the metric
using the Kerr–Schild coordinates (3)–(5) into manifestly flat
“Cartesian” (t, x, y, z) form

ds2 = −dt2 + dx2 + dy2 + dz2. (8)

We can also use the cylindrical coordinates (t, ρ, φ, z) and
rewrite (8) in the form

ds2 = −dt2 + dρ2 + ρ2dφ2 + dz2, (9)

where new coordinates ρ, φ are given by ρ2 = x2 + y2 and
φ = arctan(y/x).
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Fig. 2 The effective potential Veff (x, z; a, B, L) (25) for motion of
charged particles in the combined gravitational field of Kerr black hole
with a = 0.9 and the uniform magnetic field with B = 1. We give typi-
cal examples of the effective potential Veff (x, y) for angular momentum
L = 10; we also present sections of Veff in the equatorial plane, z = 0,
and at infinity, z = ∞. For the charged particle with energy E = 3.1,
the energy boundary for the particle motion (dashed curves given by the
condition E = Veff ) is open to infinity, allowing the charged particle to
escape to infinity along the z-axis. The effective potential Veff for both

cases of neutral black hole, Q = 0, and the black hole with the Wald
charge Q = QW are presented. For both cases the effective potential
Veff coincide at z = ∞, the main difference between them occurs in
the equatorial plane, where the energetic boundary is widest for the
Q = 0 case, while it is narrowest for the Q = QW case. The influence
of the black hole gravitational field is important close to the black hole
horizon x2 + z2 → r2

+ where the Veff is diverging – Veff (x, y) is not
defined between inner and outer horizons. The influence of the external
magnetic field becomes important at large values of coordinates x and z

In the following, we put M = 1, i.e., we use dimension-
less radial coordinate r and dimensionless spin a, or dimen-
sionless time coordinate t . There is no event horizon in the
naked singularity spacetimes, in contrast to the Kerr black
hole spacetimes (with a < 1) when two event horizons exist.
In the present paper we restrict our attention to the black hole
spacetime regions located above the outer event horizon at
r+ = 1 + (1 − a2)1/2.

For the external weak asymptotically uniform magnetic
field, with the magnetic field vector �B parallel to the space-
time axis of symmetry at z, the electromagnetic four-vector
potential Aα takes the form [22]

At = B

2
(gtφ + 2agt t ) − Q

2
gt t − Q

2
, (10)

Aφ = B

2
(gφφ + 2agtφ) − Q

2
gtφ, (11)

where B is magnitude of the asymptotically homogeneous
magnetic field and Q is the charge of the black hole related
to the charging of the black hole due to the magnetic field
influence [22]. The electromagnetic field is weak in the sense
it is not contributing to the geometry of spacetime, but it can
still have a strong influence on the charged particle dynamics.
As shown by Wald, the parallel orientation of the spin and the
magnetic field B leads to accretion of the charged particles to
the black hole up to values corresponding to a balanced state
stopping the accretion, and the black hole charge remains
[22]

QW = 2Ba. (12)

123



Eur. Phys. J. C (2016) 76 :32 Page 5 of 21 32

For the sake of simplicity, we will consider in this paper
only two limit scenarios (Fig. 2):

• non-charged black hole with Q = 0,
• black hole with Wald charge Q = QW.

Note that in the case of non-rotating Schwarzschild black
hole spacetime with a = 0, or in the case of the flat spacetime,
the electromagnetic four-vector potential Aα takes the form

At = 0, Aφ = Bgφφ/2. (13)

For the asymptotic limit of rotating Kerr spacetimes (a �= 0),
the electromagnetic four-vector potential Aα takes form

At = −Ba, Aφ = Bgφφ/2, (14)

for both Q = 0 and Q = QW scenarios. Since the asymptotic
limit of the Kerr metric is represented by the flat metric (8),
the existence of the non-zero but constant component At

represents a technical effect, and it leads to a re-definition of
the energy level at infinity only, as we will see later.

2.1 Hamiltonian formalism and reduction to the
two-dimensional dynamics

Hamiltonian of dynamics of a charged test particle in the
combined gravo-magnetic field can be written in the form
[8,48]

H = 1

2
gαβ(πα − q Aα)(πβ − q Aβ) + 1

2
m2, (15)

where the kinematic four-momentum pμ = muμ of a test
particle with the mass m and charge q is related to the gen-
eralized (canonical) four-momentum πμ by the relation

πμ = pμ + q Aμ. (16)

The Hamilton equations read

dxμ

dζ
≡ pμ = ∂ H

∂πμ

,
dπμ

dζ
= − ∂ H

∂xμ
, (17)

where we introduced the dimensionless affine parameter ζ

related to the particle proper time τ by the relation ζ = τ/m.
Due to the symmetries of the background spacetime (1)

and the related uniform configuration of the magnetic field
(10) and (11), one can easily find the existing conserved quan-
tities related to the particle motion, which are the (covariant)
energy and axial angular momentum

− E = πt = gt t pt + gtφ pφ + q At , (18)

L = πφ = gφφ pφ + gφt pt + q Aφ . (19)

Introducing for convenience the specific energy, specific
axial angular momentum, and specific intensity of the elec-

tromagnetic interaction by the relations

E = E

m
, L = L

m
, B = q B

2m
, (20)

one can rewrite the Hamiltonian (15) in the explicit form

H = 1

2
grr p2

r + 1

2
gθθ p2

θ + H̃(r, θ), (21)

where the potential part of the Hamiltonian H̃ for the test
particle with specific charge q̃ = q/m reads

2H̃ = gt t (E + q̃ At )
2 − 2gtφ(E + q̃ At )(L − q̃ Aφ)

+ gφφ(L − q̃ Aφ)2 + 1. (22)

Let just note that the parametrization (20) implies re-
definition of the equations related to the asymptotically uni-
form magnetic field (12) and (14)

q̃ QW = 4aB, q̃ At = −2aB, q̃ Aφ = gφφB. (23)

The Hamiltonian (21) has now only two degrees of free-
dom related to the coordinates r and θ , the phase space is
four dimensional (r, pr , θ, pθ ). The dynamics of the system
can be effectively described by the r = r(τ ) and θ = θ(τ )

evolution relations that can be limited by the boundaries of
the motion governed by an effective potential that is a func-
tion of the radial and latitudinal coordinates only. We can
get rid of the coordinates t and φ and the knowledge of their
evolution laws, t = t (τ ) and φ = φ(τ), is redundant in
the context of our study. Of course, when plotting the com-
plete 3D trajectory the knowledge of the evolution law of
the φ-coordinate will be necessary, and for the two-particle
collisions at a given time event, also the t-coordinate evolu-
tion will be needed – such evolution relations can easily be
obtained from (18) and (19).

The presented reduction to the two-dimensional dynam-
ics r, θ will help us to clearly distinguish qualitatively what
is going on in the charged particle dynamics. In Fig. 3 we
plotted the complete 3D charged particle orbits and also the
equivalent 2D reduced charged particle trajectories. In the
reduced 2D trajectories we can clearly distinguish the role of
the energetic boundary for the motion and how the particle
trajectories bounce from the boundaries.

The charged test particle motion is limited by the energetic
boundaries implied by the condition H̃ = 0 (22) and given
by the relation

E = Veff(r, θ), (24)

where the effective potential Veff(r, θ) of the charged test
particle motion takes the form [28]

Veff(r, θ) = −β +
√

β2 − 4αγ

2α
, (25)
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Fig. 3 Typical orbits of the charged particles in neighborhood of a
black hole immersed in an uniform magnetic field. In all there cases
the charged particle is starting from the point r0 = 8.5, θ0

.= 1.06
but they differ in angular momentum L (i.e. uφ), and energy E . We

used L = 4, E
.= 8.3 (capture), L = 7, E

.= 8.6 (escape) and
L = 68, E

.= 14.8 (bounded). In the upper row 3D trajectories are
given, in the lower row 2D (y = 0) sections of the trajectories and the
effective potential are represented

where we have used the abbreviations

α = −gt t , (26)

β = 2[gtφ(L − q̃ Aφ) − gt t q̃ At ], (27)

γ = −gφφ(L − q̃ Aφ)2 − gt t q̃2 A2
t

+ 2gtφ q̃ At (L − q̃ Aφ) − 1. (28)

Discussing the features of the effective potential (25), we
can determine some basic properties of the charged particle
dynamics without solving the equations of motion, namely,
we can determine the boundaries of the motion.

The properties of the effective potential Veff(r, θ; a,L,B)

(25) related to the motion in the combined field of Kerr
black holes and the asymptotically uniform magnetic field
were already explored in [35], and in the simpler case of
Schwarzschild black holes in [29]. Since the general form
of the effective potential Veff(r, θ; a,L,B) is quite complex,
we discuss here only the properties relevant for the purposes
of the present paper.

The Veff(r, θ; a,L,B) will be considered here only out-
side the event horizon of the Kerr black hole. The motion of
a charged test particle can be classified according two crite-
ria. We can distinguish the particle motion in relation to the
rotation of the Kerr black hole or we can relate the angular

momentum of the particle and the direction of the magnetic
field. The motion can thus be:

• prograde, aL > 0 – the particle is orbiting the black hole
in the same direction as black hole rotation

• retrograde, aL < 0 – the particle is orbiting the black
hole with opposite orientation as the black hole rotation.

In the present paper we focus mainly on the prograde aL > 0
type of motion, since this kind of the charged particle motion
could be more relevant in realistic accretion processes. In
the Schwarzschild black hole spacetime the prograde and
retrograde types of the motion coincide. In relation to the
magnetic field we can distinguish again two main classes of
the motion:

− minus configuration BL < 0 – the magnetic field and
angular momentum parameters have opposite signs
+ plus configuration BL > 0 – the magnetic field and
angular momentum parameters have identical signs.

The effective potential Veff(r, θ; a,L,B) clearly demon-
strates the symmetry (a,B,L) ↔ (−a,−B,−L) and the
combinations of the prograde and retrograde motion with the
minus and plus configurations govern in principle four inde-
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pendent types of the effective potential Veff(r, θ; a,L,B)

behavior. Hereafter we will consider a > 0 and only pro-
grade trajectories with positive angular momentum L > 0 –
the particle will rotate counter-clockwise. For covering both
minus and plus magnetic field configurations we will be using
negative B < 0 and positive B > 0 values of the parameter
B. For details see [29].

The stationary points of the effective potential Veff (r, θ; a,

L,B), governing circular orbits of the charged test particles,
are determined by the conditions

∂r Veff(r, θ) = 0, ∂θ Veff(r, θ) = 0. (29)

For the Schwarzschild black holes all the local extrema of
the effective potential Veff(r, θ; a,L,B) are located in the
equatorial plane θ = π/2 only, but for the rotating Kerr
black holes also the off-equatorial extrema giving circular
orbits are possible [35].

The motion of the charged test particles governed by the
effective potential Veff(r, θ; a,L,B) is generally chaotic,
but there exist regions where a regular motion is allowed,
for example in the vicinity of the stable equilibrium points
corresponding to the minima of the effective potential
Veff(r, θ; a,L,B).

In Fig. 3 we plotted characteristic trajectories of the
charged test particles, representing namely the capture by
the black hole, escape along the symmetry axis to infinity,
and bounded motion in the strong gravity of the black hole.
In the following we focus our attention to the case of the
charged particles that can escape to infinity.

2.2 Escape to infinity along the magnetic field lines

The charged particle motion in the effective potential
Veff(x, z; a,L,B) (25) is always bounded in the x-direction
due to the influence of the magnetic field, ∼B2 x , and the
angular momentum, ∼L/x , terms, but the energetic bound-
ary for the motion E = Veff(x, z) (24) can be open in the
z-direction, enabling the charged particles to escape to infin-
ity along the z-axis.

In the Kerr black hole spacetimes, the effective potential
Veff(x, z; a,L,B) of the charged particle dynamics takes in
the asymptotic limit z → ∞ the form

Veff(x, z → ∞) = 2aB +
√

1 +
(

L

x
− Bx

)2

. (30)

This potential, as a function of x only, has local minima
located at

x2
min = L/B, (31)

where the corresponding energy (24) gets the form

Emin =
{ 2aB + 1 for B ≥ 0,

2aB +
√

1 − 4BL for B < 0.
(32)

The charged test particles can escape to infinity along the
z-axis if their energy is high enough, namely,

E ≥ Emin. (33)

Expressing the flat Minkowski metric in the cylindrical
coordinates (t, ρ, φ, z), the effective potential of the charged
test particle motion in the flat spacetime with the uniform
magnetic field takes the form

Veff(flat)(ρ) =
√

1 +
(

L

ρ
− Bρ

)2

. (34)

If we compare the effective potential (34) with the expression
(30), we can from (24) clearly see that the energy of the
charged test particles in the Kerr spacetime, E , cannot be
interpreted as energy measured at infinity where the uniform
magnetic field exists. The energy measured at infinity should
be in this case given by the relation

E∞ = E − 2aB. (35)

The difference between the E∞ and E is caused by the exis-
tence of a non-zero but constant t-component of the electro-
magnetic potential At �= 0 related to the magnetic field.

2.3 Charged particle dynamics in asymptotically flat region
of the rotating Kerr spacetime

The charged particles can reach infinity along the z-axis, if
their energy is larger than the minimal energy at infinity; see
(33). We consider the charged particle dynamics in asymptot-
ically flat limit of the rotating Kerr spacetime (9) expressed
in the cylindrical coordinates (t, ρ, φ, z) and with external
uniform magnetic field given by (14). The condition H = 0
giving the energy boundary function related to the Hamilto-
nian (15) can be written in the form

(E − 2aB)2 = E
2
∞ = ż2 + ρ̇2 + gφφφ̇2

= ż2 + ρ̇2 + (L/ρ − Bρ)2 + 1

= E
2
z + E

2
0 (36)

where the dot denotes the derivative with respect to the proper
time, ie., the proper velocity uα

uα = dxα

dτ
= ẋα. (37)

We define the translational kinetic energy mode in the z-
direction, Ez , and the ‘perpendicular’ energy mode, E0, using
the flat space version of the Hamiltonian and the decompo-
sition of the total energy given by Eq. (36). (Note that some-
times the translational mode is denoted longitudinal, while
the perpendicular mode is denoted as transverse.) We have

E
2
z = ż2, E

2
0 = ρ̇2 + (L/ρ − Bρ)2 + 1. (38)
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Fig. 4 Influence of the angular momentum parameter L on the charged
particle orbit in the uniform magnetic field and flat spacetime. The
motion in the z-direction is decoupled from the complete dynamics and
the charged particle trajectory is projected into a circle in the x–y plane,
with the Larmor radius rL. The particle is orbiting the circle counter-
clockwise for B = −1 and clockwise for B = 1. Due to the symmetry
of the dynamics, we consider L ≥ 0 only. (For L ≤ 0 the position
of circles is symmetric about the center ρ = 0.) In each figure both
the minus, B = −1 (dashed circle), and the plus, B = 1 (solid circle),
configurations are considered for a particle starting from the point with
rho0 = 4, with various energy E0 and angular velocity uφ , and in depen-

dence on the angular momentum parameter L. For the value L = 0 the
minus and the plus configurations of the parameter B share the same
orbit. The inner and outer radius of oscillations (43) is xi,o ∈ {0,±4}.
For L = 8, the circle radius is bigger for B = −1 than the circle radius
for B = 1. The inner and outer radii of the oscillatory motion along the
circle, governed (43), read xi,o ∈ {±2,±4}. For L = 16, the charged
particle stops its circular motion in the B = 1 case at xi = xo = ±4,
while the inner and outer radii of the oscillatory motion, given by (43),
read xi,o ∈ {±4}. For L = 24, the inner and outer radii of the oscillatory
motion, given by (43), read xi,o ∈ {±4,±6}

The ‘perpendicular’ energy E0 is composed of the rest mass
term (1-term), the kinetic energy in the radial ρ-direction
(ρ̇ term), and the kinetic energy in the φ-direction (ρ2φ̇

term). The last term can easily be rewritten using the con-
served quantity L, the angular velocity uφ = φ̇, and the
φ-component of the electromagnetic four-potential Aφ ,

L = gφφuφ + q̃ Aφ = ρ2(uφ + B). (39)

We can distinguish four different energies: the energy of
the charged particle E – a constant of the motion, the energy
resumed at infinity E∞ (35) – also a constant of the motion,
the kinetic energy in the z-direction Ez , and the ‘perpendic-
ular’ energy E0. They are related by

(E − 2aB)2 = E
2
∞ = E

2
z + E

2
0 . (40)

The dynamics of the charged particles in the flat space-
time with uniform magnetic field is regular and can be solved
analytically. The motion in the z-direction, along the mag-
netic field lines, can be separated from the dynamics in the
x–y plane; see Eq. (36). The dynamics in the z-direction cor-
responds to the translational (linear) motion with constant
velocity ż, while in the x–y plane an uniform circular motion
occurs with the Larmor radius rL and the Larmor period TL

given by the relations

rL = ρ0uφ

2B
, TL = π

B
, (41)

where ρ0 denotes the particle initial position (its radial coor-
dinate), and uφ is charged particle angular velocity (39) given
by the relation

uφ = L/ρ2
0 − B. (42)

Typical examples of the charged particle circular orbits in
the x–y plane are plotted in Fig. 4 for significant values of
the canonical angular momentum L, and the corresponding
values of energy E0, the Larmor radius rL, and the angular
velocity uφ .

The Lorentz force acting on charged particles moving in
the uniform magnetic field directed along the z-axis is gen-
erated by the velocity in the x–y plane only. As long as the
charged particles are moving only along the magnetic field
lines in the z-direction, with uφ = 0, the charged particle
motion is not influenced by the magnetic field. The condi-
tion uφ = 0 can be fulfilled only by the plus configurations
with LB > 0.

The charged particle motion in the flat spacetime with the
uniform magnetic field is a combination of the uniform cir-
cular motion in the x–y plane and the linear translational
motion along the z-axis, giving a helical motion as a com-
plete 3D trajectory. In order to reflect the position of the
turning points of the oscillatory motion relative to the sym-
metry axis defined by ρ = 0, or equivalently, x = 0, y = 0,
we use the restriction (projection) of the motion to the plane
y = 0. Using the 2D reduction, separating the φ-coordinate
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Fig. 5 Position of the inner and outer oscillation radii x̃ in dependence
on the L̃ and B parameters. Simple parabolic dependence of L̃(x̃, B)

on transformed coordinate x̃ for significant values of parameter B ∈
0,±0.1,±1,±10. The B = 0 line (thick) is separating sections for
B > 0 (above) and B < 0 (below)

motion (see Sect. 2.1), we can interpret the components of the
‘perpendicular’ energy E0 as the ρ = x-coordinate kinetic
energy (ρ̇ term) and ‘rest’ energy of the particle (the rest 1-
term). The charged particle is bounded in its radial (ρ = x)
motion, by the angular momentum L and the magnetic field
B barriers, so the charged particle will follow an oscillatory
motion in the ρ = x-direction when we can consider both
positive and negative values of the coordinate x . The inner
and outer radius of the oscillatory motion in the x-direction
for the motion with E > 1 are given by the formula

xo,i =
−

√
E

2
0 − 1 ±

√
E

2
0 − 1 + 4BL

2B
. (43)

To every positive value of xo,i there exists a negative value
as well. Clearly, in the case of LB < 0, the axial angular
momentum has to be limited by the relationL > (1−E

2
0 )/4B.

The turning points in the x-coordinates, xo,i, can be deter-
mined by the condition

L̃(x̃,B) = x̃(Bx̃ + 1), (44)

where we introduce transformed coordinate x̃ and trans-
formed angular momentum L̃ by the relations

x̃ = x√
E

2
0 − 1

, L̃ = L

E
2
0 − 1

. (45)

The simple parabolic dependence of L̃(x̃,B) on transformed
coordinate x̃ for significant values of parameter B is illus-
trated in Fig. 5.

We can express the ‘perpendicular’ energy E0 using the
coordinates of the turning points of the oscillatory motion in

the form

E
2
0 = B

2(xi + xo)
2 + 1. (46)

The oscillatory motion in the ρ = x-direction vanishes
(ρ̇ = 0) when the inner and outer radii coincide at

ρi = ρo = ρmin =
√

|L/B|, (47)

and the ‘perpendicular’ energy E0 reaches its minimal value
of

E0(min) =
{ 1 for LB ≥ 0,√

1 − 4BL for LB < 0.
(48)

Notice that E0(min) = Emin − 2aB due to Eq. (32). The role
of the orientation of the magnetic field relative to the angular
momentum of the particle in the position of the turning points
of the oscillatory motion is demonstrated in Fig. 4.

3 Black holes in the asymptotically uniform magnetic

field as charged particle accelerator

3.1 Transmutation of energy modes of the charged particle
motion

The effective potential Veff(x, z) for the charged test par-
ticle motion can be open toward infinity along the z-axis,
allowing some charged particles to escape to infinity – such
a kind of motion along a corridor concentrated about the axis
of symmetry of the black hole spacetime is not allowed for
neutral test particles. This type of motion has an interesting
astrophysical implication as it can be used for modeling of
relativistic jets, if the velocity of particles escaping along the
axis of rotation can be relativistic.

Let us consider a charged particle far away from the black
hole, where the spacetime can be considered as flat, orbit-
ing around a z-axis parallel to the symmetry axis of the Kerr
spacetime with some ‘perpendicular’ energy E0 and moving
with some kinetic energy Ez in the z-direction toward the Kerr
black hole; see point (1) at Fig. 6. The motion is quite regular
as far as the charged particle is far away from the black hole.
Close to the black hole horizon, the particle motion becomes
chaotic and after a scatter on the combined gravitational and
magnetic field represented by the gravo-magnetic potential
given by Eq. (25), the charged particle escapes toward infin-
ity. Once again the motion is regular as the particle reaches
the flat spacetime region; see point (2) at Fig. 6.

However, there is an important change in the particle
dynamics as points (1) and (2) are compared – the oscil-
lation amplitude (inner, xi, and outer, xo, radii) in the ρ(x)-
direction has been changed, moreover, also the z-axis of the
final motion could be shifted in comparison to the axis of the
initial phase of the motion. This means that the ‘perpendic-
ular’ energy E0 between the points (1) and (2) has changed
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Fig. 6 Transmutation of the charged particle trajectory. Charged parti-
cle is starting at almost flat spacetime region – far away from the black
hole, moving toward the black hole along the magnetic field lines, which
are parallel to the z-axis. The particle is crossing the equatorial plane
near the black hole horizon, where effect of gravitational and magnetic
fields is strong, the particle dynamics is chaotic, and the extension of the
charged particle radial oscillations is changed. The presented charged

particle trajectory (black curve), with angular momenta L = 16 and
energy E

.= 10, can start from the points (1) (x0, y0, z0) = (6.8, 0, 97.7)

or (2) (x0, y0, z0) = (−5.3,−6,−101). The three sub-figures represent
the same particle trajectory, but for different views. The Schwarzschild
black hole is non-rotating, a = 0, the external uniform magnetic field
parameter is B = −1

– E0(1) �= E0(2); see Eq. (46). Since the charged test parti-
cle energy at infinity E∞ (36) has to be constant during the
motion, we obtain also a change in the kinetic energy mode
along the z-axis – Ez(1) �= Ez(2). The particle speed along
the z-axis has been changed by scattering in the effective
potential close to the black hole horizon. We observe a trans-
mutation effect – the energy transmission between the energy
modes Ez and E0.

We see an increase in the amplitude of oscillations in the
radial ρ-direction, so there has to be a decrease in the parti-
cle proper velocity (37) along the z-axis, uz

(1)
> uz

(2)
– the

charged particle has been slowed down in the effective poten-
tial. Since the equations of motion (17) are independent of
the time orientation, the charged particle can also start in the
point (2) and go to the point (1) and hence a speed-up in the
effective potential could also occur.

Clearly, the energies E , E∞, Ez and E0 are constants of the
charged particle motion in the flat spacetime, therefore, no
transfer between Ez and E0 energy modes (transmutation of
the energy modes) is possible there. On the other hand, in the
vicinity of black holes, only the total covariant energy E is
conserved, the energy modes Ez, E0 can be changed during
the scatter in the strong gravo-magnetic field and the trans-
mutation effect can work. The effect of energy transmission
between the energy modes Ez and E0 implies a corresponding
change of the charged particle speed along the z-axis. All the
kinetic energy mode Ez can be transmitted to the ‘perpen-
dicular’ energy mode E0 and the charged particle will just
stop its motion along the z-axis, while the oscillations in the
ρ-direction increase to the maximal limit. On the other hand,
not the whole ‘perpendicular’ energy mode E0 can be trans-
mitted to the kinetic energy mode Ez – there always remains

some inconvertible energy in the E0 energy mode determined
by the minimum energy E0(min) – see (48).

The presented energy transmutation effect, i.e., the inter-
change Ez ↔ E0, does not require the black hole rotation
(and phenomena related to the ergosphere as in the Penrose
process, or Blandford–Znajek processes) and works even
in the Schwarzschild spacetime. For the energy transmuta-
tion effect of energy modes of the charged particle motion,
there is no energy mining from the black hole, the effect
is purely ‘mechanical’ – just the energy modes interchange
their energy; the nature of this effect lies in the chaotic nature
of the charged particle motion.

3.2 Escape velocities in the chaotic scattering

The possibility of strong acceleration of the linear transla-
tional motion along the magnetic field lines is from the astro-
physical point of view one of the most relevant applications of
the charged particle dynamics in strong gravo-magnetic fields
as it can be applied as a model of acceleration of relativis-
tic jets in Active Galactic Nuclei (AGN) and microquasars.
Let us consider a charged particle orbiting a Kerr black hole,
following a quasi-circular motion in small distance z0 from
the equatorial plane. Then the energy transmutation effect,
Ez ↔ E0, discussed above, can enter the play due to the
chaotic nature of the equations of motion in the strong gravi-
tational field of the black hole combined with the asymptoti-
cally uniform magnetic field, leading eventually to escape of
the charged particle along the z-axis with relativistic velocity
as measured at infinity.

In the asymptotically flat spacetime far away from the Kerr
black hole, filled by the uniform magnetic field, the charged
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Fig. 7 Trajectories with large escape velocities and gamma factor γz
given by chaotic scattering process; see Fig. 9. The trajectories with
largest γz are moving almost along straight trajectories for positive
LB > 0 configuration (right), while for negative LB < 0 configura-

tion (left) some orbital movement around magnetic field lines always
remains. We compare both trajectories in the x–y plane projections
(middle)

test particle motion is determined by the coordinate velocity
vα , and proper velocity uα , given by the expressions

vα = dxα

dt
, uα = dxα

dτ
= γ vα, γ = dt

dτ
, (49)

where we have introduced the Lorentz γ factor in order to
relate the proper and coordinate velocities

γ = ut = dt

dτ
= E + q̃ At = E − 2aB = E∞. (50)

The individual components of the proper velocity uα are:
velocity of the oscillatory motion in the radial ρ coordinate –
uρ , the ejection velocity along the z-axis, i.e. the symmetry
axis of the asymptotic motion – uz , the orbital velocity of
the revolving motion around the z-axis – uφ , and the time
component of the four-velocity related to the energy of the
motion – ut = γ = E∞.

Ejection speeds uz = uz, vz = vz and the corresponding
Lorentz γz factor related to the z-axis can be expressed using
the energetic relations (36)

uz = Ez, vz = Ez

E∞
, γz = 1√

1 − v2
z

= E∞
E0

. (51)

The velocities and the related γ factor can take values uz ∈
〈0,∞), vz ∈ 〈0, 1) and γz ∈ 〈1,∞). The first value of
allowed interval is valid for vanishing motion along the z-
axis, the second number occurs when the charged particle is
moving along the z-axis with the speed of light, representing
obviously an inaccessible limit for the charged particle with
mass m �= 0.

The limit on the maximal speed vz, or gamma factor γz,
of the charged particle moving along the z-axis (51) can be
obtained by taking the minimal value of the perpendicular
energy E0, given by (48). Then the limiting, maximal value

of the γ factor for the velocity in the z-direction is given by

B > 0 : γz(max) = E∞
E0(min)

= E∞, (52)

B < 0 : γz(max) = E∞√
1 − 4BL

. (53)

If the charged particle is maximally accelerated (52) and (53),
then the radial oscillations vanish, uρ = 0, and for the orbital
speed uφ we obtain relations

B > 0 : uφ = 0, (54)

B < 0 : uφ = 2BL. (55)

For the plus configurations with B > 0, the acceleration of
charged test particles due to the energy transmutation effect,
Ez ↔ E0, works pretty well, the velocity along the z-axis,
vz, can reach almost the speed of light, depending only on
the initial energy E . When the speed along the z-axis will
be maximal, given by (52), the charged particle is moving
along a straight line parallel to the symmetry axis of the Kerr
spacetime, just along a magnetic field line and there will be
no orbital motion since uφ = 0; see Fig. 7. For the minus
configurations with B < 0, the acceleration of the charged
particles is less efficient. The charged particle with maxi-
mal velocity in the z-direction (and minimal perpendicular
energy) has always a non-zero orbital velocity uφ = 2BL and
hence it cannot have an escape velocity in the z-direction as
large as for the plus configurations with B > 0 – see Fig. 7.

We can examine the efficiency of the charged particle
acceleration process for the whole set of initial conditions
using the chaotic scattering theory as it is presented in chap-
ter 5 of [49] and chapter 8 of [50].

In the classical theory of chaotic scattering we consider a
particle with impact parameter b entering a force field repre-
sented by an effective potential (scattering region), and char-
acterize result of the scattering process by the so called scat-
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Fig. 8 Unstable periodic orbits separating capture and escape trajecto-
ries. All sub-figures represent different views of the same charged par-
ticle trajectory around the Schwarzschild black hole, a = 0, immersed
into the external uniform magnetic field with parameter B = −1. Unsta-
ble periodic orbit (thick curve) with initial conditions r0 = 10, θ0

.=
1, L = 7, E

.= 8.6 is trajectory of a particle that returns to the same

initial point r0, θ0 (periodic), but slightly different initial conditions
will produce completely different trajectories (unstable). Even small
difference in initial conditions can have totally different outputs in the
neighbor of unstable periodic orbit; we plotted trajectory captured by
the black hole and also trajectory backscattered, escaping to infinity
along the z axis

tering angle α of the particle escaping the scattering region.
We can define scattering angle (scattering function) α(b) as a
function depending on impact parameter b, and, of course, on
the character of the force field influencing the particle that is
reflected by the character of the scattering function. Chaotic
scattering theory is dealing with properties of the scattering
function α(b), especially when α(b) shows some “strange”
chaotic behavior. In our problem of a charged particles mov-
ing in the gravito-magnetic field, the particle can escape the
system only in the z-direction corresponding to the field lines
of the magnetic field, or it can be captured by the black hole.
We will shoot charged particles from some position zs giv-
ing an initial distance from the equatorial plane (playing the
role of the impact parameter), toward the black hole (scat-
tering region) and we will calculate the escape speeds in the
z-direction (scattering function) given by the final Lorentz
gamma factor γz.

When the effective potential Veff(r, θ) of the gravo-
magnetic field is for a given energy E open toward the black
hole horizon and also toward infinity in the z-direction, then
three quantitatively different types of orbits exist – cap-
tured orbits that cross the black hole horizon, scattered and
backscattered orbits that reach z → ±∞, and special family
of unstable periodic orbits – see Fig. 8.

The extremely accelerated trajectories have the final x-
coordinate (ρ-coordinate) almost constant and very close to
xmin, given by (47). For an efficient energy transmission,
Ez ↔ E0, and hence large acceleration in the z-direction,
the charged particle necessarily enters the region close to
the black hole horizon. The black hole will capture all the
trajectories with xmin < r+ – this can be proved by consid-
ering the same process under time reverse, i.e., the particle
moving from infinity toward the black hole with large v and

xmin < r+. Trajectories of such particles cannot ‘jump over’
the black hole, being captured by the black hole. For strongly
accelerated charged particles the final x-coordinate after scat-
tering in the vicinity of the black hole should be xmin ≥ r+.
Because the outer Kerr black hole horizon r+ ∈ 〈 1, 2), we
can expect strongly accelerated particles for parameters sat-
isfying the relation 1 < L/B < 5.

The results of the scattering calculations are represented
in Fig. 9. We clearly see how the regions of relatively regu-
lar character of the scattering process are mixed with quite
chaotic regions of the scatter process. The charged parti-
cle acceleration by chaotic scattering (energy transmutation
Ez ↔ E0) works well even in the Schwarzschild space-
time combined with the uniform magnetic field. The black
hole rotation is not required, although the energy transmu-
tation can be more efficient in the rotating Kerr black hole
spacetime, as demonstrated in Fig. 9, since the gravitational
potential of Kerr black holes is deeper than those of the
Schwarzschild black holes and the scatter could be more
efficient. We can expect that the acceleration of particles by
the transmutation effect can be even more efficient in the
Kerr naked singularity spacetime [51], where the scattered
charged particles cannot be captured by an event horizon and
even particle collisions can be energetically more efficient in
comparison to those occurring in the black hole spacetimes
[44].

There are continuous and discontinuous (chaotic) parts in
the scattering function (escape velocity γz) in dependence on
the impact parameter (distance from equatorial plane z0); see
Fig. 9. The existence of more than one unstable periodic orbit
is responsible for occurrence of several regions of chaotic
scattering, i.e., the discontinuous dependence of the resulting
velocity on the initial conditions. The unstable periodic orbits
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Fig. 9 Chaotic scatter of the charged particles. The scatter is repre-
sented by dependence of the charged particle velocity γz(z0) along the
z axis on the initial distance from the equatorial plane, for charged par-
ticles scattered in combined gravitational and magnetic effective poten-
tial; see Fig. 8. All charged particles are starting with energies E = 10
in the neighborhood of x0 ∼ 13 and z0 ∈ (2, 9) in Schwarzschild (left

column) or Kerr (right column) black holes spacetime. The allowed
region of γz velocities is bounded by the lower 1 and upper E∞/E0
limits (dashed lines); see Eq. (52). The trajectories with γz = 1 are
those that not escape to infinity (r = 103) in given time, trajectory with

γz = 0 are captured by the black hole. For the positive configuration,
BL > 0, of magnetic field and angular momentum (first row) we use
parameters B = 1 and L = 25, leaving the maximal allowed accelera-
tion to be E∞/E0 = 10 for Schwarzschild and E∞/E0 = 8.6 for the
Kerr black hole, with a = 0.7. For the negative configuration, BL < 0,
of magnetic field and angular momentum (second row) we use param-
eters B = −0.7 and L = 17.5, giving a maximal allowed acceleration
of E∞/E0

.= 1.41 for the Schwarzschild and E∞/E0
.= 1.55 for the

Kerr black hole. Examples of individual escape trajectories with large
gamma factors γz can be found in Fig. 7

are special orbits that are fixed in the spacetime, but they are
extremely sensitive to changes of the initial conditions.

For resulting ultra-relativistic acceleration, large initial
charged particle energy E and low orbital speed uφ , given
by the condition 1 < L/B < 5, are required. Such condi-
tion could be represented in the kinetic approach [4]. Large
velocities with γz ≫ 1 can be obtained for properly chosen
initial conditions, but the question arise, if such conditions
could be represented by realistic astrophysical conditions.

The initial conditions enabling strong acceleration along
the magnetic field lines and ultra-relativistic escape veloc-
ities of charged particles could be realized due to chang-
ing of ionization degree of ions following off-equatorial cir-
cular orbits that can exist in the field of magnetized black
holes [34,35]; we shall study such a process in a future
paper. Here we tackle the question of astrophysical relevance
of the chaotic scattering acceleration model by considering
very basic idea of ionization of neutral particles in Keplerian
discs.

4 Acceleration of the ionized particles on circular

geodesics

We assume a thin accretion disk modeled by neutral test par-
ticles orbiting the central black hole along circular or quasi-
circular geodesics. The ionization of a neutral particle, by a
particle collision or irradiation, can change not only the test
particle charge (from 0 to q), but also its four-momentum
– the test particle can obtain some ‘kick’ during ionization.
The ionization energy, i.e., the energy which is needed by
an atom to lose one electron is around 10 eV, while the rest
mass energy of the atom is around 109 eV. If the ratio between
the ionization and rest energy is very small, we can assume
ionization with very small ‘kick’. In fact, if we consider ion-
ization of uncharged particles by an irradiation is assumed in
the models of generation of profiled spectral lines [52–54],
then the energy of the kick of the ionizing photon is taken by
the lost electron, while the ion (or proton) four-momentum
is not influenced by the ionization process, but it reflects the
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influence of the magnetic field. Therefore, the test particle
mass and mechanical momenta before (I) and after the ion-
ization (II) are conserved

m(I) = m(II), p
μ

(I) = p
μ

(II). (56)

However, the motion constants start to be influenced by the
electromagnetic field.

Presented ionization scenario is obviously just some limit
of more general (mechanical momenta and mass not con-
serving) ionization process, but it is quite realistic for the
ionization by irradiation. The presented ionization model is
identical to situation where the test particle is charged, but
the external magnetic field is switched-off (non-existing),
and suddenly the magnetic field is switched-on and the test
particle starts to feel it.

The constants of the charged particle motion – energy
E and angular momentum L are given by the generalized
(canonical) momenta πt and πφ ; see Eqs. (18) and (19). The
conservation of mass and mechanical momenta during ion-
ization, given by (56), requires the change of the particle spe-
cific energy E and the specific angular momentum L before
and after ionization given by

E(II) = E(I) − q̃ At , L(II) = L(I) + q̃ Aφ . (57)

The test particle mass and mechanical momenta remain
the same during ionization (time τ0) and hence we can sim-
ply obtain the initial four-velocity of the charged particle
u

μ

(II)(τ0) from the neutral particle four-velocity u
μ

(I)(τ0) – the
particle speed is not changing during ionization, but after the
ionization the charged particle starts to feel the Lorentz force
determined by the magnetic field.

In general, the trajectory after ionization depends on the
initial position four-vector t0, r0, θ0, φ0 of the ionization
event, the four-velocity of the neutral particle at the ionization
event, ut

0, ur
0, uθ

0, u
φ
0 , and also the parameters of the gravo-

magnetic field – the black hole mass M and spin a, and the
magnetic field parameter B. The components of initial condi-
tions (t0, r0, θ0, φ0, ut

0, ur
0, uθ

0, u
φ
0 ) are not independent, for

example, the component ut
0 can be calculated from the H = 0

condition and we can choose the initial time t0 arbitrary, fix-
ing number of free initial components to six.

We can reduce the set of the free initial components by
assuming some astrophysically relevant initial conditions for
the neutral test particles forming the Keplerian accretion disk.
Assume a test particle on circular orbit with constant radius,
ur

0 = 0, close to the equatorial plane, with no vertical speed,
uθ

0 = 0. Assuming a trajectory with constant radius, r = r0,
implies restrictions also on the particle angular momentum
L(r0, θ0) and energy E(r0, θ0), i.e., on the four-velocity com-
ponents uφ(r0, θ0) and ut (r0, θ0). There will be no depen-
dence of the ionized trajectory on the initial coordinate φ0,
if the ionization happens in equatorial plane θ0 = π/2, and
for θ0 ∼ π/2 the φ0-dependence will be insignificant. So we

for simplicity select the ionization event to occur at φ0 = 0.
The mass of the black hole can be simply put to be M = 1,
then the radius is expressed in units of black hole mass.

For various gravo-magnetic field parameters a,B, we
examine the ionization scenario only for the two free param-
eters represented by the test particle initial coordinates r0, θ0

of the ionization event.

4.1 Ionization in the Schwarzschild spacetime

We consider a Keplerian accretion disk orbiting the
Schwarzschild black hole that consists from electrically neu-
tral test particles following circular geodesics in the equato-
rial plane to which orthogonal are the magnetic field lines
that are oriented parallel to the z-axis at infinity. The vector
of the external uniform magnetic field can have in principle
arbitrary inclination to the accretion disc plane, but here we
assume for simplicity the orthogonal orientation that keeps
the symmetry of the gravo-magnetic field. The spherical sym-
metry of the Schwarzschild spacetime allows one to rotate the
whole neutral accretion disc, or some its part (ring), around
the asymptotic z-axis, i.e., to introduce some small change
of the inclination of the orbital plane of the disk (or its ring)
relative to the magnetic field vector; see Fig. 10 (left).

The circular orbits (r = r0 = const.) of neutral test parti-
cles around non-rotating Schwarzschild black holes are fixed
to the central planes only, no matter what the initial inclina-
tion θ0 is. Angular momenta L and energy E for the inclined
circular orbits are given by [48]

L = r sin(θ)√
r − 3

, E = r − 2√
r2 − 3r

. (58)

The At component of electromagnetic four-vector poten-
tial is zero in the Schwarzschild spacetimes, Eq. (13), hence
we obtain for the ionization scenario by Eq. (57) the follow-
ing conditions:

E(II) = E(I), L(II) = L(I) + q̃ Aφ . (59)

Due to the vanishing At component in the Schwarzschild
metric, only the angular momentum L is changed during the
ionization, while the particle energy E remains constant. The
energy of the neutral particles on the circular geodesic orbits,
given by (58), is always E(I) ≤ 1, but an energy of E(II) > 1
is needed for the ionized charged particle to escape to infinity
along the z-axis (32). Therefore, no escape to infinity is possi-
ble after ionization (59) of neutral matter in Keplerian discs in
the Schwarzschild spacetime. However, the irradiational ion-
ization can work for ions following the off-equatorial circular
orbits around magnetized Schwarzschild black hole [35].

When the magnetic field vector oriented asymptotically
along the z-axis is orthogonal (or nearly orthogonal) to the
plane of the orbiting ionized particle, the minima of the
charged particle effective potential Veff(r, θ) are located in
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Fig. 10 Initial orbits of test particles creating the neutral accretion disk.
Due to spherical symmetry of the non-rotating Schwarzschild black
hole (left), the neutral particle trajectory lies always in central plane.
The accretion disc inclination θ0 to the z axis parallel with the uniform
magnetic field vector, can be used to describe the magnetic field vector
inclination to the accretion disc plane. In the case of rotating Kerr black
hole (right), we consider the neutral particle with initial inclination θ0

to be on the so called spherical orbit, given by (64). Such a scenario only
describes the situation when the magnetic field vector is perpendicu-
lar to the accretion discs plane – a more general situation, with some
magnetic field vector inclination, will destroy the axial symmetry of the
charged particle dynamics around the Kerr black hole immersed in the
uniform magnetic field

the equatorial x–y plane [29]. The angular momentum L of
the ionized particle has been changed by the ionization pro-
cess (59) and after ionization the energy is not corresponding
to a minimum of the effective potential, i.e., trajectory of the
ionized particle will not be circular. Since the ionized parti-
cle cannot escape to infinity in the Schwarzschild spacetime,
E(II) ≤ 1, it can only be trapped in some bounded motion
in the vicinity of the black hole, or be captured by the black
hole.

In the following calculations we assume the ionization
event at the φ0 = 0 plane – such a selection is taken just
for simplicity. Due to the chaotic character of the equations
of motions for the charged particles in the gravo-magnetic
field, the particle trajectories with different initial conditions
φ0 will in principle be different, but the φ0 = 0 selection
reflects all the important properties of the ionization model.
The particle angular momentum after ionization, L(II), will
be given by

L(II) = r0 sin(θ0)

(
1√

r0 − 3
+ B

)
, (60)

where we consider initial angular momentum L(I) > 0. For
positive magnetic field parameter, B > 0, the term in paren-
theses of (60) has to be positive and hence we obtain new
positive angular momentum L(II) > 0 giving thus a plus
configuration according to our classification. For negative
magnetic field parameter, B < 0, the term in parentheses of
(60) is positive only for small negative values of Bb < B < 0
giving a positive angular momentum L(II) > 0 after ioniza-
tion, implying a minus configuration. The limiting value of
the magnetic field parameter Bb reads

Bb = −1√
r0 − 3

. (61)

For sufficiently large negative values of the magnetic field
parameter B < Bb, the term in parentheses of (60) is nega-
tive, giving a negative new angular momenta L(II) < 0 – but
because the magnetic field parameter is negative B < 0, we
obtain again a plus configuration. Clearly, the plus configu-
rations, LB > 0, are more likely created by the ionization
process (59) for strong enough magnetic fields, B ≪ 0, or
large enough radius, r0 ≫ r+. There is a preference to have
a plus configuration after the ionization process. This fact
implies large probability to obtain a large charged particle
acceleration due to the ionization process, since for the plus
configurations of our classification, the energy transmission
process due to the chaotic scatter, E0 ↔ Ez, works more effi-
ciently in comparison to the minus configurations as demon-
strated in the previous section.

In the Schwarzschild metric the ionized particle follow-
ing originally a circular geodesic cannot escape to infinity,
the capture by the black hole, or bound motion in its vicin-
ity are the only options. The capturing of the ionized parti-
cles by the black hole could lead to gradual disintegration of
the Keplerian disc and fast accretion of its mass. This pro-
cess depends on magnitude of the magnetic field and will
be studied in detail in a future paper. If the charged particle
is not captured, it will be bounded moving in some closed
region around the black hole. The motion of such a bounded
charged particle is in general chaotic. However, for small
inclination of magnetic field vector to the axis of the accretion
disc, θ0 ∼ π/2, the bounded motion will be regular, imply-
ing for the charged particles harmonic or quasi-harmonic
oscillations with fundamental epicyclic frequencies that were
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calculated in [29]. Therefore, the neutral particle ionization
model (59) could also serve for explanation of quasi-periodic
oscillations observed in the microquasars as shown in [29].
By increasing the initial inclination angle θ0, the bounded
oscillatory motion will be gradually changed from the reg-
ular harmonic motion to the quasi-harmonic motion where
the epicyclic frequencies can still be relevant in the Fourier
spectra, to the chaotic motion (with continuum spectrum) –
for large initial inclination angles the motion will be fully
chaotic.

4.2 Effect of the Kerr black hole rotation

We keep the assumption of the magnetic field lines asymptot-
ically parallel to the z-axis that is identical with the rotation
axis of the Kerr black hole spacetime. The straightforward
approach to the irradiation ionization scenario of a test par-
ticle from the electrically neutral Keplerian accretion disc in
rotating Kerr spacetime means that we assume the neutral
test particle to follow a circular Keplerian (geodesic) coro-
tating orbit in the equatorial plane with the covariant specific
energy E and the specific axial angular momentum E given
by the standard relations [55]

E =
a

r3/2 − 2
r

+ 1
√

2a
r3/2 − 3

r
+ 1

, L =
a2

r3/2 − 2a
r

+ √
r

√
2a

r3/2 − 3
r

+ 1
. (62)

However, if we assume the irradiational ionization of a
neutral particle following an equatorial circular geodesic with
energy and angular momentum given by (62), with the mag-
netic field vector parallel with the symmetry z-axis, the tra-
jectory of the ionized charged particle will stay in the equa-
torial plane. The coordinate θ = π/2 remains constant and
the motion is regular being effectively one dimensional. Such
charged particle can only radially oscillate or be captured by
the black hole. In order to have a possibility of off-equatorial
motion that could be transmuted into the escaping motion
of the charged particle, we have to assume a quasi-circular,
off-equatorial epicyclic motion of the neutral particle and its
ionization at a positions where their latitudinal coordinate
θ0 �= π/2.

We will consider here for simplicity a special character of
the off-equatorial motion, namely the motion along spherical
trajectories where the orbit radius r0 remains constant, but the
latitude θ of the motion changes; see Fig. 10. The irradiational
ionization event is then assumed at some θ0 �= π/2 enabling
the escaping motion of the ionized particle. The energy E

and angular momentum L of an electrically neutral particle
following a spherical orbit are given by [56]

E = 1√
S

(
1 − 2r

R2
+ aQ

R2
√

r
sin θ

)
, (63)

L = 1√
S

(
Q(r2 + a2)√

r R2
sin(θ) − 2ar

R2
sin2(θ)

)
, (64)

where the R function is defined by (2) and the functions Q, S

are given by the relations

Q =
√

r2 − a2 cos2(θ), (65)

S = 1 − 3r

R2
+ 2aQ

R2
√

r
sin(θ) + a2

R2r
cos2(θ). (66)

Equations (63) and (64) reduce to (58) for a = 0; they reduce
to the expressions for the equatorial Keplerian orbits (62)
when θ = π/2. The innermost stable spherical orbit (ISSO)
of particles on the spherical orbits is implicitly given by the
relation

[2aQ
√

r sin(θ) − 4r2 + (r + 1)R2][Q2(R2(a2 − 3r2)

+ 4r2(a2 + r2)) − 2r2 R2(a2 + r2) − 4aQ3r3/2 sin(θ)]
+ [4Q2r2 − R4][Q − a

√
r sin(θ)][Q(a2 + r2)

− 2ar3/2 sin(θ)] = 0. (67)

Typical examples of trajectories of ionized neutral test
particles, initially orbiting on spherical orbits with radius
r0 ≈ rISSO around a Kerr black hole immersed in the uniform
magnetic field with field lines aligned with the spacetime
axi-symmetry axis, can be found in Fig. 11. Contrary to the
Schwarzschild case with a = 0, the energy shift E(I) →
E(II) given by Eq. (57) and governed by the non-zero At

component of electromagnetic potential, allows the charged
ionized particle to escape toward infinity along the z-axis. Of
course, independent on the magnitude of the magnetic field
B, the rotation parameter a of the Kerr spacetime, and the
initial conditions, after irradiation, the ionized particle (57)
can also be captured by the black hole, or oscillate in some
region in the vicinity of the black hole horizon.

To obtain an astrophysically plausible situation, we have
to consider the ionization event taking place near the inner
edge of the neutral accretion disc. For simplicity we will
assume the ionization event located at the innermost spher-
ical orbit. This selection of radial coordinate, r = rISSO, is
completely arbitrary, and another value of radial coordinate
at the ionization event, r > rISSO, would give similar results.

After ionization the charged particle can escape to infinity,
if E(II) ≥ Emin – see Eq. (32). The possibility of ionized
charged particle to escape to infinity can be also expressed in
terms of the maximal possible Lorentz gamma factor along
the z-axis, γz(max) = E∞/E0(min). Due to Eqs. (52) and (53)
the escaping particle must have γz > 1. We have calculated
the maximal possible gamma factor γz(max) after ionization of
neutral particle located at the ionization event with r0 = rISSO

and some latitudinal angle θ0 ∼ π/2 for various values of the
magnetic field intensity parameter B, and in dependence on
the black hole spin a; the results are presented in Fig. 12. We
can see that a particle can escape to infinity after ionization
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Fig. 11 Ionization of Keplerian disc by irradiation. Neutral test particle
from the accretion disc is orbiting the rotating Kerr black hole (left) and
get ionized (56) in external uniform magnetic field. For negative value
B = −1 of the magnetic field parameter, the ionized particle escapes
along the magnetic field lines (middle); for positive value B = −1 the
ionized particle is periodically oscillating (right). Note that in the both
cases, B = ±1, the charged particle belongs to the plus BL > 0 config-

uration, since such configuration is preferred by the ionization process
(56). The neutral particle was initially on spherical orbit (64) with con-
stant radius r0 = 4 and initial inclination θ0 = π/2 − 0.2 around the
Kerr black hole with spin a = 0.9. The external uniform magnetic field
vector is aligned with the axis of spacetime symmetry z and the black
hole electric charge Q = 0

governed by the conditions expressed by Eq. (57) only for
negative values of the magnetic field parameter B < 0 in the
case of uncharged Kerr black hole with Q = 0, but it can
escape for positive values parameter B > 0, if the Kerr black
hole carries the Wald charge Q = QW.

The condition γz(max) > 1 is just the necessary condition
for escape – the escape to infinity can occur with some lower
speed, 1 < γz < γz(max); γz(max) is just the limit on maximal
possible velocity. The trajectories can also be captured by the
black hole. As demonstrated in Fig. 12, quite large escape
velocities along the z-axis can be obtained, if we assume the
magnetic field parameter B large enough. We can expect to
observe the trajectories with the Lorentz gamma factors γz >

5 for the magnetic field parameter B < 10, Q = 0 and B >

10, Q = QW, if the black hole spin a > 0.7. Some typical
trajectories of the charged particles ionized by irradiation at
the inner edge of the Keplerian accretion disc, r0 = rISSO, are
calculated and represented by the two-dimensional sections
in Fig. 13.

After the ionization the charged particle is not always
escaping to infinity with the maximal velocity related to

γz(max). It can escape to infinity with some smaller velocity,
γz < γz(max), it can stay near the black hole being oscillat-
ing near the equatorial plane, or it can be captured by the
black hole, as demonstrated in Fig. 12. The main differences
between the results of the ionization in the gravo-magnetic
field with the uncharged black hole (Q = 0) or with the black
hole having the induced Wald charge (Q = QW) is in the
shape of the effective potential, which is wider in the equa-
torial plane for the Q = 0 case as compared to the Q = QW

case; see Fig. 2. Although the energetic conditions on γz(max)

are similar for both Q = 0 and Q = QW cases, we can expect
that in the Q = QW case the ionization process will be more
efficient in expelling the charged particles to infinity due to
the effective potential shape – see Fig. 13.

As already stated in the previous sub-section related to the
case of the Schwarzschild spacetime, the ionization mecha-
nism governed by Eq. (57) creates a situation with the charged
particles almost exclusively in the plus configurations with
BL > 0, which is a positive effect as related to the acceler-
ation of the charge particles to infinity. Clearly, the accel-
eration of the ionized particles in the plus configurations
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Fig. 12 Maximal acceleration of the ionized particles. We give limit
on maximal possible charged particle gamma factor γ(z)max given by
the ratio: energy measured at infinity E∞ over energy needed to reach
infinity E0 (53)–(52) in dependence on the Kerr black hole spin a for var-
ious values of magnetic field parameter B. Maximal possible gamma
factor γ(z)max must be γ(z)max > 1 for the particle escape, values of
γ(z)max < 1 does not allow the motion of charged particle toward infin-

ity along z axis – the energetic boundary E = Veff (x, y) is closed in the
z direction. The condition γ(z)max = 1 is represent by the black line.
We consider the ionization (57) to occur at the inner edge of accretion
disc, located at r0 = rISCO (67) for initial inclination θ0 = π/2 − 0.1.
Both the cases of the neutral Kerr black hole with Q = 0 and the black
hole with a Wald charge Q = QW (12) are considered; numbers on the
curves indicate the magnitude of the B parameter

with BL > 0 is more effective because of the condition
E0(min) = 1, as shown in Sect. 3.2.

Detailed analysis of the trajectories of the ionized par-
ticles and statistics of the ionization event leading to
capture/oscillations/escape in dependence on the gravo-
magnetic configurations and the initial conditions in the Kep-
lerian discs are left for a future work. In the present paper we
restricted our attention to a clear demonstration of the pos-
sibility of charged particle escape with relativistic velocity
due to the chaotic scattering enabling transmutation of energy
modes near a Kerr black hole immersed in uniform magnetic
field because of the ionization process by irradiation of inner-
most region of the Keplerian disc. The ionization process
assumes simply mechanical momentum conservation.

We have shown that the presented mechanism of the par-
ticle acceleration could be relevant in real astrophysical pro-
cess leading to the creation of collimated relativistic jets. We
have shown that the mechanism works well even for non-
extreme black holes with spin a ∼ 0.7 and a non-extreme
magnitude of the magnetic field B ∼ 10. The magnitude of
the magnetic field parameter B in physical units is given in
Table 1.

5 Conclusions

Magnetized black holes, i.e., black holes immersed in an
uniform magnetic field represent an astrophysically relevant
and interesting model for the charged test particle dynamic
related to the accretion or excretion-jet phenomena. The
charged test particle dynamics around magnetized black
holes demonstrates interesting properties.

• Non-linear equations of motion imply the charged parti-
cle chaotic dynamics.

• In the case of magnetized black holes, off-equatorial cir-
cular orbits can exist.

• Charged particles are allowed to escape along the mag-
netic field lines to infinity.

From the astrophysical point of view, high relevance is
related to the energy transmutation effect in the combined
gravitational and magnetic fields of magnetized black holes
that enables transmission of energy between the linear trans-
lational mode Ez and the oscillatory mode E0 of the motion
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Fig. 13 Irradiational ionization of Keplerian discs. Trajectories of
the charged particle ionized at the inner edge on neutral accre-
tion disc around rotating Kerr black hole in external uniform mag-
netic field, given for characteristic values of magnetic field param-
eter B. As examples two representative initial positions of the ion-
ization are used: close to the equatorial plane θ0 = π/2 − 0.1

.=
1.5, r0

.= 3.4, L(I)
.= 2.6, E(I)

.= 0.9 and off the equatorial plane
θ0 = π/2 − 0.7

.= 0.9, r0
.= 3.9, L(I)

.= 2.1, E(I)
.= 0.9. The values

of conserved energy E(II) and angular momenta L(II) after the ionization

also with the γz calculated at r = 103 are given in the figures. For the
neutral Kerr black hole (Q = 0) we see the charged particle escaping
to infinity with almost all possible gamma factor γz used (Figs. 1, 4);
is oscillating close to the equatorial plane (Fig. 2) – the initial angle θ0
is too small; is captured by black hole (Fig. 3). For the Kerr black with
Wald charge hole Q = QW, we see the charged particle going repeat-
edly going away along z axis and coming back close to black hole
(Figs. 5, 8); is escaping with some large velocity along z axis (Figs. 6,
7) – not all possible gamma factor γz is used

Table 1 Magnitude of the magnetic field in physical units for parameter
B = 10 calculated for black hole with mass M = 10 M⊙. We present
values for an electron, Be−, proton, Bp+, and a partially ionized (one
electron lost) iron atom, BFe−, in Gauss units. For different values of
the magnetic field parameter B̃, just multiply the numbers in the table
by a factor B̃/10; for a more massive central object M̃ , just multiply
the numbers in the table by a factor 10/M̃

B Be− [mGs] Bp+ [Gs] BFe [Gs]

10 23 43 2373

of the charged particles. The transmutation effect is reflected
by the following points.

• Chaotic dynamics close to the black hole horizon is
responsible for the transmutational energy interchange,
Ez ↔ E0; far away from the region of chaotic motion, in
the asymptotically uniform magnetic field, both energy
modes, Ez and E0, are independently conserved and no
energy interchange is possible.

• This effect does not require black hole rotation, being
purely ‘mechanical’ characteristics of the chaotic motion
enabling interchange of the energy in the different modes.

• The energy transmutation effect enables ejection of the
charged particles from the region close to the equatorial
plane of the magnetized black hole along the axis of sym-
metry with relativistic velocities, giving thus a possibility
to create relativistic jets observed in active galactic nuclei
and microquasars.

• The existence of unstable periodic orbits in the region
of chaotic motion implies the discontinuous dependence
of the escaping velocities of the charged particles on the
initial conditions.

The acceleration process giving the relativistic escap-
ing velocities at infinity and the possibility of creation of
relativistic jets can work well even in the process of irra-
diational ionization of originally electrically neutral parti-
cles following a near-circular motion in Keplerian accre-
tion discs. In the ionization process due to irradiation, the
created protons or heavy ions feel no kick, but they could
be accelerated by a pure switch-on of the electromagnetic
force due to the electric charge induced on the irradiated
particle. The irradiational ionization implies the following
results.
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• The charged particles occurring due to the irradiational
ionization in the Schwarzschild spacetime with the uni-
form magnetic field start to oscillate or are captured by
the black hole – they cannot escape to infinity along the
z-axis, as in the spherically symmetric spacetimes energy
of the ionized matter remains constant and it corresponds
to the bounded motion for the originally electrically neu-
tral particle.

• Escape to infinity along the magnetic field lines is possi-
ble for ionized particles in the field of magnetized rotating
Kerr black holes with magnetic field lines oriented par-
allely to the symmetry axis of the spacetime, since the
energy of the charged particle can be increased after the
magnetic field switch-on. This effect can be relevant also
for mediate and small values of the black hole spin.

• The irradiational ionization process prefers the states
with coincidence of orientation of the particle angular
momentum and the magnetic field vector, allowing for
efficiently accelerated motion of the ionized particles
along the magnetic field lines, giving an interesting new
mechanism for the creation of collimated relativistic jets
around rotating Kerr black holes with an arbitrary value
of the dimensionless spin a.

Details of the transmutation effect causing acceleration
of the irradiational ionized matter, following originally near-
equatorial motion around a magnetized Kerr black hole, in
the direction of the magnetic field lines will be studied in
a future paper. However, attention has to be focused also
on the application of this model of ionization to describe
the accretion disc disintegration and absorption (trajectories
captured by the black hole), or generation of the charged par-
ticle quasi-harmonic oscillations used to explain the quasi-
periodic oscillations observed in microquasars (bounded tra-
jectories).
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34. J. Kovář, Z. Stuchlík, V. Karas, Class. Quantum Gravity 25, 095011

(2008). arXiv:0803.3155
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