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SUMMARY

Centroidal Voronoi tessellations (CVT) have diverse applications in many areas of science and
engineering. The development of e�cient algorithms for their construction is a key to their success
in practice. In this paper, we study some new algorithms for the numerical computation of the CVT,
including the Lloyd–Newton iteration and the optimization based multilevel method. Both theoretical
analysis and computational simulations are conducted. Rigorous convergence results are presented and
signi�cant speedup in computation is demonstrated through the comparison with traditional methods.
Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Centroidal Voronoi tessellations (CVT) have broad applications and are linked to many
important concepts de�ned in di�erent contexts. Let us take the subject of vector quantization
as an example [1]. A vector quantizer maps N -dimensional vectors in the domain �⊂RN

into a �nite set of vectors {zi}ki=1. Each vector zi is called a code vector or a codeword, and
the set of all the codewords is called a codebook. A special quantization scheme is given
by the Voronoi tessellation which associates with each codeword zi, also called a generator,
a nearest neighbour region that is called a Voronoi region {Vi}ki=1. That is, for each i, Vi

consists of all points in the domain � that are closer to zi than to all the other generating
points, and a Voronoi tessellation refers to the tessellation of a given domain by the Voronoi
regions {Vi}ki=1 associated with a set of given generating points {zi}ki=1⊂�. For a given
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174 Q. DU AND M. EMELIANENKO

density function � de�ned on �, we may de�ne the centroids, or mass centres, of regions
{Vi}ki=1 by

z∗i =
(∫

Vi

y�(y) dy
)(∫

Vi

�(y) dy
)−1

(1)

An optimal quantization may then be de�ned through a CVT which is a special Voronoi
tessellation whose generators coincide with the centroids of their respective Voronoi regions,
i.e. zi= z∗i for all i. Such a connection between CVTs and optimal quantization schemes has
been explored extensively in the literature [2].
Given a set of points {zi}ki=1 and a tessellation {Vi}ki=1 of the domain, we may de�ne the

energy functional or the distortion value for the pair ({zi}ki=1; {Vi}ki=1) by

H({zi}ki=1; {Vi}ki=1)=
k∑

i=1

∫
Vi

�(y) | y − zi|2 dy (2)

The minimizer of H, that is, the optimal quantizer, necessarily forms a CVT which illustrates
the optimization property of the CVT [2]. The terms optimal quantizer and CVT are thus to
be used interchangeably in the sequel. We note that, besides providing an optimal least square
vector quantizer design in electrical engineering applications [1, 3, 4], the CVT concept also
has applications in diverse areas such as astronomy, biology, image and data analysis, resource
optimization, sensor networks, geometric design, and numerical partial di�erential equations
[2, 5–14]. We refer to Reference [2] for a more comprehensive review of the mathematical
theory and diverse applications of CVTs.
In the seminal work of Lloyd on the least square quantization [15], one of the algorithms

proposed for computing optimal quantizers is an iterative algorithm consisting of the following
simple steps: starting from an initial quantization (a Voronoi tessellation corresponding to an
old set of generators), a new set of generators is de�ned by the mass centres of the Voronoi
regions. This process is continued until certain stopping criterion is met. It is easy to see that
the Lloyd algorithm is an energy descent iteration of the energy functional (2), which gives
strong indications to its practical convergence. We refer to Reference [16] for some discussion
on the recent development of a rigorous convergence theory.
Lloyd’s algorithms and their variants have been proposed and studied in many contexts

for di�erent applications [1, 7, 17, 18]. A particular extension using parallel and probabilistic
sampling was given in Reference [6] which allows e�cient and mesh free implementation of
the Lloyd’s algorithm. Still, Lloyd algorithm is at best linearly convergent, besides it slows
down as the number of generators gets large.
For modern applications of the CVT concept in large scale scienti�c and engineering prob-

lems such as data communication and mesh generation, e�cient algorithms for computing
the CVTs play crucial roles. The objective of this paper is to present a number of di�erent
approaches for speeding up the convergence of Lloyd iteration. In Section 2 we consider a
direct application of the Newton method and propose a coupled Lloyd–Newton scheme that
can be used to accelerate the convergence of the original method. Both analytical and numeri-
cal results for scalar and vector quantization problems are discussed. Then in Sections 3 and 4
we introduce the ideas of multilevel algorithms and outline the two main strategies for apply-
ing them in the non-linear optimization context. In particular, we focus on the new multilevel
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ACCELERATION SCHEMES FOR COMPUTING CVT 175

approach to the optimal quantization problem developed recently in References [19, 20]. In
this paper we discuss the main characteristics of this scheme, such as the dynamic non-linear
preconditioning and uniform convergence with respect to the problem size, and show some
numerical results demonstrating its superiority over traditional methods.

2. LLOYD–NEWTON METHOD

2.1. Some technical lemmas

For a general non-linear system f(z)=0 with vector argument z, the Newton iteration is
given by

zn= zn−1 − df |−1zn−1
f(zn−1)

where df is the Jacobian matrix of the map f . Applying Lloyd’s algorithm to the computation
of CVTs, we obtain the problem of solving T(zn−1)= zn, where T denotes the Lloyd map
from generators to centroids, as discussed earlier. Newton’s method in this setting takes on
the form

zn= zn−1 + (dT|zn−1 − I)−1(zn−1 − T(zn−1))

Here T : RkN →RkN and the corresponding Jacobi matrix dT=(@Ti=@zj) has dimensions
kN × kN

dT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

@T(1)1
@z(1)1

: : :
@T(1)1
@z(1)k

: : :
@T(1)1
@z(N )1

: : :
@T(1)1
@z(N )k

... : : :
... : : :

... : : :
...

@T(N )1

@z(1)1
: : :

@T(N )1

@z(1)k

: : :
@T(N )1

@z(N )1

: : :
@T(N )1

@z(N )k

... : : :
... : : :

... : : :
...

@T(1)k

@z(1)1
: : :

@T(1)k

@z(1)k

: : :
@T(1)k

@z(N )1

: : :
@T(1)k

@z(N )k

... : : :
... : : :

... : : :
...

@T(N )k

@z(1)1
: : :

@T(N )k

@z(1)k

: : :
@T(N )k

@z(N )1

: : :
@T(N )k

@z(N )k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We arrive at a necessity to calculate the partial derivatives of Ti(z). The following result
(see Reference [2]) is of use.
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Lemma 2.1
Let �=�(U) be a region that depends smoothly on U and that has a well-de�ned boundary.
If F =

∫
�(U) f(y) dy, then

dF
dU

=
∫
@�(U)

f(y)ẏ · n dy

where n is the unit outward normal and ẏ denotes the derivative of the boundary points with
respect to changes in U.

Since

Ti(z)=

∫
Vi(z)

y�(y) dy∫
Vi(z)

�(y) dy

we have that

@T(m)i

@z(n)j

=

(∫
@Vi

�(y)y(m)
@y
@z(n)j

· n dy
)/∫

Vi(z)
�(y) dy

−
(∫

@Vi

�(y)
@y
@z(n)j

· n dy
)∫

Vi(z)
�(y)y(m) dy

/(∫
Vi(z)

�(y) dy
)2

Here 16m6N and 16n6N . An analytic representation of @y=@z(n)j can be obtained from the
following identity.

Lemma 2.2
If {ul} are the vertices of the common face �j

i between adjacent Voronoi regions generated
by zi and zj, then for any set of {�l}; �l¿0 with

∑
l¿0 �l=1, such that

∑
l¿0 �lul ∈�j

i(∑
l¿0

�lul − zi + zj2

)
· (zj − zi)=0

Di�erentiating the above expression with respect to z(n)i , for any point y∈�j
i we get

@y
@z(n)i

· (zj − zi) = 12 en · (zj − zi) + en ·
(
y − zi + zj

2

)

@y
@z(n)j

· (zj − zi) = 12 en · (zj − zi)− en ·
(
y − zi + zj

2

)

where en=(0; : : : ; 1; : : : ; 0)T is a unit vector in RN . Since n=(zj − zi)=‖zj − zi‖, the necessary
expression for (@y=@z(n)i ) · n can be easily obtained and used for integration purposes.
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2.2. Theoretical analysis

Classical convergence analysis of the Newton’s method adopted in the current context relies
on the following lemma (see for example Reference [21]).

Lemma 2.3
Suppose F(z)= z − T(z) : RkN →RkN is continuously di�erentiable in an open convex set
D⊂RkN . Assume that there exists a z∗ ∈RkN , such that F(z∗)=0 and there are constants
�; �; r¿0, such that

(1) B(z∗; r)⊂D is an open ball of radius r around z∗;
(2) (I − dT(z∗))−1 exists and ‖(I − dT(z∗))−1‖¡�;
(3) (I − dT)∈Lip(�; B(z∗; r)).

Then there is a radius �= min{r; 1=2��}, such that for any z0 ∈B(z∗; �), the sequence gen-
erated by the Newton’s iteration zn= zn−1 − (I − dT)−1F(zn−1) converges to z∗ and obeys
‖zn − z∗‖6��‖zn−1 − z∗‖2.
It is hard in general to produce criteria for the global convergence of the Newton’s method.

Here we discuss some of the results that help to further characterize the convergence radius
of the Newton scheme in quantization context.
First let us denote hi(z)=diam(Vi) for each Voronoi cell Vi corresponding to the generators

z, and let D be a compact and convex set in the neighbourhood of a solution z∗, such that
dT is continuous in D and there are uniform bounds

H = max
z∈D

hi(z); h= min
z∈D

hi(z)

for all 16i6k. Moreover, let

M = max
x∈�

�(x); m= min
x∈�

�(x) and M ′= max
x∈�
|∇�(x)|

With these notations, we can claim the following Lipschitz continuity result for the Jacobian.

Lemma 2.4
In the 1-dimensional case, I − dT∈Lip(�; D), with �=18M 2M ′H 4=m4h4.

Proof
The following relation was given in Reference [2]:

R2i (y)

(
1−∑

j

@Ti

@yj

)
=
1
2

∫
Vi(y)

∫
Vi(y)

(�(t)�′(s)− �(s)�′(t))(t − s) dt ds (3)

where Ri(y)=
∫
Vi(y)

�(s) ds and Vi(y) denotes the ith Voronoi cell in the Voronoi tessellation
generated by the generators y=(y1; : : : ; yk). So for any two sets of generators x=(x1; : : : ; xk)
and y=(y1; : : : ; yk), we have∣∣∣∣∣∑j

(
@Ti

@xj
− @Ti

@yj

)∣∣∣∣∣=
∣∣∣∣∣∑j

(
1− @Ti

@yj
−
(
1− @Ti

@xj

))∣∣∣∣∣= |R
2
i (x)Qi(y)− R2i (y)Qi(x)|

2R2i (x)R2i (y)
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where Qi(y)=
∫ ∫

Vi(y)×Vi(y)
�′(s)�(t)(t − s) dt ds. Hence

∣∣∣∣∣∑j
(
@Ti

@xj
− @Ti

@yj

)∣∣∣∣∣
=
|(R2i (x) + R2i (y))(Qi(x)−Qi(y))− (R2i (x)− R2i (y))(Qi(x) +Qi(y))|

4R2i (x)R2i (y)

6
(R2i (x) + R2i (y))|Qi(x)−Qi(y)|+ (Qi(x) +Qi(y))|R2i (x)− R2i (y)|

4R2i (x)R2i (y)

Let Vi(x − y) = (Vi(x)\Vi(y))∪ (Vi(y)\Vi(x)). Notice that there exists a constant such that
|Vi(x−y)|6c‖x−y‖. For the one-dimensional case, we can simply take c=2. We then have
the following upper bounds:

Qi(x)6MM ′H 3; Ri(x)6MH and

|Qi(x)−Qi(y)|6 2N+1MM ′HN+1|Vi(x − y)|62N+1cMM ′HN+1‖x − y‖

|R2i (x)− R2i (y)| = |Ri(x)− Ri(y)| (Ri(x) + Ri(y))62cM 2H‖x − y‖

where N is the space dimension of the domain. Hence we end up with the following Lipschitz
condition for dT:

‖dT(x)− dT(y)‖6�‖x − y‖

where, for the 1-d case, by keeping track of the constants, we have �=18M 2M ′H 4=m4h4.

Proposition 2.1
For the computation of one-dimensional CVTs in the case of constant or log-concave densities,
the Newton’s method is quadratically convergent in a subset of D where ‖z−z∗‖¡�=2�, with
(I − dT)∈Lip(�; D) and �=1−maxD ‖dT‖¿0.
Proof
It was shown in Reference [16] that Lloyd’s map is continuous in the neighbourhood D
for any smooth density in 1-d. Notice also, that in the regions where the Lloyd’s map is
continuous, it is, in fact, continuously di�erentiable, so it remains to estimate the constants
� and � in this region. As shown in Reference [16], for constant and log-concave densities
we have �=1 − maxD ‖dT‖¿0. Notice that ‖dT‖¡1 implies that I − dT is invertible with
‖(I − dT)−1‖6� with �=1=(1− ‖dT‖)61=� (see Reference [22]). The conclusion then
follows from Lemmas 2.3 and 2.4.

With these ideas in mind, let us now design a new algorithm to accelerate the convergence
of the Lloyd iteration. Knowing the issues associated with both Lloyd and Newton approaches,
we will try to incorporate their best features into a coupled Lloyd–Newton scheme, as
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described next. Note that round o� and integration errors can a�ect theoretically established
quadratic convergence of the Newton method. However, as we show later in numerical
examples, with the acceleration scheme we are about to describe it is possible to preserve
superlinear rate of convergence even in the case of non-linear densities.

2.3. The Lloyd–Newton acceleration scheme

The results mentioned above do not provide means of identifying the actual region of conver-
gence for an arbitrary density function. In order to use the Newton’s approach to speed up the
�xed point Lloyd’s iteration, we can deal with this problem by coupling the two algorithms
into one hybrid scheme. For example, let us look at the following implementation of this
idea.

Algorithm 2.1. Lloyd–Newton iteration

Input:
�, the domain of interest; �, a probability distribution on �;
k, number of generators; z= {zi}k1, the initial set of generators; �-tolerance.
Output:
{Vi}k1, a CVT with k generators {zi}k1 in �
Method:
1. Construct the Voronoi tessellation {Vi}k1 of � with generators z= {zi}k1.
2. Compute the mass centroids x= {xi}k1 of {Vi}k1.
3. If ‖H(x; Vi)−H(z; Vi)‖¿�, take z=x and goto step 1.
Otherwise �x �=1, let T(x)= z and goto step 4.
4. Perform a step of Newton’s method: z̃= z+ �(dT|z − I)−1(z − T(z)).
5. Let I = {i|16i6k, z̃i =∈�}.
If |I |=0 take z= z̃ and goto step 4.
If |I |=1 reduce Newton’s step size: �= �=2, goto step 4.
Otherwise take z as generators and goto step 1.
6. Repeat until some stopping criterion is met.

This hybrid method can be used to accelerate the Lloyd’s scheme. As shown in Section 2.2,
Newton iteration gives superlinear convergence, whenever the convergence region is reached.
However, there are possible di�culties associated with this approach. Namely, the starting
initial iteration may be too far from the solution, and out of the reach of the superlinear
convergence region; the accurate and e�cient solution of the linear system may be a�ected
by the increase of the condition number with a large number of generators. In the examples
presented in Section 2.5 we address these issues and present the numerical results that justify
the use of the Newton approach as a local accelerator of the Lloyd iteration.
Let us note that in general, there is no guarantee for the Lloyd’s method to converge to the

global minimizer of the energy (see Reference [16] for a more recent study). The methods
discussed above do not provide the means of reaching the global minimizer, but instead, they
provide the acceleration of convergence in the local vicinity of any solution. It is possible,
nevertheless, to couple these fast converging schemes with some global minimization methods
to achieve the optimal performance. We will return to this discussion in later sections.
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2.4. Computational complexity

Let us now brie�y look at the complexity of the proposed algorithm. Each step of the adaptive
Lloyd–Newton algorithm includes:

1. Construction of Voronoi diagram: For two dimensions, we use an embedded Matlab
routine, which is of order O(k) [23, 24]. In N -dimensions, the average complexity esti-
mate of O(k) with the running time of O(k log(k)) is expected when the average number
of Voronoi neighbours is bounded [25].

2. Calculation of centroids for each region: This involves calculation of two integrals per
region, hence a total of 2k integrals, again O(k).

3. Calculation of the Jacobi matrix: Each element of the matrix involves four new inte-
grations, assuming we store the results of the previous centroidal calculations. There are
k elements. Assume each one has on average m neighbours, m¡k. Then we need a total
of 4mk integrations. If we are su�ciently close to the optimal con�guration, m does
not exceed 8 (see Reference [26]), which makes this step worth O(k).

4. Solving the resulting linear system: The complexity of the linear solver highly de-
pends on the structure of the matrix. With a sparse banded matrix structure due to
limited number of neighbours for each generator we can adopt fast inversion algorithms
that minimize the �ll in of the LU decomposition, for instance, the nested dissection
methods for problems with bandwidth

√
k, that has complexity on the order of O(k3=2)

(see Reference [27]). Iterative methods with lower complexity can also be considered,
we comment on this in the later discussions.

5. Updating procedure for generators: This is a simple element-by-element addition,
requiring 2k operations.

Overall, it is clear that the total complexity depends critically on the linear solver and the
algorithm for the construction of the Voronoi tessellations. For well-distributed points, how-
ever, it is reasonable to expect an optimistic linear time complexity.

2.5. Numerical results

We present the results of numerical computations on the square �= [0; 1]2 for di�erent types
of density functions. All computations were made in Matlab 6.5. We used embedded Matlab
functions voronoi and voronoin for diagram construction.
For the Lloyd’s method, once the Voronoi construction is available, the only computational

task left is to �nd the mass centroids of the Voronoi regions. For Newton’s method, we also
need to compute the entries of the Jacobian matrix, which adds up to the complexity of the
problem. Computational properties of the problem heavily depend on the form of the density
function used. One always needs to �nd a compromise between the accuracy and resource
consumption for a particular algorithm. Since complexity of the quadrature is tightly bound
with the computational cost of the algorithm, quadrature rules have to be tuned up depending
on the form of the density function.
In the 1-d case, integrals can be computed more easily. In two-dimensional case, the Voronoi

regions are of polygonal shape, so one may use triangle based integration rules or tensor-
product based one-dimensional rules. This can be done using a triangulation of any kind.
We tested di�erent integration rules for various types of density functions. For boundary

integrals, we used Simpson’s rule for polynomial densities of degree less than 3 and Gaussian
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quadrature rules otherwise. For area integrals, midpoint � rule is used for all densities which
refers to the triangular based quadrature rule:

∫
� f= 1

3 |�| · (f(x12)+f(x13)+f(x23)), where
x12, x23, and x13 are the midpoints of the sides of the triangle �. This rule is exact for
polynomials of degree no greater than 2.
There are several criteria one can adopt for this algorithm: ‖zn − zn−1‖¡�, i.e. when the

distance between two consecutive con�gurations becomes small enough; ‖En − En−1‖¡�, i.e.
when changes in energy become su�ciently small or N step ¿ MaxNumSteps, i.e. maximum
number of steps is reached. It is also possible to base the stopping criterion on the relative
decrease of the norm for the Jacobian that is conveniently available in our formulation. For
each practical application, the user has a freedom to choose the most suitable approach.
Quite often it is a combination of the above conditions that makes a good stopping criterion.
In our examples, the algorithm was stopped whenever a failure of either conditions was
discovered with �=10−8. In the examples given below, we used the asymptotic formula
r≈ log en+1= log en to compute the convergence rate, where en= ‖zn − z∗‖ is the error at the
nth iteration. Since for non-linear densities the exact solution is often hard to determine, we
used the ratio log |zn+1− zn|= log |zn− zn−1| to approximate the asymptotic convergence rate in
this case.
One-dimensional examples: For one-dimensional intervals, since �nding the Voronoi regions

is trivial, most of the computation is associated with �nding centroids. Numerical errors for
such tasks are negligible, so the algorithm converges in several steps.
In Figure 1 we plot the asymptotic convergence rate for both Newton (top) and Lloyd

(bottom) iterations. It can be readily seen that the limit is 2 in the Newton case, which
justi�es the quadratic convergence. Lloyd’s method converges at a linear rate.
Two-dimensional examples: In the two-dimensional case, the e�ect of the roundo� and

numerical integration errors becomes more pronounced. In case of a constant density, we are
still able to get almost �awless performance. Figure 2 shows convergence of both methods
for a random 5 generator con�guration. Here dots denote positions of the generators at each
step of the iteration and lines are used to separate the corresponding Voronoi regions. Lloyd–
Newton iteration converged after 7 Newton steps, and convergence became quadratic as soon
as the convergence region was reached, as shown in Figure 3.

Figure 1. 1-d convergence rates comparison for k =4 (left) and k =64 (right) with �(x)=1+ x4

cos(�(x − 0:5)). Top curves are for Newton iteration and the bottom ones are for Lloyd.
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Figure 2. Iteration history of (a) Lloyd–Newton vs (b) Lloyd method for �(x)=1; k =5.
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1.6
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2

2.2

Figure 3. Convergence rate of Lloyd–Newton (top graph) vs Lloyd iteration (bottom
graph) in [0; 1]2 for �(x)=1; k =5.

The next two pictures (Figures 4 and 5) demonstrate the performance of both methods in
non-constant density cases. The Lloyd–Newton method converged after 6 Newton steps for
�(x)=1 + x + 0:1x2 and after 9 Newton steps for �(x)=1 + x4.
For a more precise comparison, Table I below shows the decrease of the error for Lloyd–

Newton and Lloyd methods in the case of a quadratic density function �(x)=1 + x + 0:1x2

after 5 consecutive iterations, respectively.
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Figure 4. Iteration history of (a) Lloyd–Newton vs (b) Lloyd method for �(x)=1 + x + 0:1x2,
k =4. Here lines connecting the generators are drawn.
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Figure 5. Iteration history of (a) Lloyd–Newton vs (b) Lloyd method, �(x)=1 + x4; k =4.

Adding higher order terms to the density function introduces numerical error in the cal-
culation of both boundary and area integrals. Here we compare the exact and inexact calcu-
lations made using Simpson’s rule for line integrals and midpoint triangle rule for the area.
Figure 6(a) shows results we got for a quadratic function, for which integration is ex-
act, whereas the graph in Figure 6(b) shows convergence for a quartic polynomial density
function.
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Table I. Error reduction of the Lloyd–Newton and the Lloyd iterations.

Iteration Lloyd’s iteration error Lloyd–Newton’s iteration error

1 0.08641081909378 0.16571484289620
2 0.03313222925306 0.03144575914202
3 0.01849005608503 0.00159901251769
4 0.01041059669286 0.00000571605675
5 0.00599684938138 0.00000000572324
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Figure 6. Comparison of convergence factors for Newton–Lloyd iteration (top) vs Lloyd (bottom) for
di�erent densities: (a) �(x)=1 + x + 0:1x2, k =4; and (b) �(x)=1 + x4, k =4.

Clearly, the integration errors do have an e�ect on the convergence of the overall scheme,
so for the best performance of the algorithm the optimal tradeo� of the integration scheme
accuracy and overall complexity should be made. As mentioned above, for the density func-
tions up to certain order it is possible to nullify the numerical integration error by picking
a more accurate quadrature rule. However, this might not be possible for a large class of
functions, e.g. functions with singularities of a much higher order. Despite these natural
restrictions, the results shown above clearly justify the fact that for an adequately chosen
quadrature Lloyd–Newton method outperforms the Lloyd iteration and allows to reach the
desired solution signi�cantly faster.

3. NEWTON-BASED MULTILEVEL ALGORITHM

While the results presented in the previous section show that the Lloyd–Newton scheme
generally performs better than the traditional �xed-point iteration, improvement can be made,
in particular, by reducing the computational cost of solving the linear system for the Newton
increment. In this regard, one possibility is to use multilevel techniques to solve the linear
system inside the Newton iteration framework. We refer to this approach as the inner multigrid
scheme. Naturally, the other possibility is to rely on the non-linear multigrid solver with the
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Lloyd–Newton scheme being part of the inner relaxation procedure which would give an outer
multigrid approach. We now �rst discuss the former case while leave the latter to the next
section.
Recall that the non-linear problem under consideration is to �nd the �xed points of the

Lloyd map T(z)= z. As shown above, the Newton linearization

(I − dT|zn−1)(zn − zn−1)=T(zn−1)− zn−1
gives a fast convergent iterative scheme in the neighbourhood of the solution. The performance
can be greatly enhanced if some fast sparse solvers are used to reduce the computational
complexity associated with the solution of linear systems. For instance, let us outline an
algorithm that uses algebraic multigrid techniques for these purposes.

Algorithm 3.1. AMG–BGS–Newton iteration

Input:
�, the domain of interest; �, a probability distribution on �;
k, number of generators; z= {zi}k1, the initial set of generators;
Output:
{Vi}k1, a CVT with k generators z= {zi}k1 in �.
Method:
1. Given n-th iterate zn, calculate T(zn), dT(zn).
2. Put

A= I − dT(zn)=
(
I − Txx Txy

Tyx I − Tyy

)
; M =

(
I − Txx 0

Tyx I − Tyy

)

and b=T(zn)− zn.
3. Solve Mzn+1 = b− (A−M)zn, where the system for each of the diagonal blocks
involving (I − Txx) and (I − Tyy) is solved using AMG.
4. Repeat the procedure 1 to 3 until some stopping criterion is met.

Let us now discuss the key elements of the scheme introduced above. First key observation
is related to the choice of a triangular iteration matrix

M =

(
I − Txx 0

Tyx I − Tyy

)

for solving the linearized system. In making this choice, we relied on the fact that the matrix
A= I−dT has a block structure with the contribution of the o�-diagonal blocks being relatively
small. To solve the corresponding linear system, one can either perform the GMRES iteration
with M being a preconditioner or resort to the block Gauss–Seidel (BGS) method taking M
to be the corresponding iteration matrix.
The next key feature of this algorithm is the use of the algebraic multigrid method (AMG)

[28–30] to solve the linear systems corresponding to each of the diagonal blocks of M . Indeed,
such an approach is justi�ed by the fact that both of the blocks I − Txx and I − Tyy are
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symmetric and often share diagonal dominance properties. An example of using the classical
AMG approach based on the standard coarse-grid correction scheme is given as follows:

1. Perform relaxation of the �ne grid until the error is smooth: Ahuh= bh.
2. Compute residual rh= bh − Ahbh and transfer to the coarse grid r2h= I 2hh rh.
3. Solve the coarse-grid residual equation in terms of the error A2he2h= r2h.
4. Interpolate the error to the �ne grid and correct the �ne-grid solution: uh= uh + I h2he

2h.

Here the restriction operator I 2hh is dependent on the solution at the current iteration and
represents a coarsening procedure, while the iteration dependent operator I h2h represents the
standard interpolation. Naturally, a setup phase has to be implemented �rst based on the
entries of A so that these operators are suitably de�ned [30]. Combining these considerations,
we can design the AMG–BGS–Newton scheme, as shown in Algorithm 3.1.
The e�ciency of such an algebraic multigrid implementation relies on the observation that

each of the diagonal blocks of the M matrix become diagonally dominant in the vicinity of
the solution. Theoretical arguments leading to this conclusion have been carried out in 1-d
for the class of strongly logarithmically concave densities in Reference [16]. In fact, in this
case the Lloyd map was shown to be a local contraction, implying diagonal dominance for
the matrix I − dT. For these densities, a multilevel scheme designed this way outperforms
regular Newton iteration in its convergence.
Another possible approach, as mentioned above, consists of taking a Newton iteration as part

of the relaxation within the outer framework provided by some type of non-linear multigrid
procedure. The next section is dedicated to a possible implementation of this type of algorithm.

4. OPTIMIZATION-BASED NON-LINEAR MULTILEVEL ALGORITHM

Since the original concept of centroidal Voronoi tessellations is related to the solution of a
non-linear optimization problem, and the monotone energy descent property is preserved by the
Lloyd’s �xed point iteration [2], we may thus investigate whether monotone energy reduction
can be achieved in a multilevel procedure which would also improve the performance of the
simple-minded �xed point iteration.
The problem of constructing a CVT is non-linear in nature, hence standard linear multigrid

theory cannot be directly applied. There are still several ways one could implement a non-
linear multilevel scheme in this context (see References [19, 20, 31, 32]). The Newton type
acceleration methods described earlier are based on some global linearization as the outer loop,
coupled with other fast solvers in the inner loop. Alternatively, we now study an approach
that overcomes the di�culties of the non-linearity by essentially relying on the direct energy
minimization without any type of global linearization.
We note that the optimality property implies that at the CVT (or optimal quantizer), we

have ∇H=0. This is the key characterization to be used in the later discussion.

4.1. Space decomposition

Since the energy functional is in general non-convex, it turns out to be very e�ective to relate
our problem to a convex optimization problem through a technique that mimics the role of
a dynamic non-linear preconditioner. More precisely, denote R= diag{R−1

i }; i=1; : : : ; k + 1
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where Ri=
∫
Vi
�(y) dy are the masses of the corresponding Voronoi cells. We arrive at an

equivalent formulation of the minimization problem: R∇H=0, or min ‖R∇H‖2. A key obser-
vation is that as R varies with respect to the generators, the above transformation or dynamic
preconditioning makes the modi�ed energy functional convex in a large neighbourhood of the
minimizer and therefore makes the new formulation more amenable than the original problem.
Hence, let us de�ne the set of iteration points W by

W= {(wi)|k+1i=0 | 0=w06wi6wi+16wk+1 =1; ∀06i6k}
and let us design a new multilevel algorithm based on the following non-linear optimization
problem:

min
z∈W

H̃(z); where H̃(z= {zi}k+1i=0 )= ‖R∇H({zi}ki=1; {Vi}ki=1)‖2 (4)

Here {Vi}ki=1 is the Voronoi tessellation corresponding to the generators {zi}ki=1. Let us take
T=TJ as a �nite element mesh corresponding to W. Consider a sequence of nested quasi-
uniform �nite element meshes T1⊂T2⊂ · · ·TJ , where Ti consists of all �nite element
meshes {	ij}nij=1 with mesh parameter hi, such that

⋃ni
j=1 	

i
j=�. Corresponding to each �nite

element partition Ti there is a �nite element space Wi de�ned by

Wi= {v∈H 1(�) | v|	 ∈P1(	); ∀	∈Ti}
For each Wi there corresponds a nodal basis { i

j }nij=1, such that  i
j (x

i
k)= 
jk , where {xik}nik=1

is the set of all nodes of the elements of Ti and x J
1 = 0; x

J
nJ =1. De�ne the corresponding

one-dimensional subspaces Wi; j=span{ i
j }. Then the decomposition can be regarded as

WJ =
J∑

i=1

ni∑
j=1
Wi; j=

J⊕
i=1

�Wi

where �Wi=Wi=Wi−1 for i¿1 and �W1 =W1. Now clearly for every function  i
j ∈Wi we can

�nd a vector � 
i
j= { � 

i
jm}∈RnJ , such that  i

j (x)=
∑nJ

m=1
� 
i
jm 

J
m (x); ∀x∈�.

We note that in the 1-dimensional case, the set of basis functions

Qi=[ � 
i
1; : : : ; � 

i
ni ]
T ∈Rni×k

used at each iteration can be pre-generated using the recursive procedure: QJ = Ik×k and
QJ−s=(

∏s
i=1 PJ−i)QJ where Pi is the basis transformation from space Wi+1 to Wi which

plays a role of a restriction operator.

4.2. Description of the algorithm

Using the above notations, we design a multilevel successive subspace correction algorithm
(Algorithm 4.1). Each step of the procedure outlined below involves solving a system of
non-linear equations which plays the role of relaxation. We use the Newton iteration to solve
this non-linear system, similarly to the method described in Section 2. Solution at current
iterate is updated after each non-linear solve by the Gauss–Seidel type procedure, hence the
resulting scheme is successive in nature. The algorithm uses a procedure CoarseGridSolve(Z),
which, as the names indicates, refers to �nding the solution at the coarsest level. In our

Copyright ? 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:173–192



188 Q. DU AND M. EMELIANENKO

implementation, this procedure consists of applying Lloyd method for a few steps or until
saturation. In general, other e�cient optimization methods, as well as Newton’s method, can
be used in order to quickly damp the error, since the number of unknowns on the coarsest
grid remains relatively small. The overall algorithm essentially only depends on the proper
space decompositions and the correspondence with the set of generators thus is applicable in
any dimension. The more general forms will be discussed in our subsequent works.

Algorithm 4.1. Successive correction V (�1; �2) scheme

Input:
�, the domain of interest; �, a probability distribution on �;
k, number of generators;
z= {zi}k+1i=0 ∈W, the ends plus the initial set of generators.
Output:
z= {zi}k+1i=0 , the ends plus the set of generators for CVT {Vi}ki=1.
Method:
1. For i= J :−1: 2
Repeat �1 times: given z, �nd z= z+ �0j � 

i
j ∈W sequentially for 16j6ni

such that H̃(z+ �0j � 
i
j)= min�j H̃(z+ �j

� 
i
j),

endfor
2. At the coarsest level, update z by z←CoarseGridSolve(z).
3. For i=2: 1: J
Repeat �2 times: given z, �nd z= z+ �0j � 

i
j ∈W sequentially for 16j6ni,

such that H̃(z+ �0j � 
i
j)= min�j H̃(z+ �j

� 
i
j),

endfor
4. Repeat the procedure 1 to 3 until some stopping criterion is met.

First, for y= u− v where u; v∈W, we supply with the following norm:

‖y‖21;W=
1
k

k+1∑
i=1
(yi − yi−1)2

Note that y0 =yk+1 =0.
We can state the following convergence result.

Theorem 4.1
Algorithm 3.1 converges uniformly in W for any density of the type �(x)=1+ �g(x), where
g(x) is smooth and � is small. Moreover, dn= H̃(un)− H̃(u) satis�es

dn6rdn−1; r ∈ (0; 1)
for some constant r=C=(1 + C), where C=C21C

2
2L=K

3, independent of the number of
generators or the number of layers.

The proof of the above result can be constructed following the framework of Reference [33]
and is rather technical, so it appears in a separate work [19], while extensions of this proof
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to higher dimensions are discussed in Reference [20]. Roughly, the key steps of the proof
include demonstrating that for all densities of the given type there exist constants K¿0; L¿0
such that

K‖w − v‖21;W6(H̃
′
(w)− H̃

′
(v); w − v)6L‖w − v‖21;W; ∀w; v∈W

Moreover, the space decomposition (e.g. for the hierarchical basis) satis�es:

(1) for any v∈W, there exist vi ∈ �Wi such that

J∑
i=1

vi= v;
(

J∑
i=1
‖vi‖21; �Wi

)1=2
6C1‖v‖1;W

(2) for any wij ∈W; ui ∈ �Wi ; vj ∈ �Wj, we have

J∑
i; j=1

(H̃
′
(wij + ui)− H̃

′
(wij); vj)6C2

(
J∑

i=1
‖ui‖21; �Wi

)1=2( J∑
j=1
‖vj‖21; �Wj

)1=2

The complete proof is given in Reference [19] and is omitted here.

Corollary 4.2
For the constant density function in 1-d, we have C=4.

It follows that for a suitable choice of decomposition the asymptotic convergence factor
of our multilevel algorithm is independent of the size of the problem and the number of
grid levels, which gives a signi�cant speedup compared to other methods, like the traditional
Lloyd iteration. This claim can be justi�ed by the following numerical examples, computed
using the Matlab 6.5 implementation of the new algorithm on a Pentium IV with 512MB
RAM. We compare the results of our V (1; 0) multilevel implementation with the regular
Lloyd method, and we also present some results for a two-dimensional test problem in a
parallelogram domain.
The one-dimensional implementation is very straightforward. Here, we take the unit interval

and test a couple of di�erent density functions �(x)=1 and �(x)=1 + x. For the energy
functional H̃ de�ned in (4), we plot the convergence factor �≈ |H̃(un+1)−H̃(un)|=|H̃(un)−
H̃(un−1)| for each V (1; 0) cycle with respect to the total number of generators (grid points)
involved.
Figure 7 substantiates the fact that the speed of convergence for the proposed scheme re-

mains nearly constant as the number of generators increases. The graph shows that for the 1-d
examples, the computational time scales almost linearly with the problem size. More statistics
on the implementation using other multilevel cycles can be found in Reference [19]. The geo-
metric rate of the energy and error reduction asserted by Theorem 4.1 are also con�rmed by the
experiments. Indeed, Figure 8 shows the convergence history (that is, the error reduction dur-
ing the iteration) of a V (1; 0)-cycle against the total number of relaxations for the k=129 case.
Finally, the convergence factors for some two-dimensional problems on a parallelogram

domain are compared in Figure 9. The graph on the left shows the convergence factor for
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Figure 7. The left plot shows the convergence factor vs the number of generators for
Lloyd (upper) and multilevel (lower curves) iterations with �(x)=1 and �(x)=1+x.
The right plot shows the computational time needed for the V (1; 0) implementation

of the multilevel method vs the problem size.
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Figure 8. The energy reduction (left) and the convergence history (right) for 129
generators in the log-normal scale.

the compatible relaxation, that is, with the exact solution given at the coarse nodes (see
Reference [34] for further discussion). The result gives an indication of the e�ectiveness of
the coarsening procedure. On the right of Figure 9 is the convergence history plot for the 2-d
example. The top curves there depicts the error reductions given by the Lloyd iteration, while
the graphs below correspond to the convergence of the multigrid scheme for various problem
sizes. We see that even though our theoretical results are only proved in 1-d here, it is clear
that they remain valid in the higher dimensional implementations.
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5. CONCLUSION

In this paper, several methods are proposed for accelerating the convergence of the classi-
cal Lloyd iteration commonly used in the context of quantization and in the construction of
centroidal Voronoi tessellations. The coupling of the Lloyd method with a Newton-like iter-
ation is introduced and studied both analytically and numerically. Some possible extensions
that use multilevel techniques to accelerate the convergence of the CVTs are suggested and
their implementations demonstrate enhancement of both the robustness and the e�ciency of
the original algorithm. One of the extensions uses algebraic multigrid solver as a precondi-
tioner to accelerate the solution of the linear system at every Newton iteration, while the
other adopts a novel energy based non-linear multigrid approach with the use of a dynamic
non-linear preconditioning. Some analysis of the convergence properties and numerical exper-
iments for these methods are carried out, with the more in-depth studies of the new algorithms
as well as various application problems left to the future works.
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