
 Open access Journal Article DOI:10.1007/S11590-014-0742-X

Acceleration strategies for the weight constrained shortest path problem with
replenishment — Source link

Manuel A. Bolívar, Leonardo Lozano, Andrés L. Medaglia

Institutions: University of Los Andes

Published on: 17 Apr 2014 - Optimization Letters (Springer Berlin Heidelberg)

Topics: K shortest path routing, Constrained Shortest Path First, Shortest path problem, Shortest Path Faster Algorithm and
Yen's algorithm

Related papers:

 On an exact method for the constrained shortest path problem

 An enhanced K-SP algorithm with pruning strategies to solve the constrained shortest path problem

 Engineering Label-Constrained Shortest-Path Algorithms

 Finding Multi-Constrained Multiple Shortest Paths

 On Accuracy of Approximation for the Resource Constrained Shortest Path Problem

Share this paper:

View more about this paper here: https://typeset.io/papers/acceleration-strategies-for-the-weight-constrained-shortest-
iudujuuo1j

https://typeset.io/
https://www.doi.org/10.1007/S11590-014-0742-X
https://typeset.io/papers/acceleration-strategies-for-the-weight-constrained-shortest-iudujuuo1j
https://typeset.io/authors/manuel-a-bolivar-5c5quiyt9q
https://typeset.io/authors/leonardo-lozano-1x75s2453g
https://typeset.io/authors/andres-l-medaglia-1cnstd6s3x
https://typeset.io/institutions/university-of-los-andes-38cnheag
https://typeset.io/journals/optimization-letters-gsd0mr0e
https://typeset.io/topics/k-shortest-path-routing-mggugild
https://typeset.io/topics/constrained-shortest-path-first-368n85ro
https://typeset.io/topics/shortest-path-problem-30ne28nq
https://typeset.io/topics/shortest-path-faster-algorithm-2dqbkniv
https://typeset.io/topics/yen-s-algorithm-3qp8ghy1
https://typeset.io/papers/on-an-exact-method-for-the-constrained-shortest-path-problem-2yqhfpz7r2
https://typeset.io/papers/an-enhanced-k-sp-algorithm-with-pruning-strategies-to-solve-1csar5k5t8
https://typeset.io/papers/engineering-label-constrained-shortest-path-algorithms-z10bnjonxi
https://typeset.io/papers/finding-multi-constrained-multiple-shortest-paths-2oi00u48uw
https://typeset.io/papers/on-accuracy-of-approximation-for-the-resource-constrained-26oj4sv2kf
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/acceleration-strategies-for-the-weight-constrained-shortest-iudujuuo1j
https://twitter.com/intent/tweet?text=Acceleration%20strategies%20for%20the%20weight%20constrained%20shortest%20path%20problem%20with%20replenishment&url=https://typeset.io/papers/acceleration-strategies-for-the-weight-constrained-shortest-iudujuuo1j
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/acceleration-strategies-for-the-weight-constrained-shortest-iudujuuo1j
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/acceleration-strategies-for-the-weight-constrained-shortest-iudujuuo1j
https://typeset.io/papers/acceleration-strategies-for-the-weight-constrained-shortest-iudujuuo1j

Acceleration strategies for the Weight Constrained

Shortest Path Problem with Replenishment

Manuel A. Bolívar, Leonardo Lozano, Andrés L. Medaglia
1

Centro para la Optimización y Probabilidad Aplicada (COPA), Departamento de Ingeniería Industrial, Universidad de Los

Andes, Bogotá, Colombia.

Abstract

The Weight Constrained Shortest Path Problem with Replenishment (WCSPP-R) generalizes the Constrained

Shortest Path Problem (CSP) and has multiple applications in transportation, scheduling, and

telecommunications. We present an exact algorithm that combines and extends the ideas proposed in the

state-of-the-art algorithms for the CSP and WCSPP-R. The novelty lies in a set of acceleration strategies that

significantly improves the algorithm’s performance. We conducted experiments over large real-road

networks achieving speedups up to 219 against the state-of the-art algorithm.

Keywords: Shortest path problem, replenishment, resource constraint, large-scale networks.

1. Introduction

Let be a directed graph defined by a set { } of nodes and a set { | } of directed arcs. Each arc has an associated cost ,

a resource consumption , and a binary indicator that takes the value of 1 if the arc is a

replenishment arc (it takes the value of 0, otherwise). The Weight Constrained Shortest Path

Problem with Replenishment (WCSPP-R) consists of finding the minimum cost path between a

start node and an end node without exceeding a resource constraint while

taking into account replenishment arcs that reset the value of the consumed resource to zero (at

the start of the arc).

Replenishment opportunities arise naturally in several contexts related to shortest paths. For

instance, in airline crew pairing the rest periods replenish the workability of a crew (Azadeh et al.,

2013); equivalently, in aircraft routing, preventive maintenance allows the aircraft to keep flying

(Wang & Pham, 2013). In vehicle routing, fuel or energy replenishment may be necessary to reach

the final destination. A clear example arises in the recent context of electric vehicles (EVs). EVs

have seen a tremendous growth in recent years due to their low carbon emission, the high price of

fuel, and public environmental concerns (Gallardo-Lozano, 2012). However, current EVs have

some major disadvantages, namely, limited autonomy and long charging times (Kobayashi, 2011).

Although some of these problems have been dealt with computer-aided intelligent routing (Lee &

1
 Corresponding author. Universidad de Los Andes, Cr 1E No. 19A-10, ML711, Bogotá, Colombia. Tel: +57 (1)

3393949x2880; e-mail: amedagli@uniandes.edu.co; URL: http://wwwprof.uniandes.edu.co/~amedagli

Park, 2013), the literature has seldom addressed the inclusion of these replenishment

opportunities.

The WCSPP-R has not been studied, with the notable exception of Smith et al. (2012) who

proposed two exact algorithms. The first one uses a meta-network (or high level network) to

exploit the inter-replenishment subpath structure of feasible paths. The second one is a label

correcting algorithm combined with an efficient preprocessing technique used to aggressively

reduce the size of the network, removing nodes and arcs by the use of primal and dual bounds.

They tested the algorithms over two types of networks: the first one, a set of randomly generated

grid networks; and the second one, a set of acyclic networks that arise as subproblems in a

branch-and-price approach for an airline crew pairing problem. In these computational

experiments, the label correcting algorithm outperforms the method based on the meta-network.

A problem related to the WCSPP-R is the shortest path problem with relays (SPPR). This problem

consists of finding the minimum cost path from an origin to a destination, subject to a resource

constraint, and using nodes that reset the resource consumption according to a node dependent

cost attribute. Cabral et al. (2005) introduced three solution methods for this problem and later,

Cabral et al. (2008) used the SPPR as a subproblem for a network design problem. More recently,

Laporte & Pascoal (2011) proposed a new strategy to solve the SPPR based on a label correcting

algorithm; additionally, they solved a variant of the problem where the path and relay costs are

considered separately.

Finally, for the CSP there is plenty of literature available. Joksch (1966) proposed a dynamic

programming algorithm to solve the CSP, lately extended by Dumitrescu & Boland (2003) by

including preprocessing technics. Handler & Zang (1980) use a -shortest path algorithm where

they identify paths, sort them by length and evaluate them successively until finding the first

feasible path. Santos et al. (2007) extended this idea by improving the search direction based on

the relative tightness of the resource constraint. More recently, Lozano & Medaglia (2013)

proposed an exact algorithm using a recursive depth-first search exploration combined with

pruning strategies to avoid a complete exploration of the network.

The contribution of this paper is twofold: from a methodological perspective, we present a set of

acceleration strategies that combines depth and breadth search, generalizing the ideas proposed

by Smith et al. (2012) and Lozano & Medaglia (2013), both state-of-the-art algorithms for the

WCSPP-R and CSP, respectively. From a computational perspective, we provide a vast set of real-

road networks for the WCSPP-R and conduct extensive computational experiments achieving

remarkable speedups of up to 219 times against the state-of-the-art algorithm for the WCSPP-R.

The remainder of this paper is organized as follows: Section 2 presents an overview of the

algorithms proposed by Smith et al. (2012) and Lozano & Medaglia (2013), and outlines the

intuition behind the acceleration strategies. Section 3 provides a detailed description of the

acceleration strategies. Section 4 presents the computational results. Finally, Section 5 concludes

the paper and outlines future work.

2. Previous work and acceleration strategies intuition

We extend the Label Correcting (LC) algorithm proposed by Smith et al. (2012) for the WCSPP-R

and the pulse algorithm presented by Lozano & Medaglia (2013) for the CSP. Both approaches are

based on the idea of exploiting the underlying information of the network (e.g., primal and dual

bounds) with the purpose of avoiding a complete exploration of the graph without jeopardizing

the optimal solution. In this section, we overview the LC and pulse algorithms in order to introduce

our approach and present the acceleration strategies intuition.

The Label Correcting (LC) algorithm (Smith et al., 2012) comprises two stages. The first stage is a

preprocessing procedure that finds dual (lower) and primal (upper) bounds on the cost and weight

incurred from to any node and from every node to the sink node . Then it

aggressively removes from the network those nodes and arcs that cannot be part of the optimal

solution or cannot improve the primal bound. A second stage comprises an implicit complete

graph exploration via a LC algorithm where the labels are processed with a given treatment

criterion. Each label in a node represents a partial path from to and consists of three

elements: the node , the cumulative cost , and the consumed resource . The LC

algorithm starts with an empty set of untreated labels that is triggered by setting a label in with

cost and resource consumption equal to zero. According to the label treatment criterion, labels

are pulled out from the untreated label set and extended from their node along each outgoing arc,

generating new labels. However, not all the outgoing arcs generate new labels because infeasible

and dominated labels are discarded. The LC algorithm stops when the untreated label set is

empty.

Equivalently, the pulse algorithm (Lozano and Medaglia, 2013) also comprises two stages: 1) a

bounding stage that finds dual bounds on the cost and the resource consumption from any node to the final node , and 2) a recursive exploration stage that finds the optimal solution based

on an implicit enumeration of the solution space. The exploration is started by sending a pulse

from the start node . The pulse tries to propagate throughout the outgoing arcs of each visited

node recursively, storing at each node the partial path , the cumulative cost and the

cumulative resource consumption . At each node, different pruning strategies try to prevent

pulse propagation based on partial path dominance, infeasibility, and bounds. Every pulse that

reaches the sink node contains all the information of a feasible path from to and possibly

updates the global primal bound.

It is worth noting the similarities between these parallel research lines. First, both algorithms find

cost and resource bounds for all nodes. Nonetheless, the preprocessing of the LC algorithm goes a

step further and uses the computed information to remove nodes and arcs from the graph.

Second, although the exploration order may differ from each other, the ideas of discarding a label

or pruning a pulse are very similar. Finally, both algorithms use analogous strategies to prevent the

propagation of labels and pulses, i.e., infeasibility, dominance, and bounds.

However, the approaches present important differences in the way the graph is explored. On one

hand, the LC algorithm explores all the successors of a label’s node and then globally selects the

next label to be extended according to the label treatment criterion following a lexicographic

breadth-first search (Corneil, 2005). On the other hand, the pulse algorithm follows a pure depth-

first search because a pulse propagates recursively until it is pruned or reaches the sink node.

Finally, the pulse algorithm updates the incumbent primal bound when the sink node is

reached; whereas the LC algorithm does not update the primal bound.

Our proposed approach puts together the best from both algorithms under the pulse framework.

In a first stage it obtains primal and dual bounds using the flawless preprocessing procedure by

Smith et al. (2012). In a second stage, it explores the network using a modified pulse algorithm

with new pruning strategies and an enhanced exploration order. Aside from the basic pruning

strategies, i.e., infeasibility, dominance, and bounds, we prune pulses based on a path completion

strategy. Additionally, when the depth of a pulse reaches a maximum allowed value , it is

paused and stored in a pulse queue . Each paused pulse is defined as a tuple: where is the node where the pulse was paused while are the cumulative cost, resource, and depth, and is the partial path of the

paused pulse. The algorithm stops when the pulse queue is empty. It is noteworthy that the way

the algorithm explores the graph depends on the value of : If is equal zero, the exploration

becomes a lexicographic breadth-first search; on the other hand, if is large enough, the

exploration becomes depth-first search. Intermediate values for will combine depth-first with

breadth-first search strategies.

Algorithm 1 presents the pseudocode of the proposed algorithm. Lines 1 through 5 initialize the

partial path , the pulse queue , the initial cumulative cost , the initial resource consumption and the initial depth . Line 6 executes the preprocessing algorithm proposed by Smith et al.

(2012). Line 7 starts the pulse queue with a paused pulse in node . Lines 8 through 13

propagate pulses according to the queueing discipline. Line 9 extracts the next paused pulse to be

processed and line 10 removes it from the pulse queue. Line 11 checks if the paused pulse can be

discarded by bounds pruning. If the pulse is not discarded, line 12 propagates the pulse resuming

at node . Finally, line 15 returns the optimal path found in the pulse function.
1: { }
2: { }
3:

4:

5:

6:

7: { }
8:

9:

10: { }
11: ()

12:

13:

14:

15: return

Algorithm 2 shows the body of the recursive function pulse where { | } is

the set of adjacent nodes from node . Lines 2 through 5 update the cumulative cost, cumulative

consumed resource, depth, and partial path of the pulse. Line 6 checks if it is feasible to reach the

sink node from node . Line 7 tries to prune the new pulse using bounds while line 8 checks if

the partial path is dominated. Line 9 explores the possibility of completing the partial path
with the minimum cost feasible path or updating the primal bound with the minimum-weight

feasible path from node to the sink node . Line 10 checks if the pulse has reached the

maximum depth , if so, line 11 adds the pulse () to the pulse queue resetting its

depth to zero. Finally, line 13 recursively propagates the pulse through node .

1:

2:

3: ()

4:

5: { }
6: ()

7: ()

8: ()

9: ()

10:

11: {()}
12:
13: ()
14:

15:

16:

17:

18:

19:

Every time the pulse function is called over the sink node , it checks if the incumbent primal

bound can be updated and the pulse propagation stops.

3. Acceleration strategies

In addition to the pruning strategies for the CSP (Lozano & Medaglia, 2013), our algorithm uses

three new acceleration strategies, namely, path completion, pulse queueing, and an enhanced

exploration order. Henceforth we denote the minimum cost path from a node to the sink

node by and the minimum weight feasible path from to by . It is worth highlighting

that all minimum cost paths and minimum weight feasible paths from any node to are

computed beforehand, in a preprocessing stage.

3.1 Basic pruning strategies

The basic pruning strategies used in both the LC algorithm and the pulse algorithm are:

infeasibility, bounds, and dominance pruning. The infeasibility pruning strategy discards a partial

path when it already exceeds the resource constraint when it is completed with the minimum

weight feasible path, i.e., . The bounds pruning strategy uses a primal

bound ̅ that it is updated with the value of the best solution found so far. If ̅,
then path can be safely pruned because a better (or equal) solution has been found before in

the exploration. Finally, for dominance pruning, let and be two partial paths at a given node . It is said that dominates if and ; or .

and For further information about these strategies, the reader is referred to

Lozano & Medaglia (2013) and Smith et al. (2012).

3.2 Path completion

Given a partial path arriving to a node , the path completion strategy adds the

minimum cost path from to to the partial path , i.e., and checks if the

completed path is feasible and less than the primal bound ̅. Note that if a path

completion occurs, there is no need to explore additional paths beginning with because is

already the minimum cost path from to and thus will be the minimum cost path

beginning with partial path . In this case the pulse associated with can be pruned and the

primal bound can be updated. This idea was implemented in the pulse framework following the

intuition suggested by Smith et al. (2012) as a future extension to their algorithm.

Furthermore, if a path cannot be completed using the minimum cost path, there is still a chance to

update the primal bound. Given a partial path , the path can be completed by adding the

minimum-weight feasible path from to to the partial path, i.e., . If ̅, the primal bound can be updated, but the pulse associated with path cannot be

pruned.

3.2 Pulse queueing

Breadth-first and depth-first search have both advantages and limitations (Korf, 1985). Breadth-

first search (BFS) expands the start node through the outgoing arcs, and then processes the nodes

by depth level, layer by layer, until it reaches the end node. The main drawbacks of BFS are: 1) the

memory requirements to store all the states; and 2) the possible lack of feasible solutions at

intermediate steps of the search (i.e., it may take until the last iteration to reach the end node).

On the other hand, depth-first search (DFS) processes an outgoing arc from the most recently

expanded node until it reaches the end node; then it backtracks to process unexplored outgoing

arcs. In contrast to BFS, the only information stored in DFS relates to the currently explored path;

thus it requires less memory requirements than BFS. Because DFS favors depth over breadth, it

reaches the end node often, thus it generates complete solutions that are used to update the

primal bound. However, a major disadvantage of DFS is that it could waste time exploring

unpromising regions of the search space before backtracking and correcting poor decision made at

earlier stages of the exploration.

Because it is not obvious on which instances BFS or DFS give better results, we propose to

combine both search paradigms. The idea is to perform a depth-first search from the start node

but restricted with a maximum depth . When a pulse reaches that depth, the partial path is

stored in the pulse queue following a given queue discipline. Once there are no active pulses,

we explore the queued pulses until is empty.

If the value for is large enough, the exploration behaves as DFS. Thus, if the first extended arc in

a path is not part of the optimal solution, it may be necessary to explore all the possible paths

that include that arc to conclude that extending it was a naïve decision. However, by fixing a low

value for , the algorithm behaves much more like BFS and it is able to timely reroute the

exploration after reaching the depth limit.

3.3 Enhanced exploration order

The graph exploration order is critical for the algorithm’s performance and it is defined by the

queue discipline for . Given a partial path arriving to node , we considered the following

queueing disciplines: 1) minimum cost, 2) maximum cost, 3) minimum weight, 4) maximum

weight, and 5) best promise. The first four disciplines were presented by Smith et al. (2012) and

the latter is our proposed exploration order. We define the promise of a path as the

cumulative cost of a path plus the cost of the minimum cost path from to , formally . Given that is the best possible path from node to , the

rationale behind this queue discipline is to explore first those partial paths which promise the best

possible objective function, that is, those paths with the minimum . It is remarkable that

this exploration order tries to reach the end node as fast as possible and attain a tight primal

bound opposed to the minimum cost or minimum weight criteria that explore the graph by layers.

Finally, it is important to note that each one of the acceleration strategies has an important effect

on the algorithm’s performance; however, its efficiency is not the sum of the individual effects of

each strategy, but the interaction among all the acceleration strategies and the basic pruning

strategies.

4. Computational experiments

We coded our pulse algorithm and the LC algorithm by Smith et al. (2012) to conduct a head-to-

head comparison. Both algorithms were coded in Java, using Eclipse SDK version 3.6.1 and tested

on a computer with an Intel Xeon X5450 @ 3.00 GHz (2 processors with four cores each) with 6 GB

of RAM allocated to the memory heap size of the Java Virtual Machine on Windows Vista

Professional.

We design two sets of computational experiments. The first set validates our implementation of

the LC algorithm, showing that it is efficient and suitable as a benchmark for comparison. The

second set measures the contributions of the acceleration strategies over a vast set of real-road

networks.

4.1 The testbed

For the validation experiment we use randomly generated grid networks following the generation

procedure proposed by Smith et al. (2012). We generated 30 instances for grids of 100x100,

200x200, and 400x400 nodes for a grand total of 90 instances. Each instance has a start node with

outgoing arcs to the first layer of the grid and an end node with incoming arcs from the last layer.

For the second experiment we used real road networks, three from Raith & Ehrgott (2009) and 10

from the 9
th

 DIMACS Implementation Challenge for the shortest path problem (Demetrescu et al.,

2006). The networks were divided in two sets based on their size: medium and large. The medium-

sized networks have between 9,000 and 1,000,000 nodes and the large-sized networks contain

instances with over 1,000,000 nodes. Following the same approach by Smith et al. (2012), each

network was adapted to the WCSPP-R by randomly selecting replenishment arcs with a probability

of 5%. For each adapted network, we generated 30 instances with randomly selected start and

end nodes for a grand total of 390 instances. Table 1 summarizes the size of the road networks

used in this experiment.

Table 1. Description of the benchmark with real road networks

We tested different levels of tightness for the resource constraint. Smith et al. (2012) define the

right side of the resource constraint as where is the lowest resource

limit for which there is a feasible path, is the lowest resource limit for which the minimum

cost path is the optimal solution, and . We used four values for : 0.1, 0.5, 0.9, and 1;

where small (large) values for lead to loosely (tightly) constrained problems. Additionally, we

characterized each instance by computing the exact values of and . We have made

publicly available all instances used in this paper for the WCSPP-R at

http://hdl.handle.net/1992/1159.

http://www.dis.uniroma1.it/~challenge9/
http://www.dis.uniroma1.it/~challenge9/
http://hdl.handle.net/1992/1159

4.2 Validation experiment

Smith et al. (2012) tested the performance of 10 different label treatment criteria and concluded

that the minimum is a strong alternative to solve the WCSPP-R. For this reason, we also

chose this criterion in our Java implementation of the LC algorithm (jLC).

Table 2 compares the time (including preprocessing) reported by Smith et al. (2012) with their

implementation of the LC algorithm (cLC) against our implementation in Java (jLC) over the set of

randomly generated grids. For the sake of fairness, we scaled all our times using the LINPACK

benchmark (Dongarra, 2009); according to this benchmark our computer is 1.54 times faster than

the one used by Smith et al. (2012). Column 1 shows the name of the instance, column 2 presents

the tightness of the resource constraint , column 3 shows the average time in seconds reported

by Smith et al. (2012), and columns 4 and 5 report the scaled average time in seconds and the

standard deviation for jLC over the 30 instances generated for each grid configuration.

Table 2. Validation of our implementation against the original LC algorithm

Table 2 shows that jLC is a strong and robust implementation of the algorithm. For all instances

and values of jLC outperforms cLC. Moreover, when the network size increases, the time gaps

become even larger. This good performance is due to a thorough selection of the data structures

and a careful implementation of the procedures used for managing the labels set.

4.3 The pulse algorithm against the LC benchmark

After validating our jLC implementation of the algorithm by Smith et al. (2012) we conducted a

head-to-head comparison between jLC and our enhanced pulse algorithm. Given that the

preprocessing procedure is the same for both algorithms, we decided to separate the

preprocessing time from the rest of the execution time. For these experiments, jLC still uses the

minimum as label treatment criterion, while the pulse follows an exploration order by

minimum promise . After fine tuning the pulse algorithm, the depth limit was fixed in 2.

Table 3 and Table 4 present the results of these experiments. Column 1 shows the name of the

instance; column 2 presents the tightness of the resource constraint ; column 3 presents the

average time in seconds spent in the preprocessing procedure (same for jLC and for pulse);

columns 4 and 5 present the average time in seconds used by jLC and pulse after the

preprocessing procedure; column 6 presents the arithmetic mean of the speedup calculated as the

ratio between the times for jLC and the pulse; columns 7 and 8 present the minimum and

maximum speedup achieved among the corresponding 30 experiments; and column 9 presents

the geometric mean of the speedup. Note that the geometric mean, opposed to the arithmetic

mean, avoids the bias produced by the performance of few good results (Bixby, 2012). Finally, the

last row presents an overall mean of the speedups over the whole testbed.

Table 3. Assessing the effects of the acceleration strategies over the medium-size road networks

The results presented in Table 3 show that the pulse consistently outperforms jLC in 23 out of 24

midsized real-road network instances and through all values of the tightness factor . The

acceleration strategies can achieve average speedups of up to 58 while the geometric average

speedups range between 0.96 and 9, proving that these strategies really pay back on real-road

networks. It is noticeable that the effects of the acceleration strategies present a high variability,

for example, in the NJ network with the minimun speedup is 0.94 while the maximum

speedup exceeds 1,400. However, both the arithmetic and geometric averages of speedup

indicate a global speedup of roughly 10 and 3 times, respectively.

Table 4. Computational results for the large size road networks

Table 4 shows that the pulse also outperforms jLC in the 28 experiments made on the large sized

instances and across all values of the tightness factor . Note that the average speedups in these

networks are larger than those obtained in the midsized networks, thus showing a sign of

scalability of the pulse algorithm. Additionally, despite the variability exhibited by the accelerated

pulse with minimum and maximum speedups between 0.25 and 6,000, it is evident the strength of

the algorithm. In fact, the arithmetic and geometric average speedups are up to 219 and 28.

Moreover, the pulse reaches a global speedup of roughly 40 and 6 measured by the arithmetic and

geometric mean respectively. Finally, it is remarkable the time spent solving most of the instances

is about 15 seconds, and around 1 minute for the largest instance with up to 6 million nodes and

15 million arcs.

5. Concluding remarks

We present a set of acceleration strategies for the WSPP-R extending the work by Smith et al.

(2012) and Lozano & Medaglia (2013). First, we provide a path completion strategy that avoids

unnecessary exploration of suboptimal regions of the solution space (paths in the network) and

strengthens the primal bound. Second, we combine the ideas of performing breadth- and depth-

first search via a pulse queue that controls the depth of the exploration. Finally, we propose an

enhanced graph exploration order based on a promise obtained from dual bounds.

From a computational perspective, we adapted and characterized a vast set of real-road networks

that now comprises a comprehensive publicly available testbed for the WCSPP-R. We conducted

several computational experiments that demonstrate the effects of the proposed enhanced pulse

algorithm with acceleration strategies compared against the state-of-the-art algorithm for the

WCSPP-R. In the midsized networks the acceleration strategies reached average speedups of up to

58 and they exhibit an overall performance of 10 and 3 times faster measured by the arithmetic

and the geometric mean of speedups, respectively. In the larger networks the effects of the

acceleration strategies are even better, achieving global speedups of roughly 40 and 6 measured

by the arithmetic and geometric mean, respectively; moreover, they achieved average speedups

of up to 219 times on networks with up to 6 million nodes and 15 million arcs. Finally, our

acceleration strategies are easy to understand and to implement and could be applied both on the

pulse algorithm or other label-based algorithms like LC.

References

Azadeh, A., Farahani, M. H., Eivazy, H., Nazari-Shirkouhi, S., & Asadipour, G. (2013). A hybrid meta-

heuristic algorithm for optimization of crew scheduling . Applied Soft Computing , 13(1),

158-164.

 Bixby, R. E. (2002). Solving real-world linear programs: A decade and more of progress. Operations

research, 50(1), 3-15.

Cabral, E. A. (2005). Wide area telecommunication network design: problems and solution

algorithms with application to the Alberta SuperNet. Ph.D. dissertation, University of

Alberta, Canada.

Cabral, E. A., Erkut, E., Laporte, G., & Patterson, R. A. (2008). Wide area telecommunication

network design: application to the Alberta SuperNet. Journal of the Operational Research

Society, 59, 1460-1470.

Corneil, D. (2005). Lexicographic Breadth First Search: A Survey. In Graph-Theoretic Concepts in

Computer Science (Vol. 3353, pp. 1-19). Springer Berlin Heidelberg.

Demetrescu, C., Goldberg, A., & Johnson, D. (2006). 9th DIMACS Implementation Challenge -

Shortest Paths. www.dis.uniroma1.it/~challenge9/

Dongarra, J. (2009). Performance of various computers using standard linear equations software.

Tech. rep., University of Tennessee, USA.

Dumitrescu, I., & Boland, N. (2003). Improved preprocessing, labeling and scaling algorithms for

the Weight-Constrained Shortest Path Problem. Networks, 42(3), 135-153.

Eisner, J., Funke, S., & Storandt, S. (2011). Optimal route planning for electric vehicles in large

networks. Proceedings of the Twenty-Fifth AAAI conference on Artificial Intelligence.

Gallardo-Lozano, J., Milans-Montero, M. I., Guerrero-MartÃnez, M. A., & Romero-Cadaval, E.

(2012). Electric vehicle battery charger for smart grids. Electric Power Systems Research,

90, 18-29.

Handler, G. Y., & Zang, I. (1980). A dual algorithm for the constrained shortest path problem.

Networks, 10(4), 293-309.

Joksch, H. C. (1966). The shortest route problem with constraints(Shortest route problem with

constraint, using set of nodes). Journal of Mathematical analysis and applications, 14, 191-

197.

http://www.dis.uniroma1.it/~challenge9/

Kobayashi, Y., Kiyama, N., Aoshima, H., & Kashiyama, M. (2011). A route search method for electric

vehicles in consideration of range and locations of charging stations. Intelligent Vehicles

Symposium (IV), 2011 IEEE, (pp. 920-925).

Konak, A. (2012). Network design problem with relays: A genetic algorithm with a path-based

crossover and a set covering formulation . European Journal of Operational Research ,

218(3), 829-837.

Korf, R. E. (1985). Depth-first Iterative-Deepening: An Optimal Admissible Tree Search. Artificial

Intelligence, 27, 97-109.

Laporte, G., & Pascoal, M. M. (2011). Minimum cost path problems with relays. Computers &

Operations Research, 38(1), 165-173.

Lee, J., & Park, G.-L. (2013). Orienteering Problem Modeling for Electric Vehicle-Based Tour. In

Intelligent Information and Database Systems (Vol. 7803, pp. 100-108). Springer Berlin

Heidelberg.

Lozano, L., & Medaglia, A. L. (2013). On an exact method for the constrained shortest path

problem. Computers & Operations Research, 40(1), 378-384.

Raith, A., & Ehrgott, M. (2009). A comparison of solution strategies for biobjective shortest path

problems . Computers & Operations Research , 36(4), 1299-1331.

Santos, L., Coutinho-Rodrigues, J., & Current, J. R. (2007). An improved solution algorithm for the

constrained shortest path problem . Transportation Research Part B: Methodological ,

41(7), 756-771.

Smith, O. J., Boland, N., & Waterer, H. (2012). Solving shortest path problems with a weight

constraint and replenishment arcs. Computers & Operations Research, 39(5), 964-984.

Wang, Y., & Pham, H. (2013). Maintenance Modeling and Policies. Stochastic Reliability and

Maintenance Modeling (Vol. 9, pp. 141-158). Springer London

