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Abstract 

The Weight Constrained Shortest Path Problem with Replenishment (WCSPP-R) generalizes the Constrained 

Shortest Path Problem (CSP) and has multiple applications in transportation, scheduling, and 

telecommunications. We present an exact algorithm that combines and extends the ideas proposed in the 

state-of-the-art algorithms for the CSP and WCSPP-R. The novelty lies in a set of acceleration strategies that 

significantly improves the algorithm’s performance. We conducted experiments over large real-road 

networks achieving speedups up to 219 against the state-of the-art algorithm. 

Keywords: Shortest path problem, replenishment, resource constraint, large-scale networks. 

 

1. Introduction 

Let          be a directed graph defined by a set   {            } of nodes and a set    {     |             } of directed arcs. Each arc         has an associated cost    , 

a resource consumption    , and a binary indicator     that takes the value of 1 if the arc is a 

replenishment arc (it takes the value of 0, otherwise). The Weight Constrained Shortest Path 

Problem with Replenishment (WCSPP-R) consists of finding the minimum cost path between a 

start node       and an end node      without exceeding a resource constraint   while 

taking into account replenishment arcs that reset the value of the consumed resource to zero (at 

the start of the arc).   

Replenishment opportunities arise naturally in several contexts related to shortest paths. For 

instance, in airline crew pairing the rest periods replenish the workability of a crew (Azadeh et al., 

2013); equivalently, in aircraft routing, preventive maintenance allows the aircraft to keep flying 

(Wang & Pham, 2013). In vehicle routing, fuel or energy replenishment may be necessary to reach 

the final destination. A clear example arises in the recent context of electric vehicles (EVs). EVs 

have seen a tremendous growth in recent years due to their low carbon emission, the high price of 

fuel, and public environmental concerns (Gallardo-Lozano, 2012). However, current EVs have 

some major disadvantages, namely, limited autonomy and long charging times (Kobayashi, 2011). 

Although some of these problems have been dealt with computer-aided intelligent routing (Lee & 
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Park, 2013), the literature has seldom addressed the inclusion of these replenishment 

opportunities. 

The WCSPP-R has not been studied, with the notable exception of Smith et al. (2012) who 

proposed two exact algorithms. The first one uses a meta-network (or high level network) to 

exploit the inter-replenishment subpath structure of feasible paths. The second one is a label 

correcting algorithm combined with an efficient preprocessing technique used to aggressively 

reduce the size of the network, removing nodes and arcs by the use of primal and dual bounds. 

They tested the algorithms over two types of networks: the first one, a set of randomly generated 

grid networks; and the second one, a set of acyclic networks that arise as subproblems in a 

branch-and-price approach for an airline crew pairing problem. In these computational 

experiments, the label correcting algorithm outperforms the method based on the meta-network.  

A problem related to the WCSPP-R is the shortest path problem with relays (SPPR). This problem 

consists of finding the minimum cost path from an origin to a destination, subject to a resource 

constraint, and using nodes that reset the resource consumption according to a node dependent 

cost attribute. Cabral et al. (2005) introduced three solution methods for this problem and later, 

Cabral et al. (2008) used the SPPR as a subproblem for a network design problem. More recently, 

Laporte & Pascoal (2011) proposed a new strategy to solve the SPPR based on a label correcting 

algorithm; additionally, they solved a variant of the problem where the path and relay costs are 

considered separately.  

Finally, for the CSP there is plenty of literature available. Joksch (1966) proposed a dynamic 

programming algorithm to solve the CSP, lately extended by Dumitrescu & Boland (2003) by 

including preprocessing technics. Handler & Zang (1980) use a  -shortest path algorithm where 

they identify   paths, sort them by length and evaluate them successively until finding the first 

feasible path. Santos et al. (2007) extended this idea by improving the search direction based on 

the relative tightness of the resource constraint. More recently, Lozano & Medaglia (2013) 

proposed an exact algorithm using a recursive depth-first search exploration combined with 

pruning strategies to avoid a complete exploration of the network.  

The contribution of this paper is twofold: from a methodological perspective, we present a set of 

acceleration strategies that combines depth and breadth search, generalizing the ideas proposed 

by Smith et al. (2012) and Lozano & Medaglia (2013), both state-of-the-art algorithms for the 

WCSPP-R and CSP, respectively. From a computational perspective, we provide a vast set of real-

road networks for the WCSPP-R and conduct extensive computational experiments achieving 

remarkable speedups of up to 219 times against the state-of-the-art algorithm for the WCSPP-R. 

The remainder of this paper is organized as follows: Section 2 presents an overview of the 

algorithms proposed by Smith et al. (2012) and Lozano & Medaglia (2013), and outlines the 

intuition behind the acceleration strategies. Section 3 provides a detailed description of the 

acceleration strategies. Section 4 presents the computational results. Finally, Section 5 concludes 

the paper and outlines future work. 



2. Previous work and acceleration strategies intuition 

We extend the Label Correcting (LC) algorithm proposed by Smith et al. (2012) for the WCSPP-R 

and the pulse algorithm presented by Lozano & Medaglia (2013) for the CSP. Both approaches are 

based on the idea of exploiting the underlying information of the network (e.g., primal and dual 

bounds) with the purpose of avoiding a complete exploration of the graph without jeopardizing 

the optimal solution. In this section, we overview the LC and pulse algorithms in order to introduce 

our approach and present the acceleration strategies intuition. 

The Label Correcting (LC) algorithm (Smith et al., 2012) comprises two stages. The first stage is a 

preprocessing procedure that finds dual (lower) and primal (upper) bounds on the cost and weight 

incurred from    to any node      and from every node      to the sink node    . Then it 

aggressively removes from the network those nodes and arcs that cannot be part of the optimal 

solution or cannot improve the primal bound. A second stage comprises an implicit complete 

graph exploration via a LC algorithm where the labels are processed with a given treatment 

criterion. Each label in a node    represents a partial path     from    to    and consists of three 

elements: the node   , the cumulative cost       , and the consumed resource        . The LC 

algorithm starts with an empty set of untreated labels that is triggered by setting a label in    with 

cost and resource consumption equal to zero. According to the label treatment criterion, labels 

are pulled out from the untreated label set and extended from their node along each outgoing arc, 

generating new labels. However, not all the outgoing arcs generate new labels because infeasible 

and dominated labels are discarded. The LC algorithm stops when the untreated label set is 

empty. 

Equivalently, the pulse algorithm (Lozano and Medaglia, 2013) also comprises two stages: 1) a 

bounding stage that finds dual bounds on the cost and the resource consumption from any node    to the final node   , and 2) a recursive exploration stage that finds the optimal solution based 

on an implicit enumeration of the solution space. The exploration is started by sending a pulse 

from the start node   . The pulse tries to propagate throughout the outgoing arcs of each visited 

node recursively, storing at each node the partial path  , the cumulative cost      and the 

cumulative resource consumption      . At each node, different pruning strategies try to prevent 

pulse propagation based on partial path dominance, infeasibility, and bounds. Every pulse that 

reaches the sink node    contains all the information of a feasible path from    to    and possibly 

updates the global primal bound. 

It is worth noting the similarities between these parallel research lines. First, both algorithms find 

cost and resource bounds for all nodes. Nonetheless, the preprocessing of the LC algorithm goes a 

step further and uses the computed information to remove nodes and arcs from the graph. 

Second, although the exploration order may differ from each other, the ideas of discarding a label 

or pruning a pulse are very similar. Finally, both algorithms use analogous strategies to prevent the 

propagation of labels and pulses, i.e., infeasibility, dominance, and bounds. 

However, the approaches present important differences in the way the graph is explored. On one 

hand, the LC algorithm explores all the successors of a label’s node and then globally selects the 



next label to be extended according to the label treatment criterion following a lexicographic 

breadth-first search (Corneil, 2005). On the other hand, the pulse algorithm follows a pure depth-

first search because a pulse propagates recursively until it is pruned or reaches the sink node. 

Finally, the pulse algorithm updates the incumbent primal bound when the sink node    is 

reached; whereas the LC algorithm does not update the primal bound. 

Our proposed approach puts together the best from both algorithms under the pulse framework. 

In a first stage it obtains primal and dual bounds using the flawless preprocessing procedure by 

Smith et al. (2012). In a second stage, it explores the network using a modified pulse algorithm 

with new pruning strategies and an enhanced exploration order. Aside from the basic pruning 

strategies, i.e., infeasibility, dominance, and bounds, we prune pulses based on a path completion 

strategy. Additionally, when the depth of a pulse      reaches a maximum allowed value  , it is 

paused and stored in a pulse queue  . Each paused pulse   is defined as a tuple:                         where      is the node where the pulse was paused while                are the cumulative cost, resource, and depth, and   is the partial path of the 

paused pulse. The algorithm stops when the pulse queue is empty. It is noteworthy that the way 

the algorithm explores the graph depends on the value of  : If   is equal zero, the exploration 

becomes a lexicographic breadth-first search; on the other hand, if   is large enough, the 

exploration  becomes depth-first search. Intermediate values for   will combine depth-first with 

breadth-first search strategies. 

Algorithm 1 presents the pseudocode of the proposed algorithm. Lines 1 through 5 initialize the 

partial path  , the pulse queue  , the initial cumulative cost   , the initial resource consumption    and the initial depth   . Line 6 executes the preprocessing algorithm proposed by Smith et al. 

(2012). Line 7 starts the pulse queue   with a paused pulse in node   . Lines 8 through 13 

propagate pulses according to the queueing discipline. Line 9 extracts the next paused pulse to be 

processed and line 10 removes it from the pulse queue. Line 11 checks if the paused pulse can be 

discarded by bounds pruning. If the pulse is not discarded, line 12 propagates the pulse resuming 

at node     . Finally, line 15 returns the optimal path found in the pulse function.                                                                         
1:   { } 
2:   { } 
3:      

4:      

5:      

6:                             

7:     {               } 
8:                         

9:                

10:     { } 
11:               (         )      



12:                                

13:         

14:           

15: return   
 

 

Algorithm 2 shows the body of the recursive function pulse where       {    |       } is 

the set of adjacent nodes from node   . Lines 2 through 5 update the cumulative cost, cumulative 

consumed resource, depth, and partial path of the pulse. Line 6 checks if it is feasible to reach the 

sink node    from node   . Line 7 tries to prune the new pulse using bounds while line 8 checks if 

the partial path    is dominated. Line 9 explores the possibility of completing the partial path    
with the minimum cost feasible path or updating the primal bound with the minimum-weight 

feasible path from node    to the sink node   . Line 10 checks if the pulse has reached the 

maximum depth  , if so, line 11 adds the pulse (             ) to the pulse queue   resetting its 

depth to zero. Finally, line 13 recursively propagates the pulse through node   .  

                                                             

1:                 

2:          

3:      (     )      

4:        

5:      {  } 
6:                    (     )            

7:               (     )             

8:                 (        )             

9:                     (        )             

10:                             

11:     {(             )} 
12:       
13:      (              )  
14:        

15:        

16:        

17:         

18:        

19:           

 

Every time the pulse function is called over the sink node    , it checks if the incumbent primal 

bound can be updated and the pulse propagation stops.  

3. Acceleration strategies 

In addition to the pruning strategies for the CSP (Lozano & Medaglia, 2013), our algorithm uses 

three new acceleration strategies, namely, path completion, pulse queueing, and an enhanced 

exploration order. Henceforth we denote the minimum cost path from a node      to the sink 

node    by      and the minimum weight feasible path from    to    by     . It is worth highlighting 



that all minimum cost paths and minimum weight feasible paths from any node    to    are 

computed beforehand, in a preprocessing stage. 

3.1 Basic pruning strategies 

The basic pruning strategies used in both the LC algorithm and the pulse algorithm are: 

infeasibility, bounds, and dominance pruning. The infeasibility pruning strategy discards a partial 

path     when it already exceeds the resource constraint when it is completed with the minimum 

weight feasible path, i.e.,                 . The bounds pruning strategy uses a primal 

bound   ̅  that it is updated with the value of the best solution found so far. If                 ̅, 
then path     can be safely pruned because a better (or equal) solution has been found before in 

the exploration. Finally, for dominance pruning, let    and    be two partial paths at a given node     . It is said that    dominates    if             and            ; or            . 

and              For further information about these strategies, the reader is referred to 

Lozano & Medaglia (2013) and Smith et al. (2012). 

3.2 Path completion 

Given a partial path      arriving to a node     , the path completion strategy adds the 

minimum cost path      from    to    to the partial path     , i.e.,               and checks if the 

completed path     is feasible and        less than the primal bound   ̅. Note that if a path 

completion occurs, there is no need to explore additional paths beginning with     because      is 

already the minimum cost path from    to    and thus      will be the minimum cost path 

beginning with partial path     . In this case the pulse associated with      can be pruned and the 

primal bound can be updated. This idea was implemented in the pulse framework following the 

intuition suggested by Smith et al. (2012) as a future extension to their algorithm. 

Furthermore, if a path cannot be completed using the minimum cost path, there is still a chance to 

update the primal bound. Given a partial path    , the path can be completed by adding the 

minimum-weight feasible path       from    to    to the partial path, i.e.,             . If         ̅, the primal bound can be updated, but the pulse associated with path     cannot be 

pruned. 

3.2 Pulse queueing 

Breadth-first and depth-first search have both advantages and limitations (Korf, 1985). Breadth-

first search (BFS) expands the start node through the outgoing arcs, and then processes the nodes 

by depth level, layer by layer, until it reaches the end node. The main drawbacks of BFS are: 1) the 

memory requirements to store all the states; and 2) the possible lack of feasible solutions at 

intermediate steps of the search (i.e., it may take until the last iteration to reach the end node). 

On the other hand, depth-first search (DFS) processes an outgoing arc from the most recently 

expanded node until it reaches the end node; then it backtracks to process unexplored outgoing 

arcs. In contrast to BFS, the only information stored in DFS relates to the currently explored path; 

thus it requires less memory requirements than BFS. Because DFS favors depth over breadth, it 



reaches the end node often, thus it generates complete solutions that are used to update the 

primal bound. However, a major disadvantage of DFS is that it could waste time exploring 

unpromising regions of the search space before backtracking and correcting poor decision made at 

earlier stages of the exploration. 

Because it is not obvious on which instances BFS or DFS give better results, we propose to 

combine both search paradigms. The idea is to perform a depth-first search from the start node 

but restricted with a maximum depth  . When a pulse reaches that depth, the partial path is 

stored in the pulse queue    following a given queue discipline. Once there are no active pulses, 

we explore the queued pulses until   is empty.  

If the value for   is large enough, the exploration behaves as DFS. Thus, if the first extended arc in 

a path   is not part of the optimal solution, it may be necessary to explore all the possible paths 

that include that arc to conclude that extending it was a naïve decision. However, by fixing a low 

value for  , the algorithm behaves much more like BFS and it is able to timely reroute the 

exploration after reaching the depth limit. 

3.3 Enhanced exploration order 

The graph exploration order is critical for the algorithm’s performance and it is defined by the 

queue discipline for  . Given a partial path      arriving to node   , we considered the following 

queueing disciplines: 1) minimum cost, 2) maximum cost, 3) minimum weight, 4) maximum 

weight, and 5) best promise. The first four disciplines were presented by Smith et al. (2012) and 

the latter is our proposed exploration order. We define the promise of a path        as the 

cumulative cost of a path     plus the cost of the minimum cost path from    to   , formally                      . Given that      is the best possible path from node    to   , the 

rationale behind this queue discipline is to explore first those partial paths which promise the best 

possible objective function, that is, those paths with the minimum       . It is remarkable that 

this exploration order tries to reach the end node as fast as possible and attain a tight primal 

bound opposed to the minimum cost or minimum weight criteria that explore the graph by layers. 

Finally, it is important to note that each one of the acceleration strategies has an important effect 

on the algorithm’s performance; however, its efficiency is not the sum of the individual effects of 

each strategy, but the interaction among all the acceleration strategies and the basic pruning 

strategies. 

4. Computational experiments 

We coded our pulse algorithm and the LC algorithm by Smith et al. (2012) to conduct a head-to-

head comparison. Both algorithms were coded in Java, using Eclipse SDK version 3.6.1 and tested 

on a computer with an Intel Xeon X5450 @ 3.00 GHz (2 processors with four cores each) with 6 GB 

of RAM allocated to the memory heap size of the Java Virtual Machine on Windows Vista 

Professional.  



We design two sets of computational experiments. The first set validates our implementation of 

the LC algorithm, showing that it is efficient and suitable as a benchmark for comparison. The 

second set measures the contributions of the acceleration strategies over a vast set of real-road 

networks. 

4.1 The testbed 

For the validation experiment we use randomly generated grid networks following the generation 

procedure proposed by Smith et al. (2012). We generated 30 instances for grids of 100x100, 

200x200, and 400x400 nodes for a grand total of 90 instances. Each instance has a start node with 

outgoing arcs to the first layer of the grid and an end node with incoming arcs from the last layer. 

For the second experiment we used real road networks, three from Raith & Ehrgott (2009) and 10 

from the 9
th

 DIMACS Implementation Challenge for the shortest path problem (Demetrescu et al., 

2006). The networks were divided in two sets based on their size: medium and large. The medium-

sized networks have between 9,000 and 1,000,000 nodes and the large-sized networks contain 

instances with over 1,000,000 nodes. Following the same approach by Smith et al. (2012), each 

network was adapted to the WCSPP-R by randomly selecting replenishment arcs with a probability 

of 5%. For each adapted network, we generated 30 instances with randomly selected start and 

end nodes for a grand total of 390 instances. Table 1 summarizes the size of the road networks 

used in this experiment. 

Table 1. Description of the benchmark with real road networks 

  

We tested different levels of tightness for the resource constraint. Smith et al. (2012) define the 

right side of the resource constraint as               where    is the lowest resource 

limit for which there is a feasible path,    is the lowest resource limit for which the minimum 

cost path is the optimal solution, and        . We used four values for  : 0.1, 0.5, 0.9, and 1; 

where small (large) values for   lead to loosely (tightly) constrained problems.  Additionally, we 

characterized each instance by computing the exact values of    and   . We have made 

publicly available all instances used in this paper for the WCSPP-R at 

http://hdl.handle.net/1992/1159. 
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4.2 Validation experiment 

Smith et al. (2012) tested the performance of 10 different label treatment criteria and concluded 

that the minimum      is a strong alternative to solve the WCSPP-R. For this reason, we also 

chose this criterion in our Java implementation of the LC algorithm (jLC).  

Table 2 compares the time (including preprocessing) reported by Smith et al. (2012) with their 

implementation of the LC algorithm (cLC) against our implementation in Java (jLC) over the set of 

randomly generated grids. For the sake of fairness, we scaled all our times using the LINPACK 

benchmark (Dongarra, 2009); according to this benchmark our computer is 1.54 times faster than 

the one used by Smith et al. (2012). Column 1 shows the name of the instance, column 2 presents 

the tightness of the resource constraint  , column 3 shows the average time in seconds reported 

by Smith et al. (2012), and columns 4 and 5 report the scaled average time in seconds and the 

standard deviation for jLC over the 30 instances generated for each grid configuration.  

Table 2. Validation of our implementation against the original LC algorithm  

   

 

Table 2 shows that jLC is a strong and robust implementation of the algorithm. For all instances 

and values of   jLC outperforms cLC. Moreover, when the network size increases, the time gaps 

become even larger. This good performance is due to a thorough selection of the data structures 

and a careful implementation of the procedures used for managing the labels set. 

4.3 The pulse algorithm against the LC benchmark 

After validating our jLC implementation of the algorithm by Smith et al. (2012) we conducted a 

head-to-head comparison between jLC and our enhanced pulse algorithm. Given that the 

preprocessing procedure is the same for both algorithms, we decided to separate the 

preprocessing time from the rest of the execution time. For these experiments, jLC still uses the 

minimum      as label treatment criterion, while the pulse follows an exploration order by 

minimum promise     . After fine tuning the pulse algorithm, the depth limit   was fixed in 2. 

Table 3 and Table 4 present the results of these experiments. Column 1 shows the name of the 



instance; column 2 presents the tightness of the resource constraint  ; column 3 presents the 

average time in seconds spent in the preprocessing procedure (same for jLC and for pulse);  

columns 4 and 5 present the average time in seconds used by jLC and pulse after the 

preprocessing procedure; column 6 presents the arithmetic mean of the speedup calculated as the 

ratio between the times for jLC and the pulse; columns 7 and 8 present the minimum and 

maximum speedup achieved among the corresponding 30 experiments; and column 9 presents 

the geometric mean of the speedup. Note that the geometric mean, opposed to the arithmetic 

mean, avoids the bias produced by the performance of few good results (Bixby, 2012). Finally, the 

last row presents an overall mean of the speedups over the whole testbed. 

Table 3. Assessing the effects of the acceleration strategies over the medium-size road networks 

   

 

The results presented in Table 3 show that the pulse consistently outperforms jLC in 23 out of 24 

midsized real-road network instances and through all values of the tightness factor  . The 

acceleration strategies can achieve average speedups of up to 58 while the geometric average 

speedups range between 0.96 and 9, proving that these strategies really pay back on real-road 

networks. It is noticeable that the effects of the acceleration strategies present a high variability, 

for example, in the NJ network with       the minimun speedup is 0.94 while the maximum 

speedup exceeds 1,400. However, both the arithmetic and geometric averages of speedup 

indicate a global speedup of roughly 10 and 3 times, respectively. 



Table 4. Computational results for the large size road networks 

  

 

Table 4 shows that the pulse also outperforms jLC in the 28 experiments made on the large sized 

instances and across all values of the tightness factor  . Note that the average speedups in these 

networks are larger than those obtained in the midsized networks, thus showing a sign of 

scalability of the pulse algorithm. Additionally, despite the variability exhibited by the accelerated 

pulse with minimum and maximum speedups between 0.25 and 6,000, it is evident the strength of 

the algorithm. In fact, the arithmetic and geometric average speedups are up to 219 and 28. 

Moreover, the pulse reaches a global speedup of roughly 40 and 6 measured by the arithmetic and 

geometric mean respectively. Finally, it is remarkable the time spent solving most of the instances 

is about 15 seconds, and around 1 minute for the largest instance with up to 6 million nodes and 

15 million arcs. 

5. Concluding remarks 

We present a set of acceleration strategies for the WSPP-R extending the work by Smith et al. 

(2012) and Lozano & Medaglia (2013). First, we provide a path completion strategy that avoids 

unnecessary exploration of suboptimal regions of the solution space (paths in the network) and 

strengthens the primal bound. Second, we combine the ideas of performing breadth- and depth-

first search via a pulse queue that controls the depth of the exploration. Finally, we propose an 

enhanced graph exploration order based on a promise obtained from dual bounds. 



From a computational perspective, we adapted and characterized a vast set of real-road networks 

that now comprises a comprehensive publicly available testbed for the WCSPP-R. We conducted 

several computational experiments that demonstrate the effects of the proposed enhanced pulse 

algorithm with acceleration strategies compared against the state-of-the-art algorithm for the 

WCSPP-R. In the midsized networks the acceleration strategies reached average speedups of up to 

58 and they exhibit an overall performance of 10 and 3 times faster measured by the arithmetic 

and the geometric mean of speedups, respectively. In the larger networks the effects of the 

acceleration strategies are even better, achieving global speedups of roughly 40 and 6 measured 

by the arithmetic and geometric mean, respectively; moreover, they achieved average speedups 

of up to 219 times on networks with up to 6 million nodes and 15 million arcs. Finally, our 

acceleration strategies are easy to understand and to implement and could be applied both on the 

pulse algorithm or other label-based algorithms like LC.  
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