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Abstract

We study first-order optimization algorithms obtained by discretizing ordinary
differential equations (ODEs) corresponding to Nesterov’s accelerated gradient
methods (NAGs) and Polyak’s heavy-ball method. We consider three discretization
schemes: symplectic Euler (S), explicit Euler (E) and implicit Euler (I) schemes.
We show that the optimization algorithm generated by applying the symplectic
scheme to a high-resolution ODE proposed by Shi et al. [2018] achieves the accel-
erated rate for minimizing both strongly convex functions and convex functions.
On the other hand, the resulting algorithm either fails to achieve acceleration or is
impractical when the scheme is implicit, the ODE is low-resolution, or the scheme
is explicit.

1 Introduction

In this paper, we consider unconstrained minimization problems:

min
x2Rn

f(x), (1.1)

where f is a smooth convex function. The touchstone method in this setting is gradient descent (GD):

xk+1 = xk � srf(xk), (1.2)

where x0 is a given initial point and s > 0 is the step size. Whether there exist methods that improve
on GD while remaining within the framework of first-order optimization is a subtle and important
question.

Modern attempts to address this question date to Polyak [1964, 1987], who incorporated a momentum
term into the gradient step, yielding a method that is referred to as the heavy-ball method:

yk+1 = xk � srf(xk), xk+1 = yk+1 � α(xk � xk�1), (1.3)

where α > 0 is a momentum coefficient. While the heavy-ball method provably attains a faster rate
of local convergence than GD near a minimum of f , it generally does not provide a guarantee of
acceleration globally [Polyak, 1964].

The next major development in first-order methods is due to Nesterov, who introduced first-order
gradient methods that have a faster global convergence rate than GD [Nesterov, 1983, 2013]. For a
µ-strongly convex objective f with L-Lipschitz gradients, Nesterov’s accelerated gradient method
(NAG-SC) involves the following pair of update equations:

yk+1 = xk � srf(xk), xk+1 = yk+1 +
1�p

µs

1 +
p
µs

(yk+1 � yk) . (1.4)
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If one sets s = 1/L, then NAG-SC enjoys a O
⇣

(1�
p

µ/L)k
⌘

convergence rate, improving on

the O
⇣

(1� µ/L)
k
⌘

convergence rate of GD. Nesterov also developed an accelerated algorithm

(NAG-C) targeting smooth convex functions that are not strongly convex:

yk+1 = xk � srf(xk), xk+1 = yk+1 +
k

k + 3
(yk+1 � yk). (1.5)

This algorithm has a O(L/k2) convergence rate, which is faster than GD’s O(L/k) rate.

While yielding optimal and effective algorithms, the design principle of Nesterov’s accelerated
gradient algorithms (NAG) is not transparent. Convergence proofs for NAG often use the estimate
sequence technique, which is inductive in nature and relies on series of algebraic tricks [Bubeck,
2015]. In recent years progress has been made in the understanding of acceleration by moving to a
continuous-time formulation. In particular, Su et al. [2016] showed that as s ! 0, NAG-C converges
to an ordinary differential equation (ODE) (Equation (2.2)); moreover, for this ODE, Su et al. [2016]
derived a (continuous-time) convergence rate using a Lyapunov function, and further transformed
this Lyapunov function to a discrete version and thereby provided a new proof of the fact that
NAG-C enjoys a O(L/k2) rate.

Further progress in this vein has involved taking a variational point of view that derives ODEs from
an underlying Lagrangian rather than from a limiting argument [Wibisono et al., 2016]. While this
approach captures many of the variations of Nesterov acceleration presented in the literature, it does
not distinguish between the heavy-ball dynamics and the NAG dynamics, and thus fails to distinguish
between local and global acceleration. More recently, Shi et al. [2018] have returned to limiting
arguments with a more sophisticated methodology. They have derived high-resolution ODEs for the
heavy-ball method (Equation (2.4)), NAG-SC (Equation (2.5)) and NAG-C (Equation (2.6)). Notably,
the high-resolution ODEs for the heavy-ball dynamics and the accelerated dynamics are different.
Shi et al. [2018] also presented Lyapunov functions for these ODEs as well as the corresponding
algorithms, and showed that these Lyapunov functions can be used to derive the accelerated rates
of NAG-SC and NAG-C. A number of other papers have also contributed to the understanding of
acceleration by working in a continuous-time formulation [Krichene and Bartlett, 2017, Krichene
et al., 2015, Diakonikolas and Orecchia, 2017, Ghadimi and Lan, 2016, Diakonikolas and Orecchia,
2017].

This emerging literature has thus provided a new level of understanding of design principles for
accelerated optimization. The design involves an interplay between continuous-time and discrete-time
dynamics. ODEs are obtained either variationally or via a limiting scheme, and various properties of
the ODEs are studied, including their convergence rate, topological aspects of their flow and their
behavior under perturbation. Lyapunov functions play a key role in such analyses, and also allow
aspects of the continuous-time analysis to be transferred to discrete time [see, e.g., Wilson et al.,
2016].

And yet the literature has not yet provided a full exploration of the transition from continuous-time
ODEs to discrete-time algorithms. Indeed, this transition is a non-trivial one, as evidenced by the
decades of research on numerical methods for the discretization of ODEs, including most notably the
sophisticated arsenal of techniques referred to as “geometric numerical integration” that are used for
ODEs obtained from underlying variational principles [Hairer et al., 2006]. Recent work has begun
to explore these issues; examples include the use of symplectic integrators by Betancourt et al. [2018]
and the use of Runge-Kutta integration by Zhang et al. [2018]. However, these methods do not
always yield proofs that accelerated rates are retained in discrete time, and when they do they involve
implicit discretization, which is generally not practical except in the setting of quadratic objectives.

Thus we wish to address the following fundamental question:

Can we systematically and provably obtain new accelerated methods via the numerical discretization
of ordinary differential equations?

Our approach to this question is a dynamical systems framework based on Lyapunov theory. Our
main results are as follows:

1. In Section 3.1, we consider three simple numerical discretization schemes—symplectic Euler
(S), explicit Euler (E) and implicit Euler (I) schemes—to discretize the high-resolution ODE of
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Nesterov’s accelerated method for strongly convex functions. We show that the optimization

method generated by symplectic discretization achieves a O((1� O(1)
p

µ/L)k) rate, thereby
attaining acceleration. In sharp contrast, the implicit scheme is not practical for implementation,
and the explicit scheme, while being simple, fails to achieve acceleration.

2. In Section 3.2, we apply these discretization schemes to the ODE for modeling the heavy-ball
method, which can be viewed as a low-resolution ODE that lacks a gradient-correction term [Shi
et al., 2018]. In contrast to the previous two cases of high-resolution ODEs, the symplectic scheme
does not achieve acceleration for this low-resolution ODE. More broadly, in Appendix D we
present more examples of low-resolution ODEs where symplectic discretization does not lead to
acceleration.

3. Next, we apply the three simple Euler schemes to the high-resolution ODE of Nesterov’s acceler-
ated method for convex functions. Again, our Lyapunov analysis sheds light on the superiority of
the symplectic scheme over the other two schemes. This is the subject of Section 4.

Taken together, the three findings have the implication that high-resolution ODEs and symplectic
schemes are critical to achieving acceleration using numerical discretization. More precisely, in
addition to allowing relatively simple implementations, symplectic schemes allow for a large step size
without a loss of stability, in a manner akin to (but better than) implicit schemes. In stark contrast,
in the setting of low-resolution ODEs, only the implicit schemes remain stable with a large step
size, due to the lack of gradient correction. Moreover, the choice of Lyapunov function is equally
essential to obtaining sharp convergence rates. This important fact is highlighted in Theorem A.6 in
the Appendix, where we analyze GD by considering it as a discretization method for gradient flow
(the ODE counterpart of GD). Using the discrete version of the Lyapunov function proposed in Su
et al. [2016] instead of the classical one, we show that GD in fact minimizes the squared gradient
norm (choosing the best iterate so far) at a rate of O(L2/k2). Although this rate of convergence in
the problem of squared gradient norm minimization is known in the literature [Nesterov, 2012], the
Lyapunov function argument provides a systematic approach to obtaining this rate in this problem and
others. In particular, this example demonstrates the usefulness and flexibility of Lyapunov functions
as a mathematical tool for optimization problems.

2 Preliminaries

In this section, we introduce necessary notation, and review ODEs derived in previous work and three
classical numerical discretization schemes.

We mostly follow the notation of Nesterov [2013], with slight modifications tailored to the present
paper. Let F1

L(R
n) be the class of L-smooth convex functions defined on R

n; that is, f 2 F1
L(R

n) if
f(y) � f(x) + hrf(x), y � xi for all x, y 2 R

n and its gradient is L-Lipschitz continuous in the
sense that

krf(x)�rf(y)k  L kx� yk ,
where k·k denotes the standard Euclidean norm and L > 0 is the Lipschitz constant. The function class
F2

L(R
n) is the subclass of F1

L(R
n) such that each f has a Lipschitz-continuous Hessian. For p = 1, 2,

let S
p
µ,L(R

n) denote the subclass of F
p
L(R

n) such that each member f is µ-strongly convex for some

0 < µ  L. That is, f 2 S
p
µ,L(R

n) if f 2 F
p
L(R

n) and f(y) � f(x)+hrf(x), y � xi+ µ
2 ky � xk2

for all x, y 2 R
n. Let x? denote a minimizer of f(x).

2.1 Approximating ODEs

In this section we list all of the ODEs that we will discretize in this paper. We refer readers to recent
papers by Su et al. [2016], Wibisono et al. [2016] and Shi et al. [2018] for the rigorous derivations of
these ODEs. We begin with the simplest. Taking the step size s ! 0 in Equation (1.2), we obtain the
following ODE (gradient flow):

Ẋ = �rf(X), (2.1)

with any initial X(0) = x0 2 R
n.

Next, by taking s ! 0 in Equation (1.5), Su et al. [2016] derived the low-resolution ODE of NAG-C:

Ẍ +
3

t
Ẋ +rf(X) = 0, (2.2)
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with X(0) = x0 and Ẋ(0) = 0. For strongly convex functions, by taking s ! 0, one can derive the
following low-resolution ODE (see, for example, Wibisono et al. [2016])

Ẍ + 2
p
µẊ +rf(X) = 0 (2.3)

that models both the heavy-ball method and NAG-SC. This ODE has the same initial conditions
as (2.2).

Recently, Shi et al. [2018] proposed high-resolution ODEs for modeling acceleration methods. The
key ingredient in these ODEs is that the O(

p
s) terms are preserved in the ODEs. As a result, the

heavy-ball method and NAG-SC have different models as ODEs.

(a) If f 2 S1
µ,L(R

n), the high-resolution ODE of the heavy-ball method (1.3) is

Ẍ + 2
p
µẊ + (1 +

p
µs)rf(X) = 0, (2.4)

with X(0) = x0 and Ẋ(0) = � 2
p
srf(x0)
1+

p
µs

. This ODE has essentially the same properties as its

low-resolution counterpart (2.3) due to the absence of r2f(X)Ẋ .

(b) If f 2 S2
µ,L(R

n), the high-resolution ODE of NAG-SC (1.4) is

Ẍ + 2
p
µẊ +

p
sr2f(X)Ẋ + (1 +

p
µs)rf(X) = 0, (2.5)

with X(0) = x0 and Ẋ(0) = � 2
p
srf(x0)
1+

p
µs

.

(c) If f 2 F2
L(R

n), the high-resolution ODE of NAG-C (1.5) is

Ẍ +
3

t
Ẋ +

p
sr2f(X)Ẋ +

✓

1 +
3
p
s

2t

◆

rf(X) = 0 (2.6)

for t � 3
p
s/2, with X(3

p
s/2) = x0 and Ẋ(3

p
s/2) = �p

srf(x0).

2.2 Discretization schemes

To discretize ODEs (2.1)-(2.6), we replace Ẋ by xk+1 � xk, V̇ by vk+1 � vk and replace other terms
with approximations. Different discretization schemes correspond to different approximations.

• The most straightforward scheme is the explicit scheme, which uses the following approximation
rule:

xk+1 � xk =
p
svk,

p
sr2f(xk)vk ⇡ rf(xk+1)�rf(xk).

• Another discretization scheme is the implicit scheme, which uses the following approximation
rule:

xk+1 � xk =
p
svk+1,

p
sr2f(xk+1)vk+1 ⇡ rf(xk+1)�rf(xk).

Note that compared with the explicit scheme, the implicit scheme is not practical because the
update of xk+1 requires knowing vk+1 while the update of vk+1 requires knowing xk+1.

• The last discretization scheme considered in this paper is the symplectic scheme, which uses the
following approximation rule.

xk+1 � xk =
p
svk,

p
sr2f(xk+1)vk ⇡ rf(xk+1)�rf(xk).

Note this scheme is practical because the update of xk+1 only requires knowing vk.

We remark that for low-resolution ODEs, there is no r2f(x) term, whereas for high-resolution ODEs,
we have this term and we use the difference of gradients to approximate this term. This additional
approximation term is critical to acceleration.

3 High-Resolution ODEs for Strongly Convex Functions

This section considers numerical discretization of the high-resolution ODEs of NAG-SC and the
heavy-ball method using the symplectic Euler, explicit Euler and implicit Euler scheme. In particular,
we compare rates of convergence towards the objective minimum of the three simple Euler schemes
and the two methods (NAG-SC and the heavy-ball method) in Section 3.1 and Section 3.2, respectively.
For both cases, the associated symplectic scheme is shown to exhibit surprisingly similarity to the
corresponding classical method.
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3.1 NAG-SC

The high-resolution ODE (2.5) of NAG-SC can be equivalently written in the phase space as

Ẋ = V, V̇ = �2
p
µV �

p
sr2f(X)V � (1 +

p
µs)rf(X), (3.1)

with the initial conditions X(0) = x0 and V (0) = � 2
p
srf(x0)
1+

p
µs

. For any f 2 S2
µ,L(R

n), Theorem 1

of Shi et al. [2018] shows that the solution X = X(t) of the ODE (2.5) satisfies

f(X)� f(x?)  2 kx0 � x?k2
s

e�
√

µt

4 ,

for any step size 0 < s  1/L. In particular, setting the step size to s = 1/L, we get

f(X)� f(x?)  2L kx0 � x?k2 e�
√

µt

4 .

In the phase space representation, NAG-SC is formulated as
8

>

<

>

:

xk+1 � xk =
p
svk

vk+1 � vk = � 2
p
µs

1�p
µs

vk+1 �
p
s(rf(xk+1)�rf(xk))�

1 +
p
µs

1�p
µs

·
p
srf(xk+1),

(3.2)

with the initial condition v0 = � 2
p
srf(x0)
1+

p
µs

for any x0. This method maintains the accelerated rate

of the ODE by recognizing

f(xk)� f(x?)  5L kx0 � x?k2

(1 +
p

µ/L/12)k
;

(see Theorem 3 in Shi et al. [2018]) and the identification t ⇡ k
p
s.

Viewing NAG-SC as a numerical discretization of (2.5), one might wonder if any of the three
simple Euler schemes—symplectic Euler scheme, explicit Euler scheme, and implicit Euler scheme—
maintain the accelerated rate in discretizing the high-resolution ODE. For clarity, the update rules of

the three schemes are given as follows, each with the initial points x0 and v0 = � 2
p
srf(x0)
1+

p
µs

.

Euler scheme of (3.1): (S), (E) and (I) respectively

(S)

(

xk+1 � xk =
p
svk

vk+1 � vk = �2
p
µsvk+1 �

p
s (rf(xk+1)�rf(xk))�

p
s(1 +

p
µs)rf(xk+1).

(E)

(

xk+1 � xk =
p
svk

vk+1 � vk = �2
p
µsvk �

p
s (rf(xk+1)�rf(xk))�

p
s(1 +

p
µs)rf(xk).

(I)

(

xk+1 � xk =
p
svk+1

vk+1 � vk = �2
p
µsvk+1 �

p
s (rf(xk+1)�rf(xk))�

p
s(1 +

p
µs)rf(xk+1).

Among the three Euler schemes, the symplectic scheme is the closest to NAG-SC (3.2). More
precisely, NAG-SC differs from the symplectic scheme only in an additional factor of 1

1�p
µs

in

the second line of (3.2). When the step size s is small, NAG-SC is, roughly speaking, a symplectic
method if we make use of 1

1�p
µs

⇡ 1. In relating to the literature, the connection between accelerated

methods and the symplectic schemes has been explored in Betancourt et al. [2018], which mainly
considers the leapfrog integrator, a second-order symplectic integrator. In contrast, the symplectic
Euler scheme studied in this paper is a first-order symplectic integrator.

Interestingly, the close resemblance between the two algorithms is found not only in their formulations,
but also in their convergence rates, which are both accelerated as shown by Theorem B.1 and
Theorem 3.1.

Note that the discrete Lyapunov function used in the proof of the symplectic Euler scheme of (3.1) is

E(k) =
1

4
kvkk2 +

1

4

�

�2
p
µ(xk+1 � x?) + vk +

p
srf(xk)

�

�

2
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+ (1 +
p
µs) (f(xk)� f(x?))� (1 +

p
µs)2

1 + 2
p
µs

·
s

2
krf(xk)k2 . (3.3)

The proof of Theorem B.1 is deferred to Appendix B.1. The following result is a useful consequence
of this theorem.

Theorem 3.1 (Discretization of NAG-SC ODE). For any f 2 S1
µ,L(R

n), the following conclusions
hold:

(a) Taking step size s = 4/(9L), the symplectic Euler scheme of (3.1) satisfies

f(xk)� f(x?)  5L kx0 � x?k2
�

1 + 1
9

p

µ
L

�k
. (3.4)

(b) Taking step size s = µ/(100L2), the explicit Euler scheme of (3.1) satisfies

f(xk)� f(x?)  3L kx0 � x?k2
⇣

1� µ

80L

⌘k

. (3.5)

(c) Taking step size s = 1/L, the implicit Euler scheme of (3.1) satisfies

f(xk)� f(x?)  13 kx0 � x?k2

4
�

1 + 1
4

p

µ
L

�k
. (3.6)

In addition, Theorem 3.1 shows that the implicit scheme also achieves acceleration. However, unlike
NAG-SC, the symplectic scheme, and the explicit scheme, the implicit scheme is generally not easy
to use in practice because it requires solving a nonlinear fixed-point equation when the objective is
not quadratic. On the other hand, the explicit scheme can only take a smaller step size O(µ/L2),
which prevents this scheme from achieving acceleration.

3.2 The heavy-ball method

We turn to the heavy-ball method ODE (2.4), whose phase space representation reads

Ẋ = V, V̇ = �2
p
µV � (1 +

p
µs)rf(X), (3.7)

with the initial conditions X(0) = x0 and V (0) = � 2
p
srf(x0)
1+

p
µs

. Theorem 2 in Shi et al. [2018]

shows that the solution X = X(t) to this ODE satisfies

f(X(t))� f(x?)  7 kx0 � x?k2
2s

e�
√

µt

4 ,

for f 2 S1
µ,L(R

n) and any step size 0 < s  1/L. In particular, taking s = 1/L gives

f(X(t))� f(x?)  7L kx0 � x?k2
2

e�
√

µt

4 .

Returning to the discrete regime, Polyak’s heavy-ball method uses the following update rule:
8

>

<

>

:

xk+1 � xk =
p
svk

vk+1 � vk = � 2
p
µs

1�p
µs

vk+1 �
1 +

p
µs

1�p
µs

·
p
srf(xk+1),

which attains a non-accelerated rate (see Theorem 4 of Shi et al. [2018]):

f(xk)� f(x?)  5L kx0 � x?k2
�

1 + µ
16L

�k
. (3.8)

The three simple Euler schemes for numerically solving the ODE (2.4) are given as follows. Every

scheme starts with any arbitrary x0 and v0 = � 2
p
srf(x0)
1+

p
µs

. As in the case of NAG-SC, the symplectic

scheme is the closest to the heavy-ball method.
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Euler scheme of (3.7): (S), (E) and (I) respectively

(S)

(

xk+1 � xk =
p
svk,

vk+1 � vk = �2
p
µsvk+1 �

p
s(1 +

p
µs)rf(xk+1).

(E)

(

xk+1 � xk =
p
svk

vk+1 � vk = �2
p
µsvk �

p
s(1 +

p
µs)rf(xk).

(I)

(

xk+1 � xk =
p
svk+1

vk+1 � vk = �2
p
µsvk+1 �

p
s(1 +

p
µs)rf(xk+1).

The theorem below characterizes the convergence rates of the three schemes. This theorem is extended
to general step sizes by Theorem B.2 in Appendix B.2.

Theorem 3.2 (Discretization of heavy-ball ODE). For any f 2 S1
µ,L(R

n), the following conclusions
hold:

(a) Taking step size s = µ/(16L2), the symplectic Euler scheme of (3.7) satisfies

f(xk)� f(x?)  3L kx0 � x?k2
�

1 + µ
16L

�k
. (3.9)

(b) Taking step size s = µ/(36L2), the explicit Euler scheme of (3.7) satisfies

f(xk)� f(x?)  3L kx0 � x?k2
⇣

1� µ

48L

⌘k

. (3.10)

(c) Taking step size s = 1/L, the implicit Euler scheme of (3.7) satisfies

f(xk)� f(x?)  15L kx0 � x?k2

4
�

1 + 1
4

p

µ
L

�k
. (3.11)

Taken together, (3.8) and Theorem 3.2 imply that neither the heavy-ball method nor the symplectic
scheme attains an accelerated rate. In contrast, the implicit scheme achieves acceleration as in the
NAG-SC case, but it is impractical except for quadratic objectives.

4 High-Resolution ODEs for Convex Functions

In this section, we turn to numerical discretization of the high-resolution ODE (2.6) related to NAG-C.
All proofs are deferred to Appendix C. This ODE in the phase space representation reads [Shi et al.,
2018] as follows:

Ẋ = V, V̇ = �3

t
· V �

p
sr2f(X)V �

✓

1 +
3
p
s

2t

◆

rf(X), (4.1)

with X(3
p
s/2) = x0 and V (3

p
s/2) = �p

srf(x0). Theorem 5 of Shi et al. [2018] shows that
Let f 2 F1

L(R
n). For any step size 0 < s  1/L, the solution X = X(t) of the high-resolution

ODE (2.6) satisfies
8

>

>

>

<

>

>

>

:

f(X)� f(x?)  (4 + 3sL) kx0 � x?k2
t (2t+

p
s)

inf
t0ut

krf(X(u))k2  (12 + 9sL) kx0 � x?k2
2
p
s (t3 � t30)

, (4.2)

for any t > t0 = 1.5
p
s. A caveat here is that it is unclear how to use a Lyapunov function to

prove convergence of the (simple) explicit, symplectic or implicit Euler scheme by direct numerical
discretization of the ODE (2.2). See Appendix C.2 for more discussion on this point. Therefore, we
slightly modify the ODE to the following one:

Ẋ = V, V̇ = �3

t
· V �

p
sr2f(X)V �

✓

1 +
3
p
s

t

◆

rf(X). (4.3)

7



The only difference is in the third term on the right-hand side of the second equation, where we replace
⇣

1 + 3
p
s

2t

⌘

rf(X) by
⇣

1 + 3
p
s

t

⌘

rf(X). Now, we apply the three schemes on this (modified)

ODE in the phase space, including the original NAG-C, which all start with x0 and v0 = �p
srf(x0).

Euler scheme of (4.3): (S), (E) and (I) respectively

(S)

8

<

:

xk+1 � xk =
p
svk

vk+1 � vk = � 3

k + 1
vk+1 �

p
s (rf(xk+1)�rf(xk))�

p
s

✓

k + 4

k + 1

◆

rf(xk+1).

(E)

8

<

:

xk+1 � xk =
p
svk

vk+1 � vk = �3

k
vk �

p
s (rf(xk+1)�rf(xk))�

p
s

✓

k + 3

k

◆

rf(xk).

(I)

8

<

:

xk+1 � xk =
p
svk+1

vk+1 � vk = � 3

k + 1
vk+1 �

p
s (rf(xk+1)�rf(xk))�

p
s

✓

k + 4

k + 1

◆

rf(xk+1).

Theorem 4.1. Let f 2 F1
L (Rn). The following statements are true:

(a) For any step size 0 < s  1/(3L), the symplectic Euler scheme of (4.3) (original NAG-C) satisfies

f(xk)� f(x?)  119 kx0 � x?k2
s(k + 1)2

, min
0ik

krf(xi)k2  8568 kx0 � x?k2
s2(k + 1)3

; (4.4)

(b) Taking any step size 0 < s  1/L, the implicit Euler scheme of (4.3) satisfies

f(xk)� f(x?)  (3sL+ 2) kx0 � x?k2
s(k + 2)(k + 3)

, min
0ik

krf(xi)k2  (3sL+ 2) kx0 � x?k2
s2(k + 1)3

.

(4.5)

Note that Theorem 4.1 (a) is the same as Theorem 6 of Shi et al. [2018]. The explicit Euler scheme
does not guarantee convergence; see the analysis in Appendix C.1.

5 Discussion

In this paper, we have analyzed the convergence rates of three numerical discretization schemes—the
symplectic Euler scheme, explicit Euler scheme, and implicit Euler scheme—applied to ODEs that are
used for modeling Nesterov’s accelerated methods and Polyak’s heavy-ball method. The symplectic
scheme is shown to achieve accelerated rates for the high-resolution ODEs of NAG-SC and (slightly
modified) NAG-C [Shi et al., 2018], whereas no acceleration rates are observed when the same
scheme is used to discretize the low-resolution counterparts [Su et al., 2016]. For comparison, the
explicit scheme only allows for a small step size in discretizing these ODEs in order to ensure stability,
thereby failing to achieve acceleration. Although the implicit scheme is proved to yield accelerated
methods no matter whether high-resolution or low-resolution ODEs are discretized, this scheme is
generally not practical except for a limited number of cases (for example, quadratic objectives).

We conclude this paper by presenting several directions for future work. This work suggests that
both symplectic schemes and high-resolution ODEs are crucial for numerical discretization to
achieve acceleration. It would be of interest to formalize and prove this assertion. For example,
does any higher-order symplectic scheme maintain acceleration for the high-resolution ODEs of
NAGs? What is the fundamental mechanism of the gradient correction in high-resolution ODE in
stabilizing symplectic discretization? Moreover, since the discretizations are applied to the modified
high-resolution ODE of NAG-C, it is tempting to perform a comparison study between the two
high-resolution ODEs in terms of discretization properties. Finally, recognizing Nesterov’s method
(NAG-SC) is very similar to, but still different from, the corresponding symplectic scheme, one can
design new algorithms as interpolations of the two methods; it would be interesting to investigate the
convergence properties of these new algorithms.
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