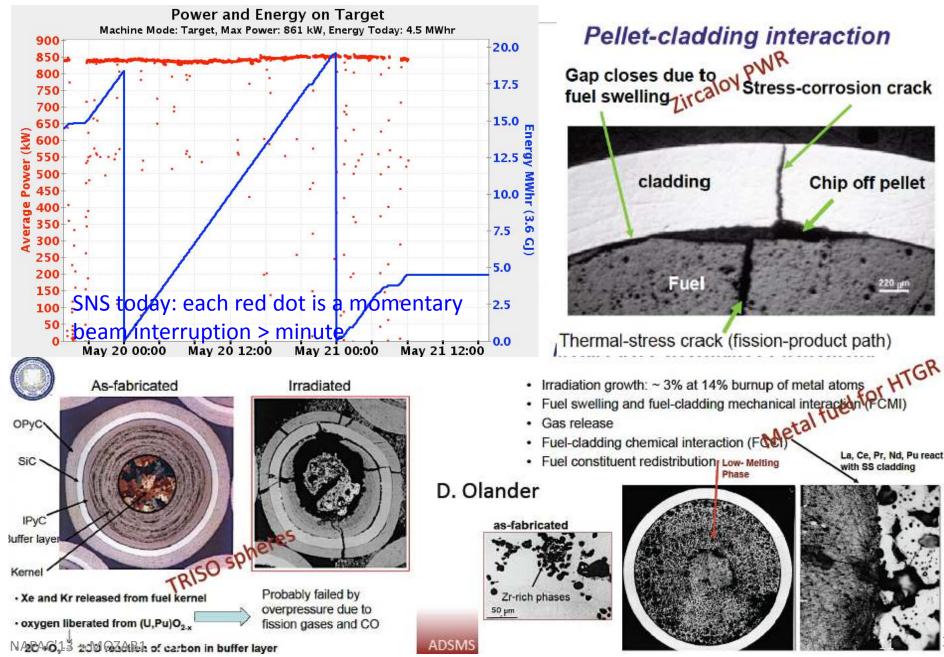
Accelerator-Driven subcritical fission in A Molten salt core: Closing the Nuclear Fuel Cycle for Green Nuclear Energy


Peter McIntyre, Texas A&M University For the ADAM Collaboration

NAPAC'13 - MOZAB1

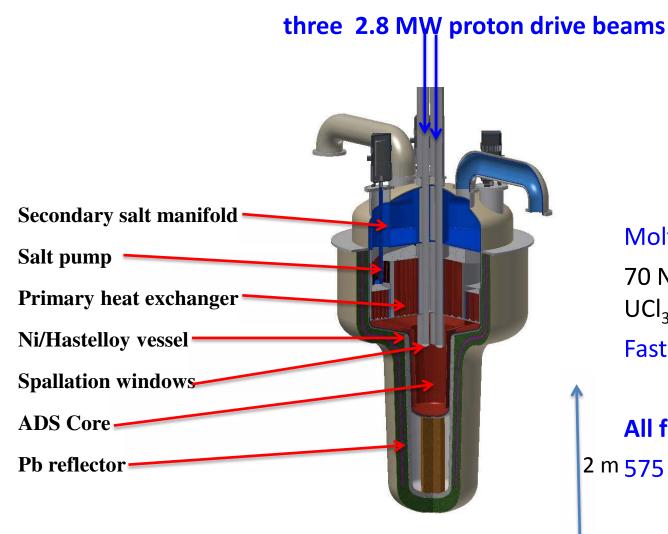
ADS Fission in a Molten Salt Core

- Extract the minor actinides and long-lived fission products from spent fuel into molten salt
 - Pyroprocessing and electroseparation
 - Developed at ANL, INL, PRIDE
 - Never separate Pu from other TRU
- Fast neutronics in a subcritical moletn salt core
 - Fastest neutron spectrum ever designed $\langle E_n \rangle = 1 \text{ MeV}$
 - Burns all the transuranics together at the same rate
 - No thermal shock when drive beam is interrupted
 - Cannot go critical, cannot overtemp even if power fails

Molten salt fuel eliminates thermal shock

TGR

A molten salt core optimizes TRU-burning


- The TRU contents can be extracted from UNF using pyroprocessing technology developed at ANL and INL.
- The molten salt serves as spallation target, moderator, and fissile inventory.

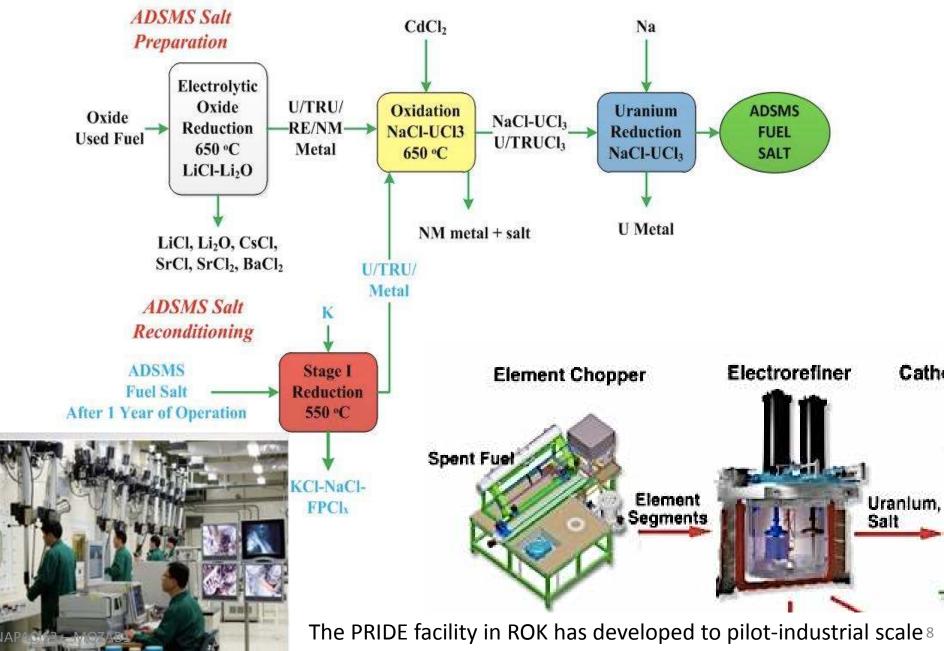
- The molten salt flow on the beam window makes delivery of a 2.7 MW proton beam realistic.
- The core is designed to provide passive cooling of decay heat in event that HX flow were lost.

- Molten salt core simple to fuel, simple to recycle
 - Every 3 months add 90 kg of TRU to replace what was burned
 - Every 5 years, transfer fuel salt from core to remove fission products, then return to core
 - Fuel salt is 100% contained in 5 layers for
 5 years of operation
 - Drive the subcritical core with proton beam
 - Stack of 3 cyclotrons
 - Drives 3 ADSMS cores
 - Modulate current 9 \rightarrow 12 mA for const P_t
 - 5:1 Energy Amplifier

290 MW ADAM Core

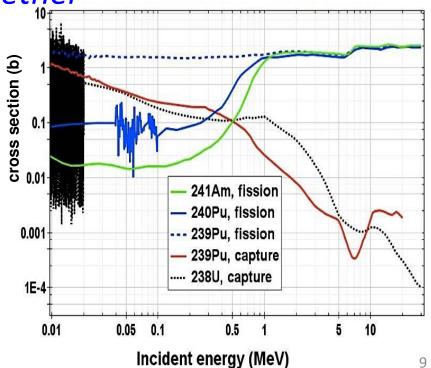
Molten salt fuel:

70 NaCl – 15 TRUCl₃ – 13 UCl₃ Fast fraction 20% E_n >1 MeV


All fuel salt in one vessel 2 m 575 –675 C operating temp

The molten salt chemistry is important

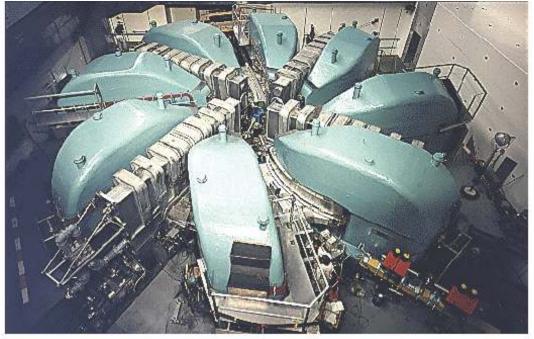
- LiF-based salts were used in the original MSRE, and have been proposed for many designs of critical and subcritical molten salt cores.
- LiF has several problems for a TRU-burner:
 - The light elements moderate the neutron spectrum;
 - Multiple ionization states of TRU elements are metastable, including volatile species (analogs of UF₆).
 - LiF is corrosive, which presents a challenge for the lifetime of core vessel and HX components.
 - Loading the necessary mole% of TRU would push a F-based salt beyond the eutectic limit at reasonable operating temp – TRU salt could drop out of the mixture if the salt freezes.


• All of these issues are resolved by using TRUCl₃-NaCl.

Extracting TRU from UNF fuel bundles

Neutronics for Isoburning

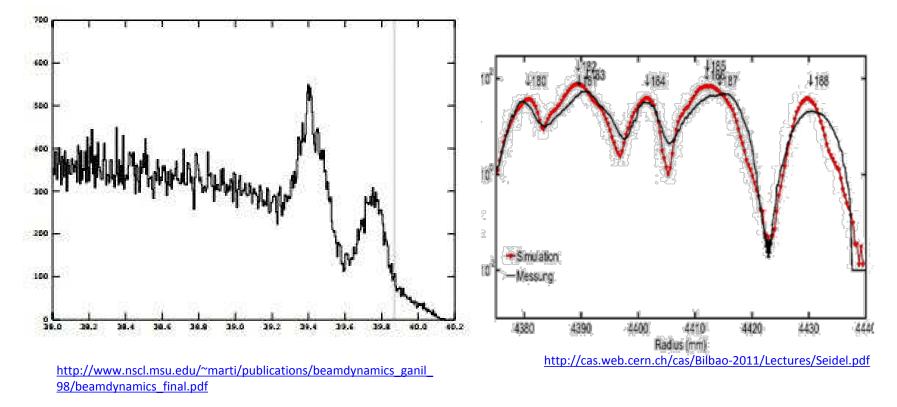
- One batch of UNF has a ton of ²³⁹Pu
- Non-proliferation keep Pu with intensely radioactive ingredients – TRU, FP
- Strategy we extract all the TRU elements together from UNF; we destroy them together
- The fission cross-sections for Pu, TRU are equal for E_n > 1 MeV
- But for E_n < 1 MeV MA fissions
 10 times less than ²³⁹Pu


Choice of criticality k_{eff}

- We need to run the core subcritical
 - ²³⁹Pu has 3x fewer delayed neutrons than ²³⁵U
 - ²⁴¹Am has 5x fewer delayed neutrons than ²³⁵U
 - ²³⁹Pu fissions faster than ²⁴¹Am \rightarrow neutronics shifts
 - TRU-burning is a challenge for any critical core design.
- Suppose cooling is lost...
 - Passive heat pipes remove decay heat
 - The salt cannot freeze k_{eff} has strong negative temp coeff.
- Design core to operate with $k_{eff} = 0.97$.
- Core cannot go critical under any of the many failure modes considered.
- But we need lots of proton drive...

Each 290 MW_t ADAM core requires 3 x 4 mA of 800 MeV proton drive beams, and destroys 130 kg/year of TRU. Each GW_e nuclear plant produces 390 kg/year of TRU. So how do we make 9 x 4 mA of 800 MeV protons?

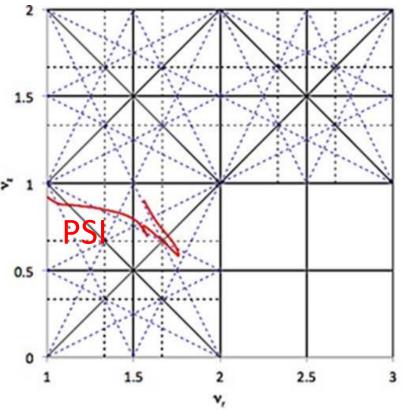
invented by Ernest Lawrence, 1930 at Berkeley



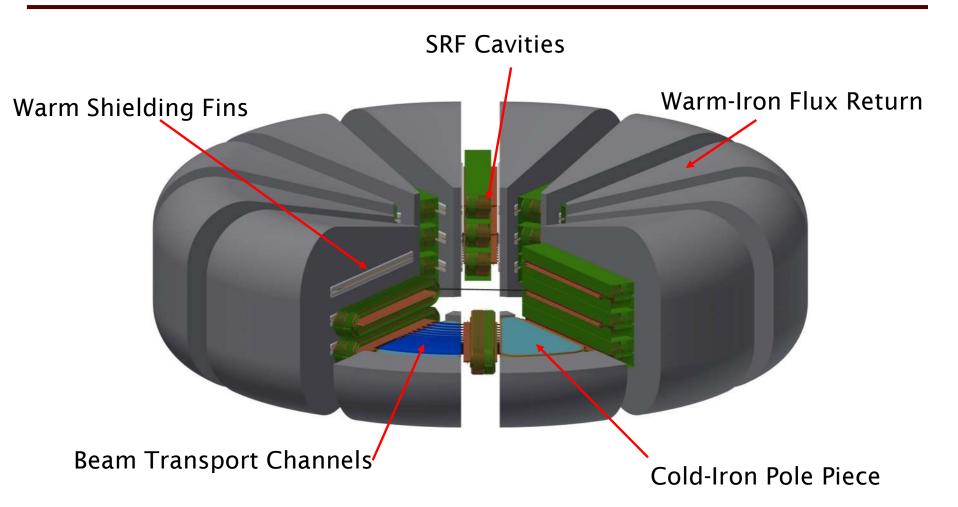
PSI operates the highest power accelerator in the world: 2.3 mA@ 590 MeV

The **cyclotron** is among the oldest of particle accelerators, and it still holds the world record for the highest beam power -1.3 MW.

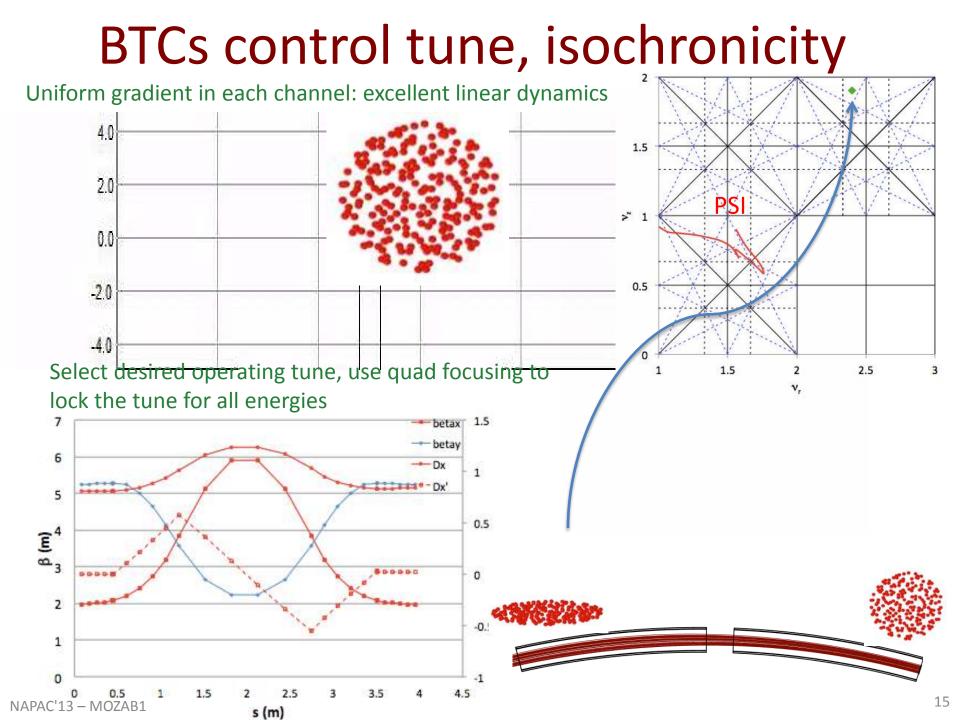
Even teenagers can build one:


Current limits in cyclotrons: 1) Overlapping bunches in successive orbits

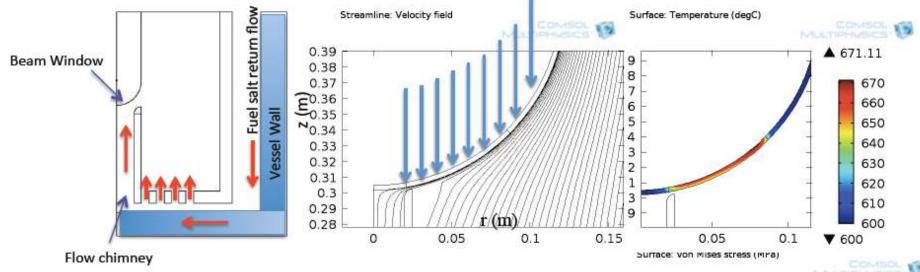
Overlap of N bunches on successive orbits produces N x greater space charge tune shift, non-linear effects at edges of overlap.

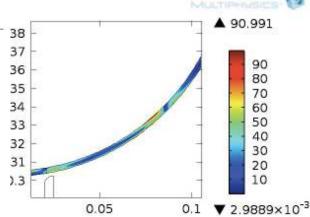

2) Weak focusing, Resonance crossing

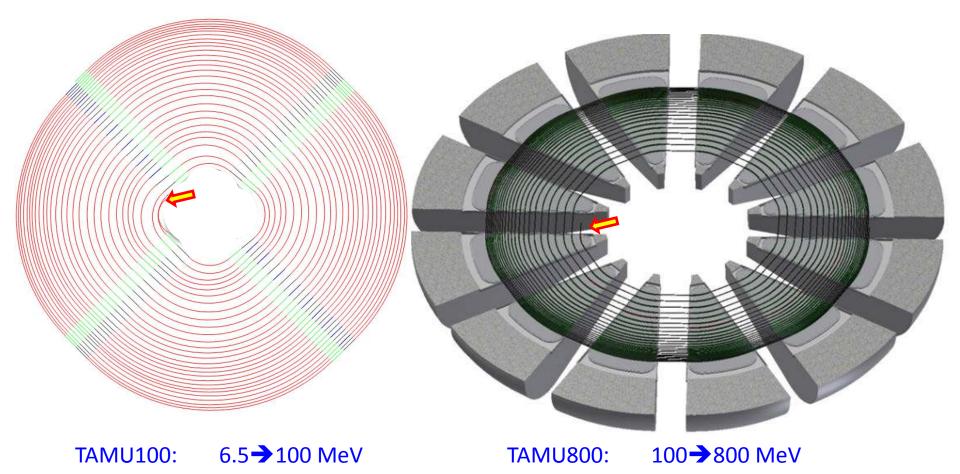
- Cyclotrons are intrinsically weakfocusing accelerators
- Rely upon fringe fields
- Low tune requires larger aperture
- Tune evolves during acceleration
- Crosses resonances
- Scaling, Non-scaling FFAG utilize nonlinear fields
- Rich spectrum of unstable fixed pts



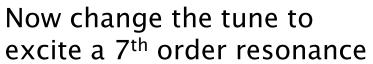
Space charge shifts, broadens resonances, feeds synchro-betatron Even if a low-charge bunch accelerates smoothly, a high-charge bunch may undergo breakup even during rapid acceleration

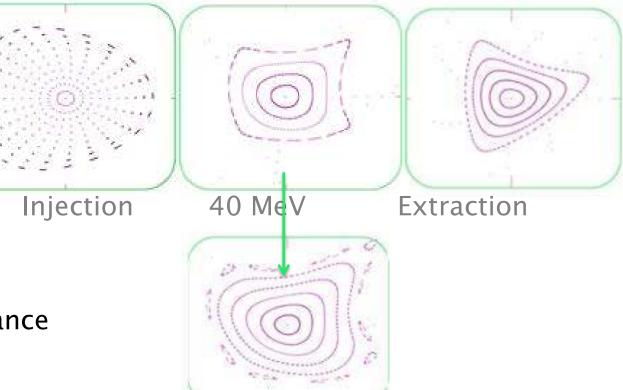

Hence the Strong-Focusing Cyclotron...


- SRF cavities provide 20 MeV/turn energy gain fully separate orbits
- Sectors are simple radial wedges optimum for integrating SRF
 NAPBeamAtransport channels control betatron tunes, isochronicity
 14


We inject 2.8 MW protons through a 3 mm-thick Hastelloy window We direct a dedicated molten salt flow on the window in the HX circuit.

- Protons pass through window, deposit most of their energy in molten salt.
- ~22 kW is deposited in the 3 mm Hastelloy window.
- Max temp gradient ~60 C, max von Mises stress ~60 MPa.
- Should be fine, we will do experiments to verify.

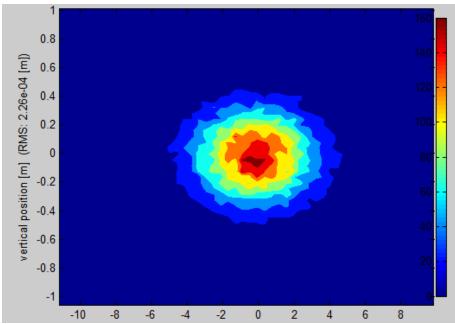

Control all orbits: betatron tunes, isochronicity, position

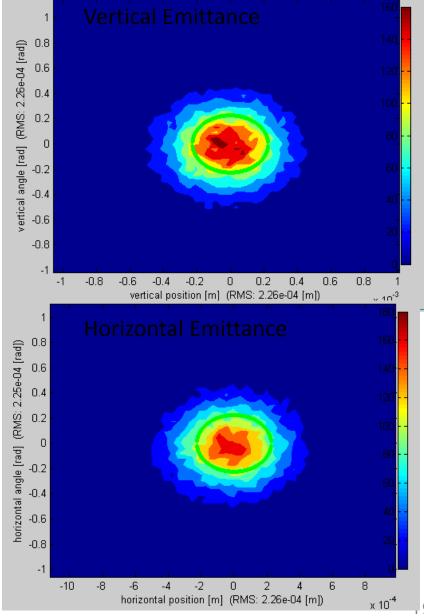


If any one of the 10 rf cavities malfunctions, increase gradient in the remaining 9 to maintain energy gain/turn, use trim dipoles in the beam transport channels NATO maintain equilibrium orbit unchanged. Works like a 'spiral linac'. We have simulated spiral transmission line, including x/y coupling, synchrobetatron, space charge Poincare Plots of 1-5 σ contours in TAMU100

3.5 mA beam

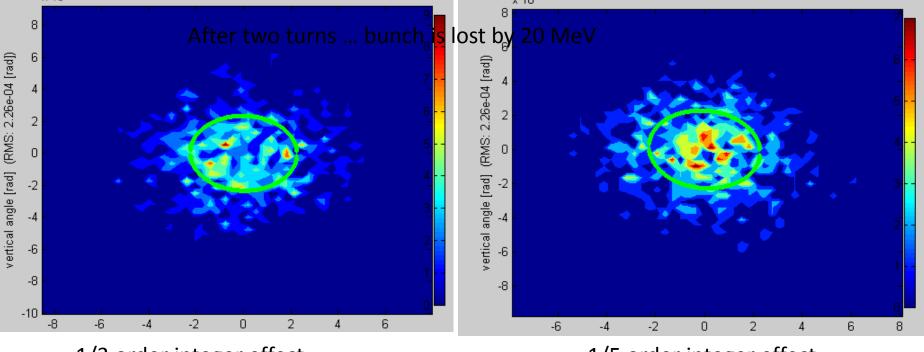
First lock tune to favorable operating point:




We are seeing the origins of the current limits in PSI from overlapping bunches, tune trajectory. Both are cured in the SFC. NANext3studies: beam loading of cavities, wake fields...

Transverse phase space of 10 mA bunch

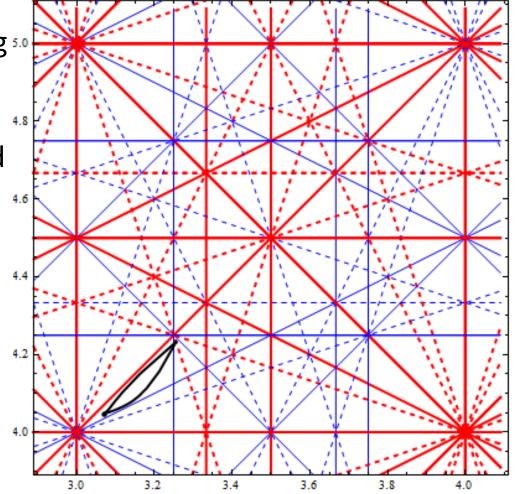
First at injection:


x/y profile

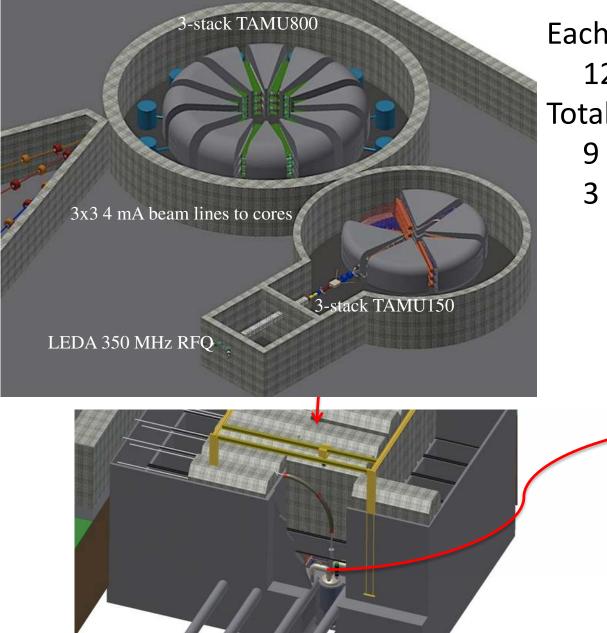
Now look at effects of synchrobetatron and space charge with 10 mA at extraction:

Move tunes near integer fraction resonances to observe growth of islands

1/3 order integer effect


1/5 order integer effect

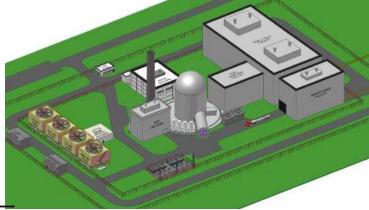
1/5-order islands stay clumped, 1/3-order islands are being driven. Likely driving term is edge fields of sectors (6-fold sector geometry). We are evaluating use of sextupoles at sector edges to suppress growth.


Now find tunes for all particles on the 5 s contour in a 10 mA beam accelerated to 800 MeV:

Since we can control tune using 5.0 BTCs, we can place the operating point so that no 4.8 significant resonance is crossed by any beam out to 5σ 4.6

We are exploring placement of 4 families of sextupole correctors after each sector; We expect that to enable us to push further in current...

To destroy TRU generated from a GW_e power plant:


Each 800 MeV SFC 12 mA current →3 beams Total 30 MW CW: 9 drive beams 3 ADSMS cores

NAPAC'13 - MÖZAB1

Compare performance for TRUburning between ADAM and three flavors of critical fast reactors:

Critical reactors to burn TRU must operate with fast spectrum and non-H coolant/moderator:

- Sodium-cooled fast reactor
 SFR
- High-temperature gas fast reactor GFR
- Lead-cooled fast reactor

System	ADAM	SFR	GFR	LFR		
Net TRU Destruction	0.84	0.74	0.76	0.75 g/M\	N _t -day	
						ADAM burns TRU as well as
						the best critical core yet
						designed, it operates with
			21	180 GWd	/tHM	smallest TRU inventory, and it
dTRU/TRU	0.056	0.086	0.049	0.048 /yea	r	has no potentially disastrous
Photo and TazTaiwo DHVS			al Mootin	a Vancouwor (2/2006	failure modes.

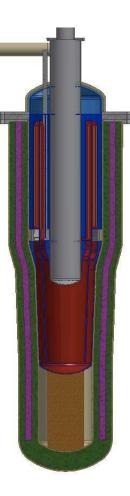
LFR

RAPHilland TazTaiwo, PHYSOR-2006, ANS Topical Meeting, Vancouver, 9/2006.

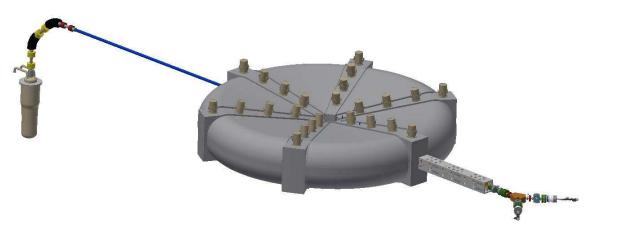
Summary: ADAM is a safe, effective method for destroying the TRU in UNF

- One ADAM system destroys TRU at the same rate that it is made by one GW_e nuclear power plant.
- It also generates 280 MW_e of new electric power an energy amplifier with a gain of 5.
- It is safe to operate there are no failure modes that could produce disastrous consequences – see next talk.
- Estimated cost of one ADAM facility ~\$1 billion, net cost of TRU destruction comparable to nuclear fuel fee.
- But how can we prove the ADAM technology at a cost <<\$B?

We can *miniaturize* ADAM yet preserve all elements of its performance


• Reduce core size

- 560 liters → 60 liters
- Initial operation with lanthanide surrogate fuel no actinides...
- The shift to actinide fuel:
 - Increase TRUCl₃ fraction in the fuel salt $15\% \rightarrow 60\%$
 - Criticality remains the same = 0.97
- Reduce proton drive beam energy 800 MeV → 150 MeV
 - Spallation yield decreases


800 MeV →150 Me 14 → 1

- Test all ADAM technology under parameters of full system.
- Total TRU required = 220 kg ~ amount recoverable from EBR2 fuel
- Estimated total project cost \$100 million.

System		SFR	GFR	LFR	SABR		ADAM		
Thermal Power	Q	840	600	840	3000	290	5.46	16.38	M
ADS proton energy	Ep					800	150	150	M¢
ADS beam power	$\mathbf{P}_{\mathbf{p}}$					8	0.5	1.5	M٢
Net TRU Destruction		0.74	0.76	0.75	1	0.84	1	1	kg/
Core Power Density	q	300	103	77	73	207	64	192	W٢
Outlet temperature	T _{max}	510	850	560	650	665	695	695	С
Thermal Efficiency	h _{th}	38%	45%	43%		44%	44%	44%	
TRU Inventory	Τ	2250	3420	4078	36000	1733	220	220	kg
Fuel Volume Fraction		22%	10%	12%	15%	100%	100%	100%	
TRU Enrichment	T/U	44-56 %	57%	46-59%	100%	53%	100%	100%	TRU
Fuel Burnup		177	221	180	249	129.5	9.1	22.8	GWd
dTRU/TRU		8.6%	4.9%	4.8%	3.0%	5.6%	1.0%	2.5%	/year

Destroying transuranics is the gift we can give our future generations...

Our plans to make it all happen:

- 2014-2017 Build 70 MeV SFC for medical isotope synthesis
- 2017-2019 Build baby-ADAM
- 2020-2022 Commission with La surrogate fuel
- 2022 Operate baby-ADAM with TRU/U fuel

Thank You for Listening

Sept 29th- Oct 4th,

North America – Particle Accelerator Conference 2013

TEXAS A&M

Ā

27