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Abstract—Application-specific accelerators provide 10-100x im-
provement in power efficiency over general-purpose processors. The
accelerator-rich architectures are especially promising. This work
discusses a prototype of accelerator-rich CMPs (PARC). During our
development of PARC in real hardware, we encountered a set of
technical challenges and proposed corresponding solutions. First, we
provided system IPs that serve a sea of accelerators to transfer data
between userspace and accelerator memories without cache overhead.
Second, we designed a dedicated interconnect between accelerators
and memories to enable memory sharing. Third, we implemented
an accelerator manager to virtualize accelerator resources for users.
Finally, we developed an automated flow with a number of IP templates
and customizable interfaces to a C-based synthesis flow to enable rapid
design and update of PARC. We implemented PARC in a Virtex-
6 FPGA chip with integration of platform-specific peripherals and
booting of unmodified Linux. Experimental results show that PARC
can fully exploit the energy benefits of accelerators at little system
overhead.

Keywords-customizable computing, computer architecture, prototyp-
ing, FPGA, design automation.

I. INTRODUCTION

Accelerator-rich architectures can bring 10-100x energy effi-

ciency by offloading computation from general-purpose CPU cores

to application-specific accelerators [1–6]. On-chip accelerators can

be categorized in two classes. While tightly coupled accelerators

[1, 2] are constrained in a CPU’s pipeline and thus experience lim-

ited benefits of a full customization, loosely coupled accelerators

[3–6] completely bypass CPU overheads (instructions, caches, etc.)

and can be optimized in a larger design space. Prior work [3–6]

proposed a methodology for integrating a sea of loosely coupled

accelerators along with very few CPU cores to build up an energy-

efficient computing system. This methodology does not expect all

the accelerators to be used all the time, but it guarantees that each

computation task is executed by the most efficient hardware.

Methodologies for how to integrate massive CPU cores in a

system have been well established [7]. The related research mainly

works on the following three key issues: data transfer between

userspace and device memories, on-chip memory architecture, and

hardware resource management. These issues also arise in the

integration of massive accelerators. However very little research has

been performed on what changes should be made in the solution

when we switch from CPU-centric architectures to accelerator-

centric architectures.

This work undertakes an implementation study of a general

framework for accelerator-rich CMPs in an FPGA-based prototype.

We name our prototype of accelerator-rich CMPs as PARC. By

realizing this in RTL and running it in real hardware, we find that

many architecture assumptions and design choices used in prior

research [4–6] work only for CPU cores and lose effectiveness

when facing a sea of accelerators. We propose our own solutions,

including hardware innovation and software automation, to meet

the demand of accelerators. These solutions are:

1) Shared system IPs for accelerators to transfer data between

userspace and device memories without cache overhead.

2) A dedicated interconnect between accelerators and memories

to enable memory sharing.

3) An extensible accelerator manager in a standalone bare-

metal processor to perform runtime scheduling of accelerator

resources.

In addition, we find that due to the large scale and high het-

erogeneity of accelerator-rich architectures, their design cycles

will significantly increase if we still follow conventional design

methodologies. In our prototyping, we develop an automated flow

to enable rapid development of PARC:

1) For accelerator designers, we integrate high-level synthesis

(HLS) tools in our development flow to allow accelerators to

be designed in a high-level abstraction (ANSI C), along with

a standardized accelerator interface in HLS-compatible C.

2) For application programmers, we virtualize physical acceler-

ator resources to accelerator classes, and provide objected-

oriented APIs so that programmers can use different accel-

erators by calling member functions of different accelerator

objects.

3) For system developers, we create a fully automated flow of

system synthesis and generation from a high-level system

description file.

Our PARC is verified in a commodity FPGA chip with the

goal of providing guidelines for future ASIC implementation. We

report experimental results after running the real hardware with an

unmodified Linux. We demonstrate that PARC can fully exploit the

energy benefits of accelerators at little system overhead.

II. RELATED WORK

A good example of accelerator-rich CMPs is the Wire Speed

Processor which has four accelerators (XML, Regex, Comp and

Crypto) shared by several CPU cores [4]. A general framework

for accelerator-rich CMPs (ARC) as proposed in [3] is shown in

Fig. 1. ARC presented a hardware resource management scheme

for accelerator sharing, scheduling, and virtualization. This scheme

introduced a global accelerator manager (GAM) implemented in

hardware to support sharing and arbitration of multiple cores for

a common set of accelerators. It also proposed to use several new

custom instructions for communicating with the GAM to avoid OS

overhead in accelerator interaction.

The on-chip memory architecture of accelerator-rich CMPs is

another research focus. The necessity of on-chip memory sharing

among accelerators was reported in [5]. Later, a more complete
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Figure 1: The general framework for accelerator-rich CMPs (ARC)

in [3].

architecture that extends both [3] and [5] was proposed in [6]. It

supports accelerator buffers in NUCA and uses a flexible paged

allocation method to limit the impact of fragmentation in a shared

buffer bank. It also developed a dynamic interval-based global

allocation method to assign spaces to accelerators, where each has

a range of buffer size requirements with different buffer utilization

efficiencies.

III. ARCHITECTURE IMPROVEMENTS

In this section, we report the challenges that we encountered

during our development of PARC in real hardware, and the

architecture improvements that we made over the prior work in

[3] which was derived based on architecture simulation.

A. Data Transfer Between Userspace and Device Memories

Data for accelerators to process are initialized by a user’s

host applications and are stored in a physical space somewhere

in the main memory that is managed by the OS. Accelerators

need to prefetch userspace data into their device memories (for

accelerators, usually scratch-pad memories, or SPMs) which they

can manipulate in their customized data paths without the overhead

of cache speculation. If an accelerator needs to transfer certain data

between userspace and its SPMs, the data addresses need to be

mapped from the virtual address space to the physical memory

storages so that the data can be transfered by direct memory

accesses.

1) Lessons Learned: A prior work [3] assumes that each ac-

celerator has a private translation look-aside buffer (TLB) to do

page translations and a direct memory access controller (DMAC)

to execute data transfers. During our prototyping, we found that

this kind of design led to two main drawbacks:

1) Resource underutilization. It is true that many CPU-centric

architectures put a private TLB in each CPU core (usually

in the data path between the L1 cache and L2 cache). As

long as the system is kept busy and all the CPU cores

are working, all the TLBs are used. In accelerator-rich

architectures, however, most of accelerators are powered off,

and a putting private TLB in each accelerator will always lead

to resource underutilization. TLBs and DMACs of different

accelerators should have the same circuit schematic and can

be shared among accelerators.

2) Reduced portability. Putting a TLB and a DMAC in an

accelerator requires an accelerator designer to be aware of

how data are stored and transferred in its target accelerator-

rich architecture. An accelerator needs to be redesigned when

it is migrated to another accelerator-rich platform.

In our prototyping, We also found another problem about [3]. In

[3], the DMACs always go to the L2 cache first when processing

their data transfers. However, this decision was based on the small

data size (32x32x32 image) chosen to avoid the long simulation

time. This data size can fit in the L2 cache entirely. When we use

a real data size (128x128x128 image) in our prototyping, most of

data are stored in the main memory, and it is more desirable to skip

the L2 cache in data movement. All the data in cache that is to be

processed by an accelerator can be invalidated in parallel with the

accelerator launch. In addition, going through cache will limit a

data transfer by the unit of the cache line size (e.g., 64B), and thus

will have to give up the optimization opportunities that emerge

when accelerators request sequential data over long continuous

address spaces.

2) Proposed Architecture: We decouple TLBs and DMACs

with accelerators in PARC. We offload them to our system IPs

that are designed specifically for accelerators — an input/output

memory management unit (IOMMU) and direct memory access

controllers (DMACs) — so that accelerators only need to send

data transfer requests to IOMMU, as shown in Fig. 2. IOMMU
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Figure 2: The architecture of our system support to offload data

transfer from accelerators.

contains a translation lookaside buffer (TLB) for page translation

from virtual addresses to physical addresses. If there is a TLB

miss, IOMMU will automatically consult with the OS for page

translation. IOMMU also cuts a data transfer on the page boundary

into data blocks so that all the addresses in each block are

continuous. Then IOMMU configures DMACs to transfer data from

the physical space to accelerators’ SPMs in burst mode. DMACs

are directly connected to the system bus towards the main memory

to perform data transfers in the most efficient way.

Based on our observations during prototyping, we decided to

put only one IOMMU but multiple DMACs in PARC, as shown

in Fig. 2. The reason for having only one IOMMU is that the

task of IOMMU is lightweight so a single IOMMU is able to

serve all working accelerators. Another reason to have a global

IOMMU serving all the accelerators is that it can explore the data

locality among successively launched accelerators to reduce the
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TLB miss rate. The reason for having multiple DMACs is that

they can transfer data in parallel to keep DDR busy and the start

up time of their burst data transfers can be overlapped and hidden.

3) Implementation Details: Since our IOMMU needs to serve

all the working accelerators instead of a single core, conventional

private TLB designs may no longer be applicable. We observed

that the processing of a data transfer request by IOMMU can be

stalled by two kinds of latencies: 1) the TLB miss that needs to go

to OS, and 2) waiting for DMAC to transfer a large amount of data

from DRAM. These two latencies are very large compared to the

workload of the IOMMU and are unpredictable since they depend

on the external workloads outside of the IOMMU. Our initial

design follows the conventional TLB scheme and cannot provide

service for an accelerator if it has received a request from another

accelerator and gets stalled by either of these two kinds of latency.

When it needs to serve a sea of accelerators, this stalling results

in a significant penalty on accelerator performance. We solve this

problem by implementing IOMMU into a non-blocking design

with three parallel submodules, as shown in Fig. 3. The “front”
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Figure 3: Our IOMMU design that processes accelerator requests

without being blocked by external OS or DMACs.

module in this figure focuses on page translation. The “middle”

module focuses on splitting data transfer on page boundaries. The

“back” module focuses on monitoring DMACs and responding to

accelerators. Each submodule can work on different requests as

shown in Fig. 3. While some requests are stalled in OS (request 2)

or DMACs (request 0), their successive requests can move forward.

Furthermore, for quick TLB lookup, we designed the TLB to be

4-way associative with pseudo LRU replacement.

B. On-chip Memory Architecture

As proposed in [5, 6], with on-chip memory sharing, the saved

transistors from memory sharing can be used to implement more

accelerators to cover more application kernels.

1) Lessons learned: Prior work [5, 6] mainly focuses on the

optimization of memory space allocation for accelerators during

runtime. It is assumed in [6] that accelerators can switch between

several operating modes with different requirements of buffer size

and off-chip bandwidth. During our prototyping, we found that

it is more efficient for accelerators to assume a fixed number of

scratchpad memories (SPMs) and fixed SPM sizes during design

time so that we can use hard-wired circuits to control these SPM

resources. In this case, multiple SPM allocation options are not

available (i.e. the BB-cuve in [6] for buffer allocation is reduced

to a single operating point). This means that when an accelerator is

launched, a resource manager has to find sufficient idle SPM banks

to fit the SPM requirement of this accelerator. Furthermore, to avoid

memory port competition, these SPM banks cannot be assigned to

other accelerators until this accelerator finishes its task. Therefore

the SPM allocation becomes much easier in this case, and in our

prototyping, the SPM optimization scheme proposed in [6] is not

needed.

What we observed to be the major challenge of memory sharing

among accelerators is the interconnects between accelerators and

shared memories; this issue is not addressed in prior work [5, 6].

A CPU performs a load/store every few clock cycles. Therefore,

a simple interconnect, e.g., Fig. 4(a), will meet the bandwidth

requirement. In contrast, accelerators run > 100x faster than
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shared L2 cache

y

SPM 

bank

SPM 

bank

SPM 

bank

SPM 
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Figure 4: Difference between memory sharing among general-

purpose CPUs and among accelerators. (a) A simple interconnect

for CPU. (b) Demanding interconnects for accelerators.

CPUs [8] and need to perform several loads/stores every clock

cycle. Not only accelerator IOs, but also the interconnects between

accelerators and shared memories, need to meet this bandwidth

requirement, as pictured in Fig. 4(b). Each accelerator needs to

have at least N ports if it wants to fetch N data every cycle. The

N ports need to be connected to N SPMs via N conflict-free data

channels in the interconnects.

2) Guideline for Solving Challenges in Memory Sharing: To

solve the challenge of the data demand between accelerators and

shared memories, we need to modify the interconnects between

them. If we follow the same design rules as those for interconnects

between CPUs and shared memories and simply duplicate the

interconnect hardware to meet the accelerator data demand, we

will get a resource-consuming design close to a full crossbar. To

solve this challenge, we develop a novel interconnect design that

scales with a sea of accelerators, and we exploit three optimization

opportunities that emerge in accelerator-rich architectures:

1) The multiple data ports of the same accelerators are powered

on/off together, and the competition for shared resources

among these ports can be eliminated to save interconnect

transistor cost.

2) Dark silicon imposes a limit on the maximum number of

accelerators powered on in an accelerator-rich architecture,

and the interconnects can be partially populated to just fit the

data access demand limited by the power budget.
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3) The heterogeneity of accelerators leads to execution patterns

among accelerators and, based on a probability analysis to

identify these patterns, interconnects can be optimized for

the expected utilization.

Since this paper focuses on a platform-based design, we will not

go into further detail about our interconnects. These details can be

found in [9].

C. Accelerator Management

Multiple applications running simultaneously in an accelerator-

rich architecture may compete for accelerators. A global accelerator

manager (GAM) is needed to perform arbitration of accelerators

among applications.

1) Lessons Learned: During our prototyping, we found that

popular OS scheduling methods of GPU management and many-

core CPU management are also applicable for accelerators (e.g.,

scheduling based on estimation of execution time adopted in [3]).

The freedom we have is to decide whether to implement the

accelerator manger in either OS kernel, or a standalone processor,

or ASICs. We decided to use a standalone lightweight CPU core

based on the following considerations:

• Compared to an implementation in OS [10], the memory size

limitation of the OS kernel cannot accommodate complex

scheduling policies (e.g., machine learning which becomes

meaningful with operation records from hundreds of acceler-

ators). But a bare-metal processor (i.e., running without OS)

can support GAM with complex scheduling algorithms as well

as workload isolation.

• Compared to the GAM implementation in ASICs [3], our

implementation in a CPU core is easier to develop and update.

System developers can design the complex scheduler in C

code and only need to recompile their codes when performing

an update.

Note that though we implemented GAM in a CPU core, the

overhead of the accelerator management is still small compared

to the execution time of an accelerator, as shown in Fig. 5 (see

Section III-D for our prototyping settings). We also found that

talking to GAM via its driver and OS has very marginal overhead

(the region “switch to OS” in Fig. 5). This is very different from

the OS overhead reported in [3]. The work in [3] uses fine-grained

accelerator chaining (which requires heavy communication via

OS). In addition, it estimates the OS overhead by running Solaris10

in a Simics/GEMS simulation, which seems to overestimate in

some cases (e.g., resulting in OS activity >99.6% in some cases).

As a result, it proposed new customized instructions to access

accelerators. But this turned out to be unnecessary in our real

hardware implementation.
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Figure 5: Little overhead (shadowed region) imposed by our

architecture on accelerators. GAM = global accelerator manager.

D. Overall Architecture

We integrate all of our designs proposed in the previous sections,

and prototype several instantiations of our architecture framework

in commodity FPGAs. Our first phase of prototyping targets a

Xilinx ML605 board with a Virtex-6 FPGA chip. Fig. 6 shows

the overall architecture implemented in this FPGA. The archi-
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Figure 6: Overview of our PARC implemented in Xilinx Virtex-6

FPGA XC6VLX240T. GAM = global accelerator manager.

tecture includes all of our platform-independent modules, such

as IOMMU, DMACs, crossbar and global accelerator manager

(GAM). It also includes platform-specific modules, such as Xilinx

Microblaze CPU cores, MDM (Microblaze debug module to boot

up OS core and GAM core), UART (as OS console interface),

Ethernet (to download GAM driver and user applications with

input data to run in OS), and Mailbox (as a communication IP

between GAM core and GAM driver in OS core). The Xilinx

development tool EDK for this FPGA chip allows us to have at

most two “Microblaze” CPU cores in the FPGA. One CPU core is

configured as a lightweight core for GAM. The other is configured

to run Linux and user applications in the single-core mode. This

can be extended to multicore when implemented in ASICs. We

are also implementing our architecture in Zynq SoC with an ARM

dual-core A9 processor in ASIC along with programmable logics.

IV. DESIGN AUTOMATION OF PARC

During our prototyping, we found that due to the large scale and

high heterogeneity of accelerator-rich architectures, their engineer-

ing cost increases significantly. In this section we discuss several

technologies that we developed to reduce the human effort and

speed up the design cycle of PARC.

A. Rapid Accelerator Designs

When there are hundreds of accelerators to be developed in

an accelerator-rich architecture, in order to guarantee the time-to-

market, we need to significantly improve the design productivity

of each accelerator.

1) Integration With High-Level Synthesis Tools: Design pro-

ductivity of accelerators can be improved by raising the level

of design abstraction beyond register transfer level (RTL). High-

level synthesis tools [11, 12] enable automatic synthesis of high-

level, untimed or partially timed specifications (such as in C

or SystemC) to low-level cycle-accurate RTL specifications for

efficient implementation of accelerators.. As reported in [11], the

code density can be easily reduced by 7-10x when moved to high-

level specification in C, C++, or SystemC, and at the same time,
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resource usage can also be reduced by 11-31% in an HLS solution

compared to a hand-coded design.

2) HLS-Compatible Accelerator Interface in C: HLS tools allow

accelerator designers to develop standalone accelerators in C. When

we target the design of accelerators that will be integrated in a

system, we need to provide a standardized accelerator interface in

HLS-compatible C as well. When an accelerator needs to communi-

cate with the outside, it either receives function parameters from the

global accelerator manager (GAM), or sends requests to IOMMU

to transfer data between userspace and its SPMs, or accesses

data in the shared SPMs which are assigned to the accelerator.

Fig. 7 shows our standardized accelerator interface that fulfills

these communication demands in a user-friendly way. As shown

Figure 7: Our standardized accelerator interface in HLS-compatible

C.

in lines 11-13 in Fig. 7, accelerator designers can fetch function

parameters sequentially by reading the “paramFIFO.” Then they

can send data transfer requests by writing the “IOMMU FIFO”

in a similar way. After data are moved to the accelerator’s SPMs,

designers can access these SPMs just like accessing data arrays in

C (line 17 in Fig. 7).

During our prototyping, we found that the data transfer requests

sent to IOMMU involve many packet contents. It is not desirable to

expose these contents to accelerator designers. We further package

these contents and offer a user-friendly API in C to accelerator

designers to send data transfer requests as shown in Fig. 8. This

Figure 8: The C-based API for an accelerator designer to send data

transfer requests to IOMMU.

API is fully compatible with high-level synthesis, and its function

calling will be mapped to push each flit in a request packet

into the FIFO-based channel “IOMMU FIFO” that is connected

to IOMMU. The API allows accelerator designers to specify an

arbitrary length of data to transfer according to the application

demand. Since our DMACs do not go through the CPU cache,

the data transfer will not be limited by the fixed data block size

of cache line. Accelerator designers can call the API anywhere in

their C codes and can prefetch data whenever they wish. The initial

interface (without the shadowed lines in Fig. 8 ) limits one data

transfer request on a continuous address space starting at “vaddr”

with a size of “length.” In many cases, designers may want to

fetch a data region with discontinuous addresses, e.g., the shadowed

region in Fig. 9. This motivates us to enhance the data transfer

to fetch this sub-image,

length = 5, copy = 5, stride = 10

Figure 9: An example where designers want to fetch a subimage

with discontinuous addresses in a 2D image.

protocol as shown in the shadowed lines in Fig. 8. Though the data

region to be fetched contains discontinuous addresses, its regular

shape can be defined by two extra variables “copy” and “stride”

in addition to “length.” This enhanced protocol not only saves

designers the burden of sending many requests for a data region

with discontinuous space, but also gives IOMMU opportunities to

process the transfer of a data region in a more global way.

With our standardized accelerator interface, accelerators can be

designed in pure C, synthesized by HLS tools to RTLs, and seam-

lessly fit into PARC. The standardization also provides accelerator

designs full portability when the underlying physical hardware

platform is changed.

3) Hardware Debug Support: In PARC, accelerators can be

written in C and then are synthesized into RTL. But accelerators

may manifest errors when running in the system. It is difficult

to debug accelerators in a system since they have been mapped

to hardware. As a further step in our system support for rapid

accelerator design, we allow accelerator designers to have “printf”-

like capability in their C codes to obtain debug logs after ac-

celerator runs. As shown in Fig. 10(a), designers can call our

API “HW print” in their codes. We integrate the “HW print”

(a) (b)(a) (b)

Figure 10: Interface of our hardware debug support for accelerator

designers. (a) An accelerator design in C with our API to dump

debug logs. (b) Interface for designers to take a look at the dumped

debug logs after accelerator runs in PARC.

API with the execution flow of the high-level synthesis tool

“Vivado HLS” [12] to generate an extra channel “log FIFO.” Logs

can be dumped through these channels to the configurable debug

module in PARC, as shown in Fig. 11. The configurable debug

module will be customized to provide an input port for each

accelerator containing “HW print” during our system generation.

This module also contains on-chip memories to store the debug
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Figure 11: Architecture of our hardware debug support.

logs after preprocessing (it will only store the most recent ones if

cannot fit into the memory size). We also reuse the CPU in PARC

to provide a user interface for designers to take a look at the debug

logs as shown in Fig. 10(b).

B. Virtualization of Accelerators in User Applications

Application programmers do not want their codes to be depen-

dent on the physical configuration (such as quantity and utilization)

of accelerators in an accelerator-rich architecture. Accelerators

need to be virtualized from a user’s applications, just like device

virtualization in OS.

1) Object-Oriented Interface to Application Programmers: We

implemented an API library so that an application programmer

can use on-chip accelerators by calling member functions of

the corresponding accelerator objects. The API library contains

an GAM driver and an object-oriented user interface that can

translate the accelerator demands from a user application into the

communication packets to be sent to the global accelerator manager

(GAM). Fig. 12 shows an example code of a user application using

an accelerator. In line 1, the programmer declares an accelerator

Figure 12: An example code of a user application using an

accelerator through our object-oriented APIs.

object “acc0.” The accelerator class “AccGradient” is a child of the

public class “Accelerator” that we developed. It corresponds with

the accelerator kernel “Gradient” which is used to speed up many

applications in the medical imaging domain [13]. Each type of

accelerator kernel is mapped to a child class in our user interface.

Then in line 2 of Fig. 12, after declaration of the accelerator object,

the programmer tries to reserve a “Gradient” accelerator. The

reservation may fail when all the “Gradient” accelerators existing

in the system are occupied by other applications at the moment.

The programmer may choose to wait for an available “Gradient”

accelerator, or switch the computation task to CPU as shown in

line 17 of Fig. 12. If the reservation succeeds, the programmer

can start the accelerator, and send parameters of the computation

task — just like calling a kernel function, as shown in line 4 of

Fig. 12. Then the programmer can call the member function in line

8 to check whether the accelerator has finished its task or not. Last

the programmer may free the accelerator so that other applications

can use it as shown in line 12 of Fig. 12, or else may keep the

accelerator reserved and assign another task to it.

2) Software Pipelining of Accelerators: An application may

have multiple accelerators working in parallel. With our object-

oriented interface, application programmers can easily write codes

with software pipelining of accelerators as shown in Fig. 13. In

Figure 13: An example code of software pipelining of accelerators.

the example code of Fig. 13, each image is processed by the

accelerator “acc0” first and then by the “acc1”. Note that we do not

check the data coherence among accelerators used by programmers.

Therefore, programmers need to guarantee that there is no data

race condition when they call a set of accelerators that might be

executed concurrently.

C. Automatic System Synthesis and Generation

The developer of an accelerator-rich architecture may want to

add new accelerators to the system, or try different types of

accelerators or different numbers of SPMs, etc. As described in the

previous sections, we add auxiliary hardware modules (IOMMU,

DMACs, crossbar and GAM) to the system. These hardware

modules need to be customized so that they correspond to the

developer’s modification of the system. If this large-scale system

with hundreds of accelerators is manually maintained, a huge

amount of human effort will be needed. Parameterization of a

system can save human effort, but it is not easily realized in

PARC. For example, the crossbar topology can change considerably

since its reoptimization will be invoked upon each architectural

update. The communication channels among the new accelerators,

the IOMMU, the GAM, etc., also need to be generated. Motivated

by these challenges, and to save human effort, we implemented

an architectural template rather than an ad hoc architecture, and

we developed a fully automated flow of system synthesis and

generation.

1) System Generation Interface to System Developers: Our flow

of automatic system generation needs only a high-level system

description file from a developer. Fig. 14 shows an example system

configuration file. This is an “xml” file with several fields. In the
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Figure 14: An example system configuration file created by a sys-

tem developer to generate a system with four types of accelerators

via our automated flow.

first field, “ACCs,” in each entry the developer can specify the name

of the accelerator to add, the duplication of this accelerator to put

in the system, the number of its function parameters, the path of

this accelerator design, and the number of SPMs needed by this

accelerator. In the second field, “SharedSPMs,” the developer can

specify the total number of SPMs to put in the system. In the

third field, “crossbar,” the developer can tune the crossbar between

accelerators and shared SPMs. In the fourth field, “debug,” the

developer can specify whether to turn on the hardware debug

support or not (see details in Section IV-A3). As long as the

developer gets this file prepared, he can invoke our flow for

automated system generation and get all the RTLs that are ready

for the back end process.

2) Automation Flow: Fig. 15 shows the overview of our fully

automated flow of system synthesis and generation. This flow

configuration�(.xml)

Our�flow

flattened configuration ( xml)

system�optimization�(.pl)

flattened�configuration�(.xml)

mhs�template

h d l

Xilinx�board�description�(.mhs)

hardware�templates

configurable�hardware�modules�(.vhd�or�.c)

highrlevel synthesis and update pcore libraryhigh level�synthesis�and�update�pcore�library

Xilinx�backend�flow�(EDK�with�logic�

synthesis placement and route)synthesis,�placement�and�route)

FPGA�bitstream

Figure 15: Our fully automated flow of system synthesis and

generation.

begins with the configuration file provided by the developer, and

all following steps will be executed automatically upon a single

“make” button. It is also seamlessly connected to a Xilinx back-

end flow to implement the architecture prototype in the Xilinx

FPGA. The first step of the flow is to apply system optimization

to the developer’s configuration to get a full system configuration.

Then it is combined with our hardware templates to create the

hardware modules that are customized to the developer’s demand.

If necessary, high-level synthesis tools will be called and the IP

library will be updated. Depending on the target technology, e.g.,

ASIC at 45nm node, or Xilinx Virtex-6 FPGA in our case, the flow

will go through the technology description (e.g., the Xilinx board

description shown in Fig. 15) and will be seamlessly integrated

with the back-end process (e.g., Xilinx EDK flow for bitstream

generation shown in Fig. 15). Table I shows the engineering cost

saved by our automatic system generation.

Table I: Design effort savings from adding 10 “segmentation”

accelerators to our automation flow. We only need to add 3 lines

of code in the input file of our flow, and >3000 lines of code will

be automatically generated.

components # of code lines

developer input configuration file 3

GAM 113
automatically IOMMU 200

generated crossbar 2240
system specification 542

total 3095 (>1,000x)

To the best knowledge of the authors, this is the first work that

provides automatic generation of accelerator-rich architectures.

V. EVALUATION OF PROTOTYPING IN COMMODITY FPGAS

A. Floorplan and Area Evaluation

Fig. 16 shows a floorplan of PARC mapped onto the Xilinx

Virtex-6 FPGA XC6VLX240T. This is based on a system con-

GAM
OS core

DDR3
Ethernet acc: gradient0

system bus

acc: gaussian0
acc: gaussian1

acc: gradient1 acc: segmentation

IOMMU
acc: rician

Figure 16: Floorplan of PARC implemented in Xilinx Virtex-6

FPGA.

figuration with six medical imaging accelerators [13] (two named

“gradient,” one named “rician,” one named “segmentation,” and

two named “gaussian”), and 20 shared SPM banks. The overall

system occupies 76% of the total logic resources in the Virtex-6

FPGA. The “crossbar” module is not shown in Fig. 16 since it is
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Table II: Significant speed-up and energy savings of the accelerators in PARC.
segmentation gaussian gradient + racian

Xilinx Microblaze Processor in FPGA @ 100MHz runtime (s) 1.4e3 1.7e2 3.3e3
energy (J) 546 66.3 129

Dual-Core ARM Cortex-A9 MPCore @ 800MHz runtime (s) 0.597 (1x) 0.301 (1x) 0.862 (1x)
energy (J) 0.299 (1x) 0.150 (1x) 0.431 (1x)

Accelerator in Our System in FPGA @ 100MHz runtime (s) 0.056 (10.7x) 0.066 (4.6x) 0.060 (14.4x)
energy (J) 0.123 (2.4x) 0.145 (1.0x) 0.132 (3.3x)

8-core Xeon Server E5405 @ 2GHz runtime (s) 0.405 (1x) 0.109 (1x) 0.106 (1x)
energy (J) 4.056 (1x) 1.064 (1x) 0.992 (1x)

Accelerator in Our System projected on 45nm ASIC runtime (s) 0.014 (28x) 0.016 (6.6x) 0.015 (7.1x)
energy (J) 0.010 (395x) 0.012 (87x) 0.011 (90x)

small (2.8% of total logic) and scattered. Note that we can have

more accelerators if there is no resource limitation from the FPGA

(i.e., run only the front end part of our flow). The primary purpose

of this prototyping is to validate our system design and automation

flow in real hardware.

B. Performance Gain and Energy Savings

Table II shows the performance gain and energy savings of the

accelerators in PARC. All the computation tasks use the input data

of a 128x128x128 3D image. Accelerator kernels “gradient” and

“rician” are running together to form the application “denoise” in

[13]. Power is measured by McPAT [14] for CPUs and Xilinx

xPower for FPGAs. We observed a >10x speedup of accelerators

running in FPGA-based PARC compared to the ARM processor in

ASIC. Note that data paths in FPGAs have to go through lookup

tables and routing switches for the sake of programmability, and

therefore they are much longer than their ASIC counterparts. The

evaluation results are also projected to ASICs based on the gap

between FPGA and ASIC reported in [15]. If PARC is further

implemented in ASIC, a >100x energy savings can be achieved.

VI. CONCLUSIONS

This work discusses an implementation study for a general

framework of accelerator-rich architectures in an FPGA-based

prototyping. We introduced several architecture improvements that

address some important system-level design issues including data

transfer between userspace and device memories, on-chip mem-

ory architecture, and hardware resource management. These im-

provements are critical when we migrate from CPU core-centric

architectures to accelerator-centric architectures. We also developed

an automated flow to enable rapid development of accelerator-

rich architectures. We run our prototyping in real hardware, and

experimental results show that our architecture can fully exploit

the >100x energy benefits of accelerators.
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