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ABSTRACT

We present novel accelerometer-based techniques for accu-
rate and fine-grained detection of transportation modes on
smartphones. The primary contributions of our work are an
improved algorithm for estimating the gravity component
of accelerometer measurements, a novel set of accelerometer
features that are able to capture key characteristics of vehic-
ular movement patterns, and a hierarchical decomposition
of the detection task. We evaluate our approach using over
150 hours of transportation data, which has been collected
from 4 different countries and 16 individuals. Results of
the evaluation demonstrate that our approach is able to im-
prove transportation mode detection by over 20% compared
to current accelerometer-based systems, while at the same
time improving generalization and robustness of the detec-
tion. The main performance improvements are obtained for
motorised transportation modalities, which currently repre-
sent the main challenge for smartphone-based transporta-
tion mode detection.

Categories and Subject Descriptors

I.5.2 [Pattern Recognition]: Design Methodology: Fea-
ture evaluation and selection; I.5.4 [Pattern Recognition]:
Applications: Signal processing; H.4.m [Information Sys-

tems]: Information Systems Applications: Miscellaneous

General Terms

Algorithms, Experimentation
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Mobile Sensing, Activity Recognition, Transportation Mode
Detection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
SenSys’13, November 11 - 15 2013, Roma, Italy.
Copyright 2013 ACM 978-1-4503-2027-6/13/11 ...$15.00
http://dx.doi.org/10.1145/2517351.2517367.

1. INTRODUCTION
The increased sensing capabilities of contemporary smart-

phones combined with their easy programmability, large mar-
ket penetration rate, and effective distribution channels for
third party applications, have resulted in smartphones ma-
turing into an effective tool for unobtrusive monitoring of
human behavior [21]. This paper focuses on a specific as-
pect of human behavior, the transportation behavior of indi-
viduals. The capability to capture transportation behavior
accurately on smartphones would have a positive impact on
many research fields. For example, human mobility track-
ing would directly benefit from an ability to automatically
monitor the transportation behavior of individuals [18, 28].
This in turn would enable improving urban planning [38],
monitoring and addressing the spread of diseases and other
potential hazards, as well as providing emergency respon-
ders information of the fastest route to aid the lost or in-
jured [29]. Localization and positioning algorithms could be
improved by constructing more elaborated motion models
with the help of information of the user’s current trans-
portation mode [25] or by constricting the plausible loca-
tions of the user to the route of the detected transportation
mode. Persuasive applications could use the transportation
behavior monitoring to automatically calculate, for example,
CO2-footprint or level of physical activity [9]. Finally, trans-
portation monitoring could be used as part of user profiling,
e.g., for real-time journey planning and guidance systems,
or targeted advertising.

While the idea to use smartphones for monitoring trans-
portation behavior itself is not new (see Sec. 2), previous
work has primarily focused on elaborate use of the phone’s
integrated GPS receiver. While GPS-based systems can be
very efficient when GPS signals are available, they suffer
from some important limitations. First, integrated GPS re-
ceivers are well-know to suffer from high power consumption,
which means these approaches rapidly deplete the battery of
the mobile device, especially when the user is mobile. Sec-
ond, the GPS receiver’s dependency on unobstructed view
to satellites presents problems in many common situations
of urban transportation, e.g., while the user is moving un-
derground, inside a station, along urban canyons, or while
the user is traveling in a vehicle but is unable to stay suf-
ficiently close to a window. Third, current GPS-based so-
lutions provide only modest accuracy when a fine-grained
distinction of motorised transportation modes is required.
Distinguishing reliably between different motorised trans-
portation modes would provide more detailed information
about human transportation behavior, e.g., enabling to au-



tomatically estimate the carbon footprint of individuals or
to obtain a detailed understanding of the commuting pat-
terns of urban citizens.

In this paper we present novel accelerometer-based tech-
niques which can be used individually, or in conjunction
with other sensors for transportation mode detection on
smartphones. We focus on accelerometers as they are well-
suited to overcome the above mention limitations. First,
accelerometers have very low power consumption, enabling
continuous transportation behavior monitoring. Second, ac-
celerometers measure user’s movements directly and there-
fore do not depend on any external signal sources. Third,
accelerometers contain highly detailed information about
phone movement, enabling fine-grained distinction of dif-
ferent motorised transportation modalities.

A central challenge in accelerometer-based transportation
mode detection is to distinguish information pertaining to
movement behavior from other factors that affect the ac-
celerometer signals. In particular, gravity, user interactions
and other sources of noise can mask the relevant information.
As our first technical contribution, we describe a novel grav-
ity estimation technique for accelerometer measurements.
Our gravity estimation technique provides more accurate
and robust gravity component estimation during motorised
transportation, which in turn translates to more accurate
horizontal accelerometer representation. The horizontal ac-
celeration is a key factor for identifying motorised modali-
ties, as the acceleration/deceleration periods are typically
similar within the same modality, but also distinct from
other modalities. The real-world analogy is that different
types of vehicles can be identified from their acceleration
and breaking periods. As our second technical contribution,
we introduce a new set of accelerometer features, so-called
peak features, which characterize acceleration and decelera-
tion patterns during motorized modalities. These features
are a key enabler for improving the detection performance of
transportation mode detection approaches. Moreover, these
features pave way for new types of sensing applications that
analyze vehicular movement patterns, e.g., driving style or
fuel consumption estimation.

We evaluate our approach using over 150 hours of trans-
portation data collected from 16 individuals and 4 different
countries. The results of our evaluation demonstrate that
our approach is able to improve detection accuracy by over
20% compared to current accelerometer-based solutions, and
even exceed the accuracy of the current state-of-art hybrid
GPS and accelerometer system by over 10%. Moreover, our
proposed techniques improve the robustness of the detection
and generalize well across users and geographical locations.

2. RELATED WORK
Transportation mode detection can be considered a special

subfied of activity recognition, a widely studied field within
the wearable and ubiquitous computing communities [17].
The first approaches to transportation mode detection re-
lied on custom sensing platforms [1, 5], whereas recent work
has predominantly considered smartphones as the sensing
platform. In the following we focus exclusively on previous
work on smartphone-based transportation mode detection.
We refer to [26] for information about approaches that rely
on custom sensing platforms.

Transportation mode detection can be subdivided into two
main subtasks: (i) determining whether the user is moving;

and, in case movement is detected, (ii) what kind of means
the person is using for moving around. The former task,
stationarity detection, has been widely explored in different
domains. For example, the LOCADIO positioning system
classifies the user as mobile or stationary based on changes in
the WiFi signal environment [16]. Muthukrishnan et al. [24]
detect mobility by analyzing spectral characteristics of the
WiFi signal environment. Kim et al. [14] use variance of ac-
celerometer values to detect when a person is staying within
one place. Kjaergaard et al. [15] combine accelerometer vari-
ance with a threshold on GPS speed to separate motorised
transportation modalities from stationary behavior.

The latter task, locomotion detection, has been increas-
ingly explored on smartphones. Typical locomotion types
include different pedestrian modalities (e.g., walking, run-
ning or moving in stairs), non-motorised transportation (e.g.,
bicycling, roller skating) and motorised transportation (e.g.,
bus, train or car). In terms of sensors, the accelerometer
is the most widely used sensor for detecting locomotion. A
number of early systems used the embedded accelerometer
for detecting different pedestrian and non-motorised modal-
ities, such as walking and running [20, 12], ascending or
descending stairs [4] or cycling [2]. Wang et al. [31] compare
features extracted from the L2 norm with features extracted
from horizontal and vertical representations. From each rep-
resentation, an extensive set of features is extracted over 8
second non-overlapping windows, and classification is per-
formed using a decision tree. In contrast to our work, the
authors obtain the best results using only the L2 norm repre-
sentation, which is due to inaccurate estimation of the grav-
ity component and insufficiently expressive feature space.
While previous accelerometer-based systems have been effec-
tive at detecting pedestrian and non-motorised transporta-
tion modalities, achieving typically over 90% accuracies, their
performance has been significantly lower for stationary and
motorised transportation modalities [26, 31]. Our work im-
proves on these approaches by demonstrating that capturing
features from the acceleration/deceleration periods from ve-
hicular motion can be used for accurate and fine-grained
detection of motorised transportation modalities.

Instead of relying on the accelerometer, Zheng et al. [36,
37] detect transportation modalities using features extracted
from GPS measurements. In addition to speed and location
information, the authors consider features that characterize
changes in movement direction, velocity and acceleration.
Together with information about street segments, the au-
thors reach an average accuracy of 76% in classifying be-
tween stationarity, walking, biking, driving and traveling by
bus. Recent work has focused on decreasing energy con-
sumption by requiring only sparse GPS data [3], introducing
more effective graph-based postprocessing techniques [36],
and improving the detection accuracy by fusing in external
information on the real-time location of the transportation
vehicles [30]. Reddy et al. [26] combine GPS and accelerom-
eter to recognize between stationary, walking, running, bik-
ing and motorised transportation, achieving high, over 90%
accuracies. Classification is performed with a hybrid clas-
sifier consisting of a decision tree and a first order discrete
HMM classifier. However, in contrast to our work, Reddy et
al. make no distinction between different motorised modal-
ities and mainly rely on GPS speed for detecting motorised
transportation. The main drawbacks of all these approaches
are that GPS receiver has high power consumption, requires



inconsistent time for obtaining satellite lock, and is unavail-
able or unreliable when view to satellites is obstructed, e.g.,
when the user is underground, inside a station, moving in
urban canyons or is insufficiently close to a window in a
transportation vehicle.

An alternative to GPS is to estimate movement by mon-
itoring changes in the user’s signal environment. Sohn et
al. [27] use changes in the GSM signal environment for coarse-
grained detection of transportation modalities. Mun et al. [23]
combine GSM and WiFi for detecting between dwelling,
walking and driving, reaching accuracies in the range of
80 − 90%. While energy-efficient compared to GPS, these
techniques are susceptible to varying WiFi access point den-
sity and GSM cell sizes between different locations. Conse-
quently, these techniques are unreliable outside urban areas
and require careful calibration, and thus, struggle to gener-
alize to new environments.

3. TRANSPORTATION MODE DETECTION
We have developed a novel solution for transportation

mode detection that can provide robust, accurate and fine-
grained detection of transportation modalities despite rely-
ing solely on the embedded accelerometer of the smartphone.
The key technical contributions of our work are (i) an im-
proved algorithm for estimating the gravity component of
the accelerometer measurements, (ii) a novel class of fea-
tures, extracted from the horizontal accelerometer represen-
tation, that are capable of capturing characteristics of accel-
eration and breaking patterns for different motorised trans-
portation modalities; and (iii) a hierarchical decomposition
of the overall detection task. As our experiments demon-
strate, the combination of these contributions provides sig-
nificant improvements in the accuracy of transportation mode
detection, in particular for motorised transportation modali-
ties. We have implemented our approach on Android smart-
phones and integrated it as part of a mobile application that
aims at motivating people to reduce their CO2 consump-
tion [13]. In the remainder of this section we describe the
different components of our approach in detail.

3.1 Overview
Our approach decomposes transportation mode detection

hierarchically into subtasks, proceeding from a coarse-grained
classification towards a fine-grained distinction of transporta-
tion modality. At the core of our system are three classifiers,
which are organized into a hierarchy; see Fig. 1. At the root
of the hierarchy is a kinematic motion classifier which per-
forms a coarse-grained distinction between pedestrian and
other modalities. When the kinematic motion classifier fails
to detect substantial physical movement, the process pro-
gresses to a stationary classifier, which determines whether
the user is stationary or in a motorised transport. When
motorised transportation is detected, the classification pro-
ceeds to a motorised classifier which is responsible for clas-
sifying the current transportation activity into one of five
modalities: bus, train, metro, tram or car.

Changes in transportation behavior typically occur in-
frequently and each activity has duration of several min-
utes. Furthermore, changes from one motorised transporta-
tion modality to another are typically separated by eas-
ily detectable walking segments [36]. Our approach treats
the different transportation activities as segments instead of

Figure 1: Overview of the classifiers used in our

system and their dependencies.

performing solely frame-by-frame classification. Segments
contain more information than the frames can express in-
dividually, resulting in improved classification performance.
Specifically, as more evidence to support one of the modal-
ities accumulates during a segment, the prediction becomes
increasingly accurate. The segment-wise classification is con-
tinued until change in transportation mode is detected. Sta-
tionary periods within motorised modality are interpreted as
being in a stopped vehicle, e.g., due to traffic lights or stop-
ping at a station. A detailed description of the frame and
segment-based classifiers are is given in Sec. 3.4.

3.2 Preprocessing and Gravity Estimation
We consider three dimensional acceleration measurements

obtained from contemporary smartphones. We preprocess
the raw measurements by applying a low-pass filter that re-
tains 90% of energy. This is performed to remove jitter from
the measurements and is in line with current best practices.
Next, we aggregate the measurements using a sliding win-
dow with 50% overlap and a duration of 1.2 seconds. The
length of the window was selected to ensure the monitoring
can rapidly react to changes in the transportation behav-
ior of the user. Once the measurements have been filtered,
we project the sensor measurements to a global reference
frame by estimating the gravity component along each axis
and calculating gravity eliminated projections of vertical and
horizontal acceleration. We consider a novel method for esti-
mating the gravity component from accelerometer measure-
ments that improves the robustness of gravity estimation,
particularly in the presence of sustained acceleration.

Currently the dominant approach for estimating the grav-
ity component from accelerometer measurements is to use
the mean over a window of fixed duration [19, 22]. While ele-
gant and simple, this approach, first proposed by Mizell [22],
suffers from two fundamental limitations. First, this ap-
proach is inherently based on the assumption that, given
a sufficiently long window of measurements, noise and ob-
served accelerometer patterns are uncorrelated over time.
This assumption does not hold during sustained accelera-



Algorithm 1 Gravity (Accelerometerwindow, THvar)

1: Wmean = mean(Accelerometerwindow)
2: Wvar = var(Accelerometerwindow)
3: if ||Wmean −Gest|| ≥ 2m/s2 then

4: THvar = ǫ ⊲ Reset variance threshold
5: end if

6: if Wvar < 1.5 then

7: if Wvar < THvar then

8: Gest = Wmean

9: THvar = (Wvar + THvar)/2
10: V arIncrease = THvar ∗ ǫinc

11: else

12: THvar = THvar + V arIncrease
13: end if

14: else

15: Gest = MizellEstimate(5s)

16: end if

tion, e.g., during any motorised transportation. Second,
when the orientation of the sensor suddenly changes, e.g.,
when the user sits down or stands up, there is a consider-
able lag before the gravity estimates are accurate again. The
lag of the approach can be reduced by shortening the time
window over which gravity is estimated, as has been used in
several sensing systems [19, 35]. However, this improvement
comes with a decrease in the accuracy of the gravity esti-
mates, making it difficult to detect sustained acceleration.
To illustrate these limitations, Figure 2(a) shows the grav-
ity estimation produced during a tram ride by the approach
used in the Jigsaw system [19], i.e., by using the mean over
a four second window. From the figure we can observe that
this approach tracks the raw acceleration measurements too
closely, removing all information that is relevant for distin-
guishing between the different transportation modalities.

To overcome the above mentioned limitations, we have de-
veloped a novel algorithm for estimating the gravity compo-
nent of accelerometer measurements. Our approach, sum-
marized in Alg. 1, considers short data windows and esti-
mates the gravity by opportunistically identifying periods
where the variation in sensor measurements is sufficiently
small, i.e., below a suitable threshold. During these peri-
ods, the sensor is approximately stationary, which means
that the main force exerting the sensor values is gravity.
In many situations, such as walking, bicycling, or traveling
with motorised transportation along an uneven road, the
measurements contain large variation for a sustained period
of time and no opportunities for gravity estimation occur.
To estimate gravity during these situations, we dynamically
adjust the variance threshold according to the current move-
ment patterns. We allow the variance threshold to increase
until a hard upper threshold is reached (currently, we use
variance of 1.5), after which the gravity estimates would
become overly inaccurate, and utilizing Mizell’s technique
becomes more suitable.

To reduce the influence of orientation changes on the grav-
ity estimate, we reset the estimate of the gravity component
when a large shift in orientation is observed. These shifts
are typically caused by extraneous activities, such as user
interaction or shifts in orientation due to, e.g., standing up
or sitting down. We detect shifts in orientation by compar-
ing the current gravity estimate against the mean of the last
measurement window. Whenever these differ by more than

(a) Mizell with a four second window.

(b) Our approach.

Figure 2: Comparison of the gravity estimation be-

tween the algorithm of Mizell and our approach.

The estimated gravity corresponds to the solid red

line.

Our Miz-1 Miz-10 Miz-30
Bus 0.32 0.09 0.24 0.27
Train 0.54 0.16 0.25 0.42
Metro 0.51 0.18 0.32 0.41
Tram 0.35 0.09 0.31 0.32

Table 1: Correlation coefficient between integral of

the horizontal gravity eliminated acceleration and

GPS speed using our method versus using Mizell’s

method.

a specific threshold (currently, we use 2m/s) along any of
the axes, we re-initialize the gravity estimate for each axis
to the mean of current accelerometer window. As illustrated
in Fig. 2(b), our gravity estimation is particularly effective
while traveling within motorised transportation where pe-
riods of low variance typically are interleaved within accel-
eration and deceleration patterns. In the scenario depicted
in the figure, the phone’s orientation was relatively stable
throughout the tram ride, implying that the estimated grav-
ity component should be approximately constant.

To further demonstrate the benefits of our gravity estima-
tion algorithm, we have conducted a small-scale experiment
using a dataset consisting of slightly over 7 hours or data
from different motorised transportation modalities. In this
experiment, we have compared speed information obtained
from GPS with the numeric integration of the gravity elimi-
nated horizontal projection of the acceleration. The numeric
integration calculates the area under the gravity eliminated



horizontal acceleration, which can be used to estimate the
speed of the user [6]. The results of this experiment, pre-
sented in Table 1, demonstrate a strong correlation between
the gravity eliminated horizontal projection and the speed
information obtained from the GPS. Compared to the ap-
proach of Mizell, our algorithm provides better correlation
with the speed obtained from GPS for all the evaluated
cases, despite using a short time window.

3.3 Feature Extraction
Once the sensor values have been preprocessed and trans-

formed, we construct gravity eliminated horizontal and ver-
tical representations of the accelerometer measurements. We
extract features on three different levels of granularity. The
three sets of features are referred to as frame-based, peak-
based and segment-based features with respect to the feature
source. Below we detail each feature set and describe their
function in the detection task. For a full list of features; see
Table 2.

Frame-based features

The frame-based features considered in our study were cho-
sen based on an analysis of accelerometer features conducted
by Figo et al. [6]. From each frame, we extract 27 fea-
tures from both vertical and horizontal representations, i.e.,
the total number of features we consider from each frame
is 54. The features we extract include statistical features
(e.g., mean, variance and kurtosis), time-domain metrics
(e.g., double integral, auto-correlation and zero crossings)
and frequency-domain metrics (e.g., energy, six first FFT
components, entropy and the sum of FFT coefficients). The
frame-based features are able to effectively capture char-
acteristics of high-frequency motion caused by, e.g., user’s
physical movement during pedestrian activity, or during mo-
torised periods, from vehicle’s engine and contact between
its wheels and surface.

Peak-based features

While the frame-based features can effectively capture in-
formation from high-frequency motion, they are unable to
capture movement with lower frequencies, such as accelera-
tion and breaking periods of motorised vehicles, which are
essential for distinguishing between the different motorised
transportation modalities. To capture features from these
key periods of vehicular movement, we use the horizontal
acceleration projection to extract a set of novel peak-based
features that characterize acceleration and deceleration peri-
ods. As the kinematic activities are largely characterized by
high-frequency motion, we extract the peak-based features
only during stationary and motorised periods, i.e., when the
kinematic classifier fails to detect substantial, cyclic kine-
matic movement.

To extract these features, we identify so-called peak ar-
eas that correspond to acceleration or breaking events; see
Figure 3. We identify peak areas by first applying a stream-
based event detection algorithm to identify significant changes
in the gravity eliminated horizontal acceleration. Once a
significant change has been observed, we mark the corre-
sponding time instant as the starting boundary of the peak
area. We buffer subsequent measurements until a significant
decrease in the magnitude of gravity eliminated horizontal
acceleration is observed, i.e., until the horizontal accelera-
tion levels out. Currently we use a pre-defined threshold of

Domain Features

Statistical Mean, STD, Variance, Median, Min,
Max, Range, Interquartile range
Kurtosis, Skewness, RMS

Time Integral, Double integral, Auto-Correlation,
Mean-Crossing Rate,

Frequency FFT DC,1,2,3,4,5,6 Hz, Spectral Energy,
Spectral Entropy, Spectrum peak position,
Wavelet Entropy, Wavelet Magnitude

Peak Volume (AuC), Intensity, Length,
Kurtosis, Skewness

Segment Variance of peak features (10 features),
Peak frequency (2 features),
Stationary duration, Stationary frequency

Table 2: Full list of the features considered for our

classifiers.

Figure 3: Peak areas detected from gravity elimi-

nated horizontal acceleration during a metro ride.

0.2m/s2 as the threshold for identifying the end boundary
of the peak area. Once the starting and ending boundaries
have been identified, we extract a set of statistical features
that characterize the peak area; see Table 2 for the features
that are considered. We calculate these features separately
for peaks corresponding to acceleration and to breaking pe-
riods, resulting in 10 peak features.

Segment-based features

In addition to the frame and peak-based features, we extract
segment-based features that characterize patterns of accel-
eration and deceleration periods over the observed segment,
i.e., during a period of stationary or motorised movement.
The segment-based features we consider are the frequency of
acceleration and breaking periods, the frequency and dura-
tion of the intermittent stationary periods, and the variance
of individual peak-based features. The former two of these
are analogous to the velocity change rate and stopping rate
features that Zheng et al. [36, 37] use as part of their GPS-
based transportation mode detection approach. In total we
consider 14 segment-based features.

To illustrate the potential of the peak and segment-based
features to provide fine-grained detection of motorised trans-



Figure 4: Comparison of the horizontal accelera-

tion profiles for different motorised transportation

modalities.

Figure 5: Unfiltered horizontal acceleration during

a tram ride for three different users, with phones

placed in three different placements.

portation modalities, Fig 4 illustrates the gravity eliminated
horizontal acceleration profiles for different motorised trans-
portation modalities. From the figure we can observe that
the shape of the peak areas is similar within the same modal-
ity, but also distinctive across the different modalities.

The performance of smartphone-based activity recogni-
tion approaches is typically sensitive to the placement of
the device. Our peak and segment-based features describe
the movement patterns of vehicles, instead of those of the
user, thus making these features robust over different device
placements. To demonstrate this aspect, consider Figure 5,
which presents horizontal accelerometer measurements dur-
ing a single tram ride from three different users and three dif-
ferent phone placements: bag (top, magenta), trouser pocket
(middle, red) and jacket (bottom, blue). From the figure,
we can observe that the horizontal acceleration profiles are
nearly identical, demonstrating that the peak and segment-
based features are not susceptible to device placement; see
also the generalization capability evaluation in Section 4.2.

In summary, we extract 54 frame features, 10 peak fea-
tures and 14 segment features, resulting in an overall feature
space consisting of 78 features.

3.4 Classification
As discussed in Sec. 3.1, we rely on a three-stage hierar-

chical classification framework for transportation mode de-
tection. For the kinematic motion classifier, we use a well-
established technique [26] of combining an instance-based
classifier with a generative classifier, i.e., a discrete Hidden
Markov Model (HMM). The stationary and the motorised
classifiers, on the other hand, perform segment-based clas-
sification where a simple voting scheme is used to aggregate
frame-based classifications over the observed segment. The
frame-based classifications are obtained using an instance-
based classifier. Each of the three classifiers considers a vari-
ant of AdaBoost as the instance-based classifier. During our
development process we have also evaluated the performance
of other instance-based classifiers, including decision trees
and support vector machines. Since these techniques were
less accurate than AdaBoost, further discussion about these
techniques is omitted. In the following we first briefly in-
troduce AdaBoost, after which we detail the segment-based
classification and the classifiers that are part of our system.

3.4.1 Adaptive Boosting

Boosting is a general technique for improving the accu-
racy of any learning algorithm [7, 8]. The basic idea in
boosting is to iteratively learn weak classifiers that focus on
different subsets of the training data and to combine these
classifiers into one strong classifier. Adaptive boosting (Ad-
aBoost), introduced by Freund and Schapire in [7], extends
the idea of boosting by tuning to the problematic samples
misclassified by previous classifiers. Specifically, AdaBoost
operates by assigning each sample in the training data a
weight that determines the importance of the sample. Over
a series of rounds t = 1, . . . , T , classifiers that minimize clas-
sification error on the weighted data are learned. After each
round, the weights of the samples are re-evaluated to as-
sign higher priority to samples that are misclassified. Note
that the features that are selected by the weak learners pro-
vide us with an automatic way to identify the most relevant
features for the final classifier design. In our case we use
decision trees with depth of one or two as the weak clas-
sifiers. The number of boosting rounds T was determined
using the scree-criterion, i.e., we plot the classification er-
ror for varying values of T and select a suitable value of T ,
which balances between the classifier accuracy and classifier
complexity. In order to retain classifier simplicity, we opted
for the minimal T value, after which further increasing the
value of T resulted only in marginal gain in accuracy.

3.4.2 Segment-Based Classification

Within each non-pedestrian segment, we assume that the
transportation modality remains unchanged. This follows a
logical assumption that transition between consecutive sta-
tionary or motorised transportation modes require an inter-
mittent period of pedestrian activity [36]. The transporta-
tion modality of the segment is predicted based on the entire
history of the observed segment using two sources of infor-
mation:

1. We aggregate classification results of frame,- and peak-
based features over the observed segment. As Ad-
aBoost performs soft classification, i.e., it outputs a
numeric value indicating the voting result of the weak
classifiers, we use a mean value of the voting results
over the duration of the segment.



Representation Features

Horizontal Variance, Range,
Vertical Variance, Interquartile Range

FFT 2Hz

Table 3: Features used in the kinematic motion clas-

sifier.

2. We compute the classification result of the segment-
based features over the observed segment.

After acquiring classification results from the two informa-
tion sources, we obtain the final classification by combining
the results of the two classifier outputs. To retain simplicity
of the system, we currently simply use the average of the
two sources.

3.4.3 Kinematic Motion Classifier

The kinematic motion classifier utilizes the frame-based
accelerometer features extracted from each window to dis-
tinguish between pedestrian and other modalities. For the
classification, we use decision trees with depth one (i.e., de-
cision stumps) and a combination of 10 weak classifiers, i.e.,
T = 10. The features that were selected for the final classi-
fier design are listed in Table 3. Clearly the most effective
features for this task are the variation for both horizontal
and vertical representations. Analogous to the variance, also
range and interquartile range were selected. This is due to
high variation of pedestrian modes compared to stationary
or motorised transportation modes. Another effective fea-
ture selected by the AdaBoost algorithm is the FFT 2Hz
component, which captures the repetitive nature of walk-
ing, typically with 1−3s interval. The accuracy of the kine-
matic motion classifier is over 99% which means that it can
robustly determine the subsequent classifier to apply.

3.4.4 Stationary Classifier

Representation Features

Horizontal Variance, Root Mean Square,
Max Coeff, Wavelet Entropy

Vertical Interquartile Range, Variance,
Root Mean Square,
FFT 2Hz

Peaks Volume, Length, Frequency
Segment Variation of Peak Lengths

Table 4: Features used in the stationary classifier.

The stationary classifier uses both the peak features and
the frame-based features for distinguishing between station-
ary and motorised periods. The best performance was ob-
tained using a combination of T = 15 weak learners, each
comprising a decision trees of depth two. The list of se-
lected features is shown in Table 4. The key features for
this task are the volume, length and frequency of accelera-
tion and breaking patterns. The frame-based features that
are selected primarily characterize the intensity of move-
ment along the horizontal and vertical axes. These features
include the root mean square, variance and range. In addi-
tion, features characterizing the pattern of movements, i.e.,

Representation Features

Horizontal Range, Root Mean Square,
Entropy, Max Coeff, Variance

Vertical Variance, Max Coeff, Range,
Root Mean Square, FFT 2,3,5Hz

Peaks Volume, Frequency, Intensity, Length
Segment Variation of Peak Lengths

Table 5: Features used in the motorised classifier.

FFT 2Hz, Maximum coefficient and Wavelet Entropy, help
to distinguish between the more repetitive movement pat-
tern of motorised transportation from sporadic movement
within stationary periods. The complexity of this classifier
indicates the difficulty of achieving this task using only the
kinematic information. Nevertheless, the precision of the fi-
nal classifier is over 95%, which enables our approach to pro-
vide robust continuous detection of transportation modality
even in the presence of periods where stationarity is inter-
leaved with motorised transportation.

3.4.5 Motorised Classifier

The motorised classifier is responsible for distinguishing
between different motorised transportation modalities. Cur-
rently the classifier supports distinguishing between car, bus,
train, tram and metro. As movement patterns between these
different transportation modalities are very similar, this is
the most challenging task in our design. For the AdaBoost
classifier we use T = 20, and decision trees of depth two as
the weak learners. The final set of selected features is shown
in Table 5. The frequency of the acceleration and breaking
peaks are the most important features as they enable distin-
guishing between vehicles that move alongside other traffic
(i.e., car, bus and tram) and vehicles moving independently
of other traffic (i.e., train and metro). The intensity and
length of the acceleration and breaking periods are effective
in separating car from other motorised modalities, as the
quicker driving maneuvers make car clearly distinguishable
from larger vehicles. The intensity and volume of accelera-
tion and breaking periods, on the other hand, are effective
in separating the slow moving tram from other motorised
modalities.

The motorised classifier uses frame-based features primar-
ily to distinguish vehicles that operate on roads from vehicles
operating on rails. The selected frame-based features effec-
tively capture characteristics of vertical movement as well
as overall noisiness of the measurements. However, com-
pared to the other two classifiers, the frame-based features
are assigned significantly smaller weight, indicating a low
relevance to classification. As our experiments demonstrate,
our design can effectively detect the correct modality with
approximately 80% precision. Moreover, most of the classifi-
cation errors occur during the first minutes of each motorised
segment before sufficient information about acceleration and
breaking patterns has accumulated. With our current de-
sign, the most problematic task is to distinguish between
metro and commuter train as both have very similar frame-
based and peak features. These errors could be alleviated,
e.g., by fusing in information about transportation routes,
or by using features from other sensors; see Sec. 5.



4. EVALUATION

4.1 Datasets
To develop and evaluate our approach, we have collected

over 150 hours of transportation data from 16 individuals
and 4 different countries. In the data collection we have
considered three smartphone models: Samsung Nexus S,
Samsung Galaxy S II and Samsung Galaxy S III. On the
Nexus S, the accelerometer is sampled at 60Hz frequency,
whereas on the Galaxy S II and Galaxy S III smartphones
the accelerometer is sampled at 100Hz frequency. The mea-
surements that we have collected consist of four different
datasets:

• Data collected from a predefined Scenario A during
winter of 2011−2012. Total of approximately 44 hours
of data was collected by nine individuals.

• Data collected from a predefined Scenario B during
autumn of 2012. Total of approximately 23 hours of
data was collected by seven individuals.

• Data collected from everyday transportation in Fin-
land between late 2011 and late 2012. Total of 65
hours of data was collected by seven individuals.

• Transportation data collected from abroad between
2011 and 2012. Total of over 20 hours of transporta-
tion data was collected by three individuals.

The two scenarios used in the data collection took place
within the downtown area of Helsinki, Finland. The sce-
narios were designed to contain a large variety of everyday
transportation modes and to last between 90 and 120 min-
utes per participant. The first scenario was carried out dur-
ing the winter of 2011−2012 and included nine participants.
The second scenario was carried out during autumn of 2012
and included seven participants. The scenarios were de-
signed to contain complementary sets of participants, public
transportation lines and traffic conditions; see Fig 6(a) and
Fig 6(b) for an illustration of the data collection scenarios.
To ensure that the results of the experiments are not sen-
sitive to the placement of the sensor, the scenario data was
collected from different sensor placements. We considered
the three most common placements for a mobile phone in
an urban space [11]: trouser pockets, bag and jacket pock-
ets. To avoid disturbing the sensing units that were used
to collect sensor values, the ground truth annotations were
made on an additional mobile phone that was not part of
any of the sensing units collecting sensor values.

In addition to the data collection scenarios, we have col-
lected everyday transportation data from seven individuals.
The participants were asked to collect sensor data during
their everyday transportation and to record ground truth
labels using our data collection application. No constraints
on the phone placement or usage were placed on the user.
The data was collected with one of the three phones models
at our disposal, Nexus S, Galaxy S II or Galaxy S III. The
everyday data covers a wide range of transportation behav-
ior within our target city; a total of over 30 different routes
were traveled during various times and traffic conditions.

To assess the generalization capability of our approach,
we have also collected data from various abroad destina-
tions: Japan (Tokyo, Amnon, Shirakami, Hiroshaki), Ger-
many (Frankfurt, Saarbrüken), and Luxembourg. This data

was collected by three individuals, following the same ap-
proach as with the everyday data collection. The measure-
ments were collected using Galaxy S II and Galaxy S III
phones.

4.2 Performance Evaluation
We consider the following aspects in our evaluation: ac-

curacy of transportation mode detection, power consump-
tion, generalization performance of the classifiers, and the
robustness and latency of the detection. The accuracy of
the classifiers was measured using standard classification
metrics, whereas robustness and latency were measured us-
ing the event and frame-based metrics proposed by Ward
et al. [32, 33]. As part of the evaluation, we compare our
system against the accelerometer-based approach of Wang
et al. [31] and the approach of Reddy et al. [26], which uses
both GPS and accelerometer measurements.

The approach of Wang et al. represents a typical accelerom-
eter based transportation mode detection system, whereas
the approach of Reddy et al. represents current state-of-the-
art in smartphone-based transportation mode detection. We
consider the following seven classes in our evaluation: Sta-
tionary, Walk, Bus, Train, Metro, Tram and Car. We omit
fine-grained classification of pedestrian modalities, focusing
instead on fine-grained detection of motorised transporta-
tion modalities as previous work has already demonstrated
high, over 90% accuracies [26, 1] for the different pedestrian
modalities.

Detection Accuracy

We first consider the capability of our approach to detect
different transportation modalities. To carry out this eval-
uation, we consider all of the data collected from the two
scenarios and evaluate detection accuracy using leave-one-
user-out cross-validation. The evaluation of car modality
is postponed until the evaluation of generalization perfor-
mance as it was not practically feasible for us to collect
driving measurements from the two scenarios.

The results of this evaluation together with a comparison
against the approaches of Wang et al. and Reddy et al. are
shown in Table 6. The mean precision and recall of our ap-
proach is over 80%, demonstrating that it can accurately dis-
tinguish between different transportation modalities despite
relying solely on accelerometer measurements. Moreover,
the variance of the results is relatively small, demonstrating
robustness across users. Compared to the the two baseline
systems, our approach provides over 20% higher precision
and recall than the approach of Wang et al. and over 10%
higher precision and recall than the approach of Reddy et
al. The most notable performance differences can be ob-
served for motorised and stationary periods. We assessed
the statistical significance of the performance differences us-
ing one-sided t-tests. The results of the significance tests
indicate that our approach is significantly better than the
approach of Wang et al. for all modalities except bus. Com-
pared to the approach of Reddy et al., our approach provides
significantly better precision for stationary, bus and train,
and significantly better recall for train, metro and tram.

With respect to the baselines, the results for the approach
of Wang et al. are analogous to the those reported by the
authors. However, the mean precision and recall of the ap-
proach of Reddy et al. appear significantly lower than re-
ported by the authors. There are two reasons for this differ-



(a) Scenario A (b) Scenario B

Figure 6: Overview of the scenarios which were used for data collection.

Precision Recall
Peaks Wang Reddy Peaks Wang Reddy

Stationary 96.1 (0.5) 57.3 (4.5) 81.6 (1.0) 70.0 (2.1) 59.5 (2.3) 70.6 (2.9)
Walk 93.1 (0.1) 87.2 (0.2) 97.7 (0.1) 95.9 (0.1) 89.1 (0.2) 95.9 (0.1)
Bus 78.2 (4.2) 71.1 (1.4) 67.3 (1.6) 78.0 (3.3) 70.4 (1.4) 86.2 (6.4)
Train 68.2 (5.0) 32.1 (0.8) 7.7 (4.4) 80.1 (4.0) 31.6 (0.7) 55.4 (11.9)
Metro 64.5 (5.9) 54.4 (0.6) 70.1 (8.8) 82.0 (2.6) 51.4 (0.9) 56.6 (3.5)
Tram 84.0 (2.1) 58.1 (0.8) 82.8 (7.5) 86.1 (2.1) 58.2 (0.8) 64.5 (7.0)

Mean 80.1 (2.9) 60.0 (1.4) 68.0 (3.9) 82.1 (2.4) 60.2 (1.1) 71.6 (5.3)

Table 6: Detection accuracy and variance for our system, and a comparison against the baseline systems.

ence. First, Reddy et al. merged all motorised transporta-
tion modalities into the same class, whereas we consider a
fine-grained distinction of different modalities. In case we
aggregate all motorised modalities into the same class, the
approach of Reddy et al. achieves a precision of 92.2% and
a recall of 96.1% which is analogous to the results reported
by the authors. The second reason for the performance dif-
ference is that the stationary class essentially corresponds
to a null-class, which suffers from an ambiguous definition.
Examples of situations that would fall within the stationary
class include (i) leaving the phone idle, e.g., on table, (ii)
having a dinner, working or otherwise sitting for prolonged
period of time, and, (iii) short stationary periods within mo-
torised transportation activity. The amount of kinematic
movement contained in each of these cases differs signifi-
cantly, resulting in varying results. In our case, the station-
ary class contains data also from periods that are interleaved
within active transportation, i.e., while waiting for the next
transportation vehicle or intermittent stops within pedes-
trian activity due to, e.g., traffic lights or queuing to enter a
vehicle. As these periods naturally contain some movement,
this creates stationary data which closely resembles the jit-
ters and vibrations of motorised transportation, rendering
these modalities hard to separate with solely frame-based
features. Moreover, our dataset contains several stationary
periods, where reliable speed information from the GPS can-
not be polled, e.g., while waiting for metro underground or
while waiting for train or bus within a station.

To better characterize the performance of our approach,
Table 7 presents the confusion matrix of the evaluation for
our approach. From the confusion matrix we can observe
that the most challenging individual subtask is to distin-
guish between train and metro. The difficulty of this task

Stationary Walk Bus Train Metro Tram
62733 755 135 58 302 361
1549 63664 456 650 723 805
3976 647 32400 18 104 8118
6730 330 874 31921 5907 1894
5057 711 2961 10879 41203 2682
4341 318 10123 87 2067 77715

Table 7: Confusion matrix for our approach.

TMode Precision Recall
Stationary 61.9 (-34.2) 64.0 (-6.0)

Walk 93.0 (-0.1) 93.0 (-2.9)
Bus 71.6 (-6.6) 71.5 (-6.5)
Train 25.1 (-43.1) 54.9 (-25.2)
Metro 60.1 (-4.4) 56.0 (-26.0)
Tram 69.6 (-14.4) 66.7 (-19.4)
Mean 63.6 (-16.5) 67.7 (-14.3)

Table 8: Detection accuracy for cross-user evalua-

tion without the peak features.

is also evident from the results of the baseline approaches.
The difficulty is caused by the close similarity of the peak,
segment and frame features for these modalities, as also dis-
cussed in Sec. 3.4.5. In case these classes are combined into
the same class, the classification accuracy improves signifi-
cantly, reaching almost 90% precision.

To evaluate the effectiveness of the peak and segment-
based features, we have repeated the experiment using our



TMode Precision Recall
Stationary 95.1 (2.0) 72.4 (2.1)

Walk 92.7 (2.4) 92.4 (2.0)
Bus 84.8 (3.6) 79.6 (0.5)
Train 74.7 (4.0) 80.8 (1.9)
Metro 69.6 (3.8) 81.3 (1.7)
Tram 88.4 (2.5) 87.9 (1.6)
Mean 84.2 (3.0) 82.4 (1.6)

Table 9: Results of cross-placement evaluation.

approach with only the frame-based feature. The results
of this evaluation are shown in Table 8 and show a signif-
icant decrease in detection accuracies, in particular for the
motorised modalities and stationary periods. Consequently,
the novel peak and segment-based features considered in our
work are effective at improving detection performance. The
accuracies resulting from the use of frame-based features
only, however, still exceed those of Wang et al., suggesting
that our gravity-estimation algorithm is able to provide more
expressive features than the L2 norm used in the approach
of Wang et al.

Influence of Device Placement

A key challenge in mobile activity recognition research is
how to deal with variations in sensor placement effectively.
To demonstrate that our approach is robust against de-
vice placement, we carried out the scenario evaluation de-
scribed previously also using leave-one-placement-out cross-
validation. The results of this evaluation are shown in Ta-
ble 9. The detection performance for most activities is higher
than in the cross-user case, indicating that our approach is
robust against variations in device placement. Accordingly,
variations in user characteristics have a more significant in-
fluence on the results than variations in placement, however,
generally our approach is robust against both sources.

Power Consumption

Any real-world deployment of continuous transportation mode
detection on smartphones requires that the detection has
minimal impact on the operational time of the smartphone,
i.e., that the detection’s power consumption is minimal. We
have performed a coarse-grained evaluation of the power
consumption using empirical power models that were con-
structed from measurements obtained using the Monsoon
Power Monitor1. To construct the power models, we first
constructed a model of the background power consumption
of the device. The power consumption values of the different
approaches were then obtained by measuring overall power
consumption and subtracting the background consumption.

The average power consumption of our proposed system
is 85 mW. From the total power consumption 21 mW results
from accelerometer sampling, 24 mW from constructing the
accelerometer representations, and 35 mW from calculat-
ing the frame-based features. The remaining 5 mW results
from peak and segment feature calculations. Compared to
the power consumption of the system presented by Reddy
et al., our approach provides a 155 mW reduction in energy

1http://www.msoon.com/LabEquipment/PowerMonitor/
[Retrieved: 2012-12-09]

Application Energy

Peaks TMD 85 mW

Wang TMD 50 mW
Reddy TMD 240 mW
Active call 680 mW
Music player 50 mW

Video recording 930 mW
Video playing 660 mW
Accelerometer 21 mW
Magnetometer 48 mW
Gyroscope 130 mW
Microphone 105 mW

GPS sampling 176 mW
Background 140 mW
Phone screen 470 mW

Table 10: Energy consumption of our system, along

with a comparison with the baseline systems and a

selection of popular applications.

consumption. Compared to the system presented by Wang
et at., our approach consumes 35 mW more energy due to
more complex accelerometer processing. For a comparison
between baselines systems and other popular applications
see Table 10. The numbers presented above do not take
into account duty-cycling or other methods for reducing sen-
sor or CPU energy consumption. The inertial sensors, i.e.,
accelerometer, magnetometer and gyroscope were sampled
at maximal sampling rate. The GPS sensor was sampled
similar to the baseline system at 1 Hz frequency.

The real-world implication of the presented energy com-
parison is that systems based on heavy use of GPS or other
power hungry sensors can deplete the battery of a smart-
phone within hours, while systems based on accelerometer,
such as ours, can potentially run in the background of a
smartphone throughout the entire day.

Generalization Performance

We next demonstrate that our proposed approach generalize
over various routes, vehicle types, traffic conditions and ge-
ographic locations. To demonstrate this aspect, we consider
an experiment where all classifiers are trained using the data
from Scenario A and B and evaluated using Everyday data
and data collected from abroad. To evaluate the detection
accuracy of driving a car, we augmented the training data
with driving measurements from the everyday data. Specif-
ically, we included 40% of all driving measurements in the
training data. As the test data we consider all remaining
data collected from the everyday transportation activities
as well as the data collected from abroad.

The results of this evaluation are shown in Table 11. From
the results, we can observe that the precision and recall of
our approach are similar or even better than those achieved
in the controlled experiment. The detection accuracy of car,
which was not considered in the scenario-based evaluation,
is over 90%, indicating that driving a car is the easiest mo-
torized modality to recognize.

The detection accuracy for stationary, walking and tram
are similar or marginally better than those achieved in the
controlled experiments. The largest increase is evident for
bus, which has increased some 8% for both precision and re-



Precision Recall
TMode Peaks Wang Reddy Peaks Wang Reddy

Stationary 96.0 51.5 80.9 72.9 52.6 78.0
Walk 92.4 84.1 97.7 97.3 85.4 91.1
Bus 85.2 59.1 63.1 86.7 77.3 78.7
Train 75.9 24.8 4.4 80.7 49.3 43.6
Metro 67.1 50.4 58.1 72.7 37.9 35.3
Tram 87.7 70.9 72.4 90.0 42.1 40.1
Car 90.1 79.3 89.9 96.7 80.1 95.4

Mean 84.9 60.0 66.7 85.3 60.7 66.0

Table 11: Generalization experiment of our detection system.

Figure 7: Fragmentation rate of the detection per-

formance.

call. This is due to the long-distance bus trips present in the
everyday dataset, which suit our segment classification par-
ticularly well. For similar reasons, the precision of train has
increased some 7% from the controlled experiments. The ac-
curacy increase is moderated by the different characteristics
of the vehicles used abroad, in particular the bullet train,
which was particularly challenging for our classifiers which
were trained with data from commuter trains in Helsinki.
Metro, while increased 3% for precision, has dropped some
10% for recall. This is mainly caused by mixed classification
between train and metro for commuter trains in Tokyo, as
these represent qualities from both, train and metro, and
are hard to label accurately. For tram, both precision and
recall have increased by 3%.

In comparison to our approach, the performance of both
baselines decrease from the first evaluation, demonstrating
that our system generalizes well and is better at captur-
ing generic characteristics of different transportation modal-
ities. As the test data contains measurements collected in
countries with significantly different transportation infras-
tructures and spatial topologies, the results also effectively
demonstrate that our approach generalizes well across dif-
ferent geographic locations.

Detection Robustness

The evaluation of the transportation modality detection gives
an incomplete view of the suitability of our approach for ap-
plications that continually monitor the transportation modal-
ity of the user. In particular, the classification metrics con-
sidered in the previous section ignore the continuous nature
of the transportation activities. The metrics give no indica-

Figure 8: Underfill Rate of the detection perfor-

mance.

tion about the robustness of the detection and the latency
between detecting changes in transportation mode.

To evaluate detection robustness, we consider the frag-
mentation rate of the different activities, i.e., the fraction of
all ground truth events that the classification recognizes as
multiple events. The results of this evaluation and a com-
parison against the baseline approaches are shown in Fig. 7.
With the exception of walking modality, for which the frag-
mentation rate is under 2.0% for all evaluated systems, our
approach provides significantly more robust transportation
modality detection. On average, the fragmentation rate of
our approach is less than one-tenth compared to the base-
lines. The increased robustness is mainly due to the segment
classification used in our approach.

As part of the robustness analysis, we have also examined
the latency of detecting changes in transportation mode.
To illustrate this aspect, Fig. 8 shows the underfill rate of
the detection at the start of a new modality. The underfill
rate effectively measures the rate at which there is a de-
lay in detecting the correct modality when the modality has
changed. From the results we can observe that both our
approach and the approach of Reddy et al. are effective at
detecting changes from or to pedestrian transportation be-
havior. The approach of Wang et al. uses a longer window
(i.e., 8 seconds), which increases the latency in detecting
changes between transportation modes.

For motorised modalities, our system has higher latency
than the system of Reddy et al. The difference is a result
from the use of peak and segment-based features, which re-
quire observing few peaks before they can accurately detect
the transition from stationary to motorized transportation,



Figure 9: The effect on underfill rate from using

GPS sensor for stationary detection.

and to identify the correct motorized mode. The detection
latency can be easily reduced by infusing any sensor capable
of stationary detection (i.e., GPS, GSM or WiFI) to our sta-
tionary and motorised classifiers when the importance of low
latency outweighs the associated energy cost. This aspect is
illustrated in Fig. 9, which shows how the inclusion of GPS
speed significantly reduces the underfill rate of our approach
for all of the motorised transportation modalities. A possi-
ble extension of our approach that could reduce detection la-
tency, as well as reduce misclassifications, thus is to sample
the GPS whenever a transition from kinematic/pedestrian
modality to motorized transportation is observed.

5. DISCUSSION AND SUMMARY
The present paper has introduced novel accelerometer tech-

niques for transportation mode detection on smartphones.
Evaluations conducted using over 150 hours of transporta-
tion data demonstrate that, compared to existing accelerom-
eter based solutions, our work provides over 20% improve-
ments in the accuracy of transportation mode detection,
while at the same time improving robustness of the detec-
tion. The results also demonstrate that our approach gen-
eralizes well across users and geographic locations. The pri-
mary technical contributions of our work are an improved al-
gorithm for estimating the gravity component of accelerom-
eter measurements, a novel set of accelerometer features
which characterize acceleration and breaking patterns dur-
ing motorised transportation, and a hierarchical decompo-
sition of the overall recognition task. We have implemented
our system on Android smartphone and are currently using
it as part of a mobile application that supports persuasive
mobility.

While the present work has focused exclusively on trans-
portation mode detection, our technical contributions have
significance to numerous other domains. The possibility to
construct accurate reconstructions of the gravity eliminated
horizontal and vertical accerelations for vehicular movement
open up possibilities, e.g., for recognizing potholes, estimat-
ing the skill-level of drivers, recognizing traffic accidents, and
so forth. Aggressiveness of braking and acceleration pat-
terns, which can be detected using our peak-based features,
are also key factors affecting fuel consumption of drivers,
opening up possibilities to build accelerometer-based solu-
tions for assessing the sustainability of driving styles.

Our current system relies solely on the phone’s accelerom-
eter, which means that the impact of our system on the
phone’s battery lifetime is reasonable even when the sen-
sor is polled with maximum sampling frequency. The power
consumption of our approach could be easily reduced fur-
ther. For example, we could use the hierarchical classifica-
tion architecture to compute only the relevant features for
each classification task. The kinematic classifier which re-
lies on computationally light features has the lowest energy
consumption, while the motorised classifiers with a wide
range of features requires the most energy. As our exper-
iments considered phones with two different sampling rates,
the results suggest that our approach is not overly sensi-
tive to the sampling rate of the accelerometer, providing
further possibilities to reduce power consumption by duty
cycling the sensor, particular during periods of prolonged
stationary behavior [34]. During periods of extended sta-
tionary behavior, the application could also be switched off
until notable kinematic movement is detected from the ac-
celerometer [14] or the primary GSM cell changes [26]. As
humans tend to spend most of their time within a limited
set of locations, with only occasional transitions between
these places [10], significant reductions in power consump-
tion could be achieved by minimizing the power consump-
tion of the stationary classifier.

While our system provides improved robustness compared
to other purely accelerometer-based methods, it is still sus-
ceptible to interference from extraneous kinematic events,
such as user interaction or changes in the orientation of the
phone. Consequently, methods for handling these situations,
such as those used as part of the Jigsaw system [19], can be
used to further improve the robustness of our approach. The
current implementation of our approach already integrates
some of these techniques, using light and proximity sensors
together with information about the phone’s state (e.g., on-
going call, screen of, buttons pressed) to identify and discard
periods of user interaction.

Currently the main limitation of our approach is the la-
tency of detecting the correct modality while switching to
a motorised transportation modality. In applications which
require quick detection of correct transportation modality,
the latency can be significantly reduced by fusing in mea-
surements from additional sensors, e.g., changes in GSM or
Wi-Fi signal environment, GPS speed or changes in mag-
netic field.
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