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Abstract

Accelerometers are widely used to measure sedentary time, physical activity, physical activity 

energy expenditure (PAEE), and sleep-related behaviors, with the ActiGraph being the most 

frequently used brand by researchers. However, data collection and processing criteria have 

evolved in a myriad of ways out of the need to answer unique research questions; as a result there 

is no consensus.

Objectives—The purpose of this review was to: (1) compile and classify existing studies 

assessing sedentary time, physical activity, energy expenditure, or sleep using the ActiGraph 

GT3X/+ through data collection and processing criteria to improve data comparability and (2) 

review data collection and processing criteria when using GT3X/+ and provide age-specific 

practical considerations based on the validation/calibration studies identified.

Methods—Two independent researchers conducted the search in PubMed and Web of Science. 

We included all original studies in which the GT3X/+ was used in laboratory, controlled, or free-

living conditions published from 1 January 2010 to the 31 December 2015.
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Results—The present systematic review provides key information about the following data 

collection and processing criteria: placement, sampling frequency, filter, epoch length, non-wear-

time, what constitutes a valid day and a valid week, cut-points for sedentary time and physical 

activity intensity classification, and algorithms to estimate PAEE and sleep-related behaviors. The 

information is organized by age group, since criteria are usually age-specific.

Conclusion—This review will help researchers and practitioners to make better decisions before 

(i.e., device placement and sampling frequency) and after (i.e., data processing criteria) data 

collection using the GT3X/+ accelerometer, in order to obtain more valid and comparable data.

PROSPERO registration number—CRD42016039991.

1 Introduction

Health benefits of physical activity (PA) across a person’s lifespan have been widely 

reported [1, 2, 3]. The use of accelerometers to assess sedentary time (SED) and PA [4, 5, 6, 

7] has become an objective and feasible alternative to self-report methods such as 

questionnaires, which are characterized by their poor reliability and validity, especially in 

younger populations [8, 9, 10]. Accelerometers are wearable devices that measure 

accelerations of the body segment to which the monitor is attached. The signal is usually 

filtered and pre-processed by the monitor to obtain activity counts, i.e., accelerations due to 

body movement. The amount and intensity of daily SED and PA may be obtained by 

classifying activity counts accumulated in a specific time interval (epoch length) with a set 

of cut-points, i.e., intensity thresholds for PA intensity classification [11, 12, 13, 14, 15]. 

Physical activity energy expenditure (PAEE) or sleep-related behaviors may also be 

estimated by applying algorithms to objectively-determined activity counts [16, 17, 18, 19, 

20, 21]. New methods to estimate these variables from raw acceleration signals (gravity 

units) instead of activity counts have been developed recently [22, 23, 24].

Among the commercially available brands, the ActiGraph (Pensacola, FL, USA) 

accelerometers are the most frequently used by researchers, accounting for >50% of 

published studies [25]. This review only considered the latest generation of ActiGraph 

devices, i.e., GT3X, GT3X+, and wGT3X-BT (hereinafter referred to as GT3X/+). The 

continuous change in the features of these devices makes it difficult to compare data 

between studies.

The first ActiGraph accelerometers available were uniaxial (i.e., they could only detect 

vertical axis accelerations) and consequently cut-points and algorithms were developed to 

assess SED, PA intensity, PAEE, and sleep-related behaviors from vertical axis accelerations 

[11, 17, 21]. In mid-2009, ActiGraph released the triaxial GT3X, which detected 

accelerations in three axes (i.e., vertical, medio-lateral and antero-posterior axes). The 

transition from uniaxial to triaxial devices implied new calibration processes, and the 

algorithms developed for the vertical axis were not applicable to vector magnitude (i.e., the 

square root of the sum of squared activity counts from the three axes) [7, 13, 18, 20, 26, 27, 

28].
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Due to the extremely rapid development in this field, there is an overwhelming amount of 

data collection and processing criteria decisions, and there is no consensus about which 

approaches to use. Consequently, it is difficult for researchers and practitioners to make the 

right decisions about which criteria should be used in a given situation. This is important as 

the chosen criteria have a huge impact on the outcome. In order to address this problem, 

some studies have compared certain GT3X/+ outcomes estimated by different cut-points and 

algorithms [4, 29, 30, 31] in an attempt to recommend which decisions are the most 

accurate; however, this information is still scarce.

It is important to note that algorithms validated in a specific age group might not be valid for 

other age groups due to different PA patterns, so whenever possible, data collection and 

processing criteria should be age-specific. Accelerometer methods can be grouped into two 

categories: (1) data collection protocols, which are decisions that need to be made a priori 

such as device placement or sampling frequency; and (2) data processing criteria, which 

involve decisions that can be made a posteriori such as filters, epoch length, non-wear-time 

definition, cut-points, and algorithms. The present review will address all of these criteria 

separately and specifically by age group. In this review we aimed to: (1) compile and 

classify existing studies assessing sedentary time, physical activity, energy expenditure, or 

sleep using the ActiGraph GT3X/+ by data collection and processing criteria to improve 

data comparability, and (2) review data collection and processing criteria when using 

GT3X/+ and provide age-specific practical considerations based on the validation/calibration 

studies identified. Both objectives were approached separately for the following age groups: 

preschoolers, children/adolescents, adults, and older adults. Although there is a large amount 

of information included in this review, we believe that it is useful for readers to have a single 

article that summarizes the most important accelerometer methods for each age group 

separately. This will allow readers to go directly to a specific criteria for the age group they 

are interested in (e.g., PAEE in preschoolers). In this review, we provide a section with 

examples of how the information presented can be used in practical terms, as well as a table 

with practical considerations.

2 Methods

2.1 Study Design

The present review focuses on 11 key methodological issues related to GT3X/+ data 

collection and processing criteria: (1) device placement, (2) sampling frequency, (3) filter, 

(4) epoch length, (5) non-wear-time definition, (6) what constitutes a valid day and a valid 

week, (7) registration period protocol, (8) SED and PA intensity classification, (9) PAEE 

algorithms, (10) sleep algorithms, and (11) step counting. Available information was 

classified into two different types of studies: (1) any cross-sectional, longitudinal, or 

intervention study which used the GT3X/+ device and met the inclusion criteria indicated in 

Sect. 2.3 (objective 1); and (2) studies focused on validation, calibration, or comparison of 

functions related to data collection or processing criteria (objective 2). Therefore, the 

practical considerations provided for each age group are based on the results from the 

validation/calibration studies (see Table 1). Furthermore, we provide a summary of all data 

extracted from the validation/calibration papers included in this review by age group in the 
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Electronic Supplementary Material Appendix S1. Inclusion/exclusion criteria and analytical 

methods were specified in advance and registered in the PROSPERO (http://

www.crd.york.ac.uk/PROSPERO/) international database of systematic reviews 

(CRD42016039991) [32]. The study is conducted according to the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [33].

2.2 Search Strategy

We searched PubMed and Web of Science for studies using the ActiGraph GT3X/+ model 

and classified the studies into the following age groups: preschoolers (2–5 years), children 

(6–11 years), adolescents (12–18 years), adults (19–59 years), and older adults (≥60 years). 

We combined (using the Boolean operator “OR”) the following search terms: GT3X, GT3X

+, and ActiGraph. Although we wanted to limit the search to GT3X/+, the word ActiGraph 

was entered in the search because we found that some studies specified the brand (i.e., 

ActiGraph) instead of the model (i.e., GT3X/+) in the title/abstract/keywords. Since the 

GT3X/+ models were launched in mid-2009, we limited the dates of the search to 1 January 

2010 to the 31 December 2015 and conducted the final search on 3 January 2016. We 

contacted authors of those studies where the data processing and collection information was 

unavailable in the published article. In a final step, we extended the search to the IEEE 

(Institute of Electrical and Electronics Engineers) Xplore database, in case we had missed 

any relevant studies.

2.3 Inclusion/Exclusion Criteria

We included all original studies (cross-sectional, longitudinal, or intervention studies) in 

which the GT3X/+ was used in a laboratory, or under controlled or free-living conditions. 

Protocol studies, reviews, editorials, and abstract or congress communications were 

excluded, as well as studies conducted in people with mobility problems or in periods of life 

in which their mobility could have been markedly altered (e.g., pregnancy).

Two authors working independently (JHM and CCS) read the articles and checked whether 

they met the inclusion/exclusion criteria. They obtained 76% agreement on the papers 

selected for the review before consensus and 100% agreement after discrepancies were 

resolved in a consensus meeting. Risk of bias assessment was also conducted independently 

by JHM and CCS in order to assess the quality of studies (see Electronic Supplementary 

Material Appendix S2).

3 Results

A total of 940 articles were identified (Fig. 1), of which 444 were excluded after reading the 

title and abstract and 261 articles were additionally excluded after reading the full text and 

did not meet the inclusion/exclusion criteria stated above. Finally, a total of 235 studies were 

considered eligible for the current systematic review. Of them, 78 were validation/calibration 

studies. Methods and results of these validation/calibration studies are summarized in the 

Electronic Supplementary Material Appendix S1. Detailed information about the methods 

and results for the rest of studies (i.e., those using GT3X/+ that were not validation/

calibration studies) included in this review is available upon request.
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Forty-four percent (N = 103) of the included studies were conducted in adults (46% 

validation/calibration studies), 34% (N = 81) in youth (30% validation/calibration studies), 

22% (N = 51) in older adults (11% validation/calibration studies), and 10% (N = 24) in 

preschoolers (13% validation/calibration studies).

Studies including two or more age groups are summarized in both age group sections in this 

review. Table 2 presents the criteria used for data collection and processing by age group. A 

list of references for each of the criteria is found in Electronic Supplementary Material 

Appendix S3. The information provided in Table 2 and Electronic Supplementary Material 

Appendix S3 allows researchers to make comparisons between studies that have used the 

same data collection and processing criteria.

Figure 2 shows the percentage of studies that did not report key methodological issues by 

age group. Of the studies reviewed, 15–20% did not report criteria such as sampling 

frequency, epoch length, and a non-wear-time definition, and 60–80% of studies did not 

report information on the filter used.

Table 3 presents the studies that compared the differences in several outcomes when the 

GT3X/+ device was simultaneously worn on the wrist and hip. The optimal place to attach 

the GT3X/+ should be chosen based on reliability, validity, and compliance. Table 4 shows 

the references for the studies sorted by age group and placement site that have developed 

SED and PA cut-points, PAEE prediction equations, and sleep algorithms. Table 5 shows the 

intensity cut-points used in the included studies together with the pre-processing criteria 

used in the study which developed each set of cut-points. Therefore, the practical 

considerations provided for each age group are based on the results from the validation/

calibration studies (see Table 1).

In the following sub-sections, we will focus only on information from validation/calibration 

studies presented in Electronic Supplementary Material Appendix S1. Sections 3.1, 3.2, and 

3.3 correspond to data collection protocols (i.e., pre-processing stage) and Sects. 3.4 – 3.10 

correspond to processing criteria (i.e., processing stage).

3.1 Device Placement

3.1.1 Preschoolers—In young preschoolers Johansson et al. [34] reported receiver 

operating characteristic area under the curve (ROC-AUC) data for intensity thresholds 

between 0.88 to 0.98 using a left wrist-mounted GT3X+. Similarly, a ROC-AUC of 0.90–

0.94 was reported by Costa et al. [35] using a hip placement, suggesting high potential for 

both placements to correctly classify PA intensity in preschoolers.

3.1.2 Children and Adolescents—A higher compliance for wrist-worn versus hip-

worn devices has been reported in children/adolescents [23]. However, similar wear-time 

was achieved in protocols using 24-h waist-worn compared to 24-h wrist-worn 

accelerometers [36].

With regard to cut-points to classify SED and PA intensity, non-dominant wrist placement 

achieved a lower ROC-AUC (0.64–0.89) [15] compared to the dominant wrist (0.83–0.94) 
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[37] and hip (>0.90) for all cut-points [13, 38]. Furthermore, Hildebrand et al. [22] found a 

greater percentage of the explained variance when using algorithms from the hip compared 

to the wrist (78% for hip; 71% for wrist).

Previously developed sleep algorithms for the wrist placement were tested on the hip and 

wrist by Hjorth et al. [39]. They obtained a classification accuracy between 86.6 and 89.9% 

for the algorithms tested (developed with GT1M) [16, 17] in hip compared to wrist 

measurement. Hip placement overestimated total sleep time compared to the wrist (60.1 vs. 

73.8 min per day for wrist and hip, respectively). Finally, Tudor-Locke et al. [18] developed 

an algorithm to identify bedtime for the hip-worn GT3X/+, and Barreira et al. [19] refined 

and validated these in a free-living environment against self-reported participant logs, where 

they obtained a non-significant absolute difference of 9 ± 36 min.

3.1.3 Adults—Minimal differences between contralateral hips were found for vector 

magnitude activity counts (effect size: 0.016, p = 0.619) and wear-time (effect size: 0.040, p 
= 0.213) [40]. The reliability of the GT3X/+ attached to the hip, wrist, and ankle was studied 

by Ozemek et al. [41], who found high correlations from 0.824 to 0.998 in vector magnitude 

between pairs of devices under simulated activities of daily living.

Staudenmayer et al. [24] demonstrated greater accuracy for physical activity classification 

when the device was placed on the wrist compared to previously developed cut-points with 

the accelerometer placed on the hip. Additionally, they found that newly developed 

algorithms could also categorize behaviors in a laboratory setting (e.g., sitting, standing, 

riding in a vehicle, walking, and running) better for the wrist compared to the hip placement. 

Ellis et al. [28] achieved better performance with a wrist model to predict household 

simulated activities; however, the hip model outperformed the wrist model on locomotion 

prediction (i.e., slow walk, brisk walk, and jogging) as well as PAEE estimation. In contrast, 

Ellis et al. [42] and Hildebrand et al. [22] obtained a higher accuracy (5% more on average) 

and a larger explained variance (81% for hip vs. 75% for wrist), respectively, for the hip 

compared to the wrist placement to classify PA type and intensity. Stec et al. [43] found a 

significant correlation between vector magnitude activity counts and net energy expenditure 

from hip but not from wrist worn accelerometers during resistance exercise (Pearson 

correlations for hip = 0.50, p = 0.005; and wrist = −0.25, p = 0.18).

With regard to step counting, Tudor-Locke et al. [44] found higher accuracy for step 

counting from hip compared to wrist devices in controlled conditions against direct 

observation. No data about placement comparisons were found in adults for sleep-related 

behavior estimations.

3.1.4 Older Adults—The hip has been the most commonly used placement for studies in 

older adults. Only one study by Choi et al. [45] placed the GT3X on the dominant wrist to 

validate their non-wear-time algorithm. However, we found no data comparing different 

device placement in this age group for any of the accelerometer outcomes.
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3.2 Sampling Frequency

Due to an insufficient number of studies this section data from all age groups are combined. 

GT3X records accelerations at a sampling frequency of 30 Hz However, with the release of 

GT3X+, the manufacturer allowed users to select the sampling frequency between 30 and 

100 Hz Brønd and Arvidsson [46] demonstrated that sampling frequency had an effect on 

activity counts (i.e., a difference of +90 counts/min (cpm) for a slow walk, +180 cpm for a 

fast walk, +103 cpm for a slow run, and +1601 cpm for a fast run at a sampling frequency of 

40 Hz compared to 30 Hz). Since the filtering process was developed for 30 Hz, sampling 

frequencies in multiples of 30 produce the most accurate estimates. Particularly, these 

authors [46] observed that 30, 60, or 90 Hz produced similar activity counts whereas 

sampling frequencies at 40, 50, 70, 80, or 100 Hz offset the filter resulting in an increased 

number of activity counts.

3.3 Valid Day and Valid Week

We cannot present the information in this section separately for each age group due to the 

lack of studies. As Toftager et al. [47] reported, increasing the requirements for what is 

considered a valid day (i.e., the number of hours per day) and a valid week (i.e., the number 

of valid days with valid data) led to a decrease in sample size and therefore the study’s 

power.

In the National Health And Nutrition Examination Survey (NHANES) 2003–2006, where 

participants wore the accelerometers during waking hours, only 40–70% of them achieved a 

minimum of 10 h/day of wear-time for ≥6 days, while in the NHANES 2011–2012, where 

participants were asked to wear the accelerometers 24 h/day, the wear-time achieved was 

21–22 h/day for ≥6 days [48].

Aadland et al. [49] examined how many days were needed to obtain an intraclass correlation 

coefficient (ICC) of 0.80 with different hours per day wear-time criteria (≥8 h/day, ≥10 h/

day, and ≥12 h/day). ICCs for a single day did not differ much for all variables when the 

wear-time criteria increased (i.e., ICCs = 0.20–0.53 for ≥8 h/day, ICCs = 0.21–0.53 for ≥10 

h/day, ICCs = 0.23–0.52 for ≥12 h/day). The number of days needed for an ICC of 0.80 

decreased with a more demanding wear-time criterion [from 8.3 to 6.4 days for SED, from 

4.4 to 3.7 days for light PA, and from 8.5 to 7.0 days for moderate-to-vigorous PA (MVPA), 

all adjusted for wear-time]. Although the registration period is usually 1 week, 2 weeks were 

analyzed in the aforementioned study. Also, Donaldson et al. [50] reported that 4 days of 

measurement would be comparable to 1 week for estimating SED (r2 = 0.91).

3.4 Filter

3.4.1 Preschoolers—No data about the influence of the filter selected (i.e., normal vs. 

LFE) were found in preschoolers.

3.4.2 Children and Adolescents—Hjorth et al. [39] used normal and LFE filters on 

GT3X+ data from hip-mounted accelerometers during the night. Total activity count was (on 

average) 2815 counts per night period higher with the LFE filter compared to the normal 

one. Assuming 8 h of sleep, this means approximately 6 cpm more when the LFE filter is 
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enabled. Therefore, total sleep time was 9 min per night higher with the normal filter 

compared to the LFE filter when using a hip mounted GT3X+.

3.4.3 Adults—Lyden et al. [51] found the normal filter more accurate compared to the 

LFE filter when it was used to identify SED and breaks in SED with the GT3X attached to 

the hip against direct observation. Ried-Larsen et al. [52] and Cain et al. [53] observed less 

SED and more minutes in each PA intensity with the LFE filter enabled. Non-wear-time 

estimation was similar between filters in the study published by Cain et al. [53]. For sleep-

related behaviors, Cellini et al. [54] found similar results for total sleep time and sleep 

efficiency with both filters in a short sleeping time of 2 h. For step counting under free-living 

conditions, the use of LFE filter increased the step count by an average of approximately 

6000 steps per day [44].

3.4.4 Older Adults—Wanner et al. [55] observed a mean difference of +37.8 ± 19.5 cpm 

when enabling the LFE filter compared to the normal filter. Therefore, less time in SED and 

more time in all PA intensities were observed with the LFE filter due to the influence on 

activity counts. The normal filter appears to be more accurate than the LFE filter when 

compared with the NL-100 pedometer (Lee’s Summit, MO, USA) [56].

3.5 Epoch Length

3.5.1 Preschoolers—We did not find any information about the influence of epoch 

length on accelerometer output in preschoolers. However, several studies used a 5-s epoch 

based on the belief that the activity pattern of very young children is intermittent and 

therefore shorter epoch lengths might be suitable to capture very short bouts of movement 

[34, 35, 57, 58].

3.5.2 Children and Adolescents—Aibar et al. [59] compared the effect of different 

epoch lengths (3–60 s) on PA intensity, and found a progressive decrease in the time spent in 

MVPA intensity as the epoch length increased. Furthermore, they found that smaller epoch 

lengths increased the resolution of the measure, thus increasing the time spent in vigorous 

PA intensity [59]. Therefore, they suggested using shorter epoch lengths (e.g., 3–15 s) in 

children.

3.5.3 Adults—No information about the influence of epoch length was found for adults.

3.5.4 Older Adults—No information about the influence of epoch length was found for 

older adults.

3.6 Non-Wear-Time Definition

3.6.1 Preschoolers—No information about non-wear-time definition was found for 

preschoolers.

3.6.2 Children and Adolescents—Toftager et al. [47] showed that the longer the non-

wear-time duration the greater the number of participants that were included in the analyses. 

Furthermore, as the non-wear-time duration increased the average cpm decreased (e.g., 
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average PA level: 641 cpm with strings of 10 min of consecutive zeros compared to 570 cpm 

with strings of 90 min of consecutive zeros) [47]. Since Toftager et al. [47] compared 

different non-wear-time definitions without a criterion method, it is not possible to conclude 

which algorithm was more valid.

3.6.3 Adults—Peeters et al. [60] compared six different definitions of non-wear-time 

(i.e., 20, 60, and 90 min with and without allowance of 2 min of small accelerations). It was 

observed that 20 min of 0 cpm without allowing for interruptions resulted in a lower 

misclassification (5.9%) and a similar ROC-AUC (0.94) than 60 min (6.7%, ROC-AUC = 

0.94) and 90 min (7.4%, ROC-AUC = 0.93) [60]. However, in these conditions, more 

participants did not meet the non-wear-time criteria (32 out of 34 participants, i.e., 6% 

sample loss) compared to 60- or 90-min algorithms (33 and 34 out of 34 participants, i.e., 3 

and 0% sample loss, respectively).

3.6.4 Older Adults—Keadle et al. [30] compared the Troiano et al. algorithm [61], 

which uses a minimum of 60 min of 0 cpm with an allowance of 2 min of interruptions, with 

the Choi et al. algorithm [62], which uses a minimum of 90 min of 0 cpm with the same 

allowance as the Troiano algorithm plus two 30-min windows of 0 cpm before and after that 

allowance. They concluded that the algorithm by Choi et al. [62] was the best to identify 

wear-time compared with diary records of the participants. The same conclusion was 

obtained in a later study by Choi et al. [45], especially when this algorithm was implemented 

for wrist-worn accelerometers, because the wrist placement is more sensitive to detect non-

wear-time than the hip [45].

3.7 Registration Period Protocol: Waking Hours Versus 24 Hours

Due to an insufficient number of studies this section combines all age groups. Recent large-

scale studies such as NHANES (2011–2012) and the International Study of Childhood 

Obesity, Lifestyle and Environment (ISCOLE 2012–2013) [63] have used a 24-h protocol. 

Tudor-Locke et al. [36] found higher wear-time compliance with 24-h protocols compared to 

waking-hour protocols, with this finding being consistent across different countries.

3.8 Sedentary Time (SED) and Physical Activity (PA) Intensity Classification

3.8.1 Preschoolers—Two studies comparing several cut-points developed from the 

vertical axis accelerations from hip-mounted devices were found [58, 64]. Janssen et al. [64] 

supported the use of the Evenson et al. [12] SED cut-point due to the higher classification 

accuracy compared to other cut-points [65, 66, 67, 68, 69], and recommended that the Pate 

et al. [67] cut-points are the best option for MVPA (all of them were developed with former 

models of ActiGraph). However, Kahan et al. [58] observed, in a small sample size (n = 12), 

that Sirard et al. [65] cut-points showed the best agreement with direct observation for SED 

and MVPA compared to other cut-points [12, 67, 69] developed with former models of 

ActiGraph.

Four studies developed cut-points for SED and PA intensity for vector magnitude counts 

from accelerometers worn on the hip [35, 57, 70, 71]. Butte et al. [71] developed their cut-

points using a 60-s epoch considering energy expenditure cut-points established through 
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smoothing splines and ROC curves. The cut-points developed by Costa et al. [35] used 5- 

and 15-s epochs and were validated against direct observation. Jimmy et al. [57] developed 

and validated their cut-points utilizing a 5-s epoch based on indirect calorimetry. Pulakka et 

al. [70] developed one cut-point to differentiate sedentary/light activities from MVPA (they 

did not differentiate moderate from vigorous PA, as done in the aforementioned cut-points) 

and validated it against direct observation. All of these studies obtained high ROC-AUC 

(0.89–0.98 for all cut-points).

Finally, Johansson et al. [34] was the only study that developed and validated cut-points for 

vector magnitude from a wrist-worn accelerometer against direct observation in young 

preschoolers (15–36 months) obtaining a ROC-AUC of 0.89–0.98.

3.8.2 Children and Adolescents—Zhu et al. [72] compared a set of cut-points for 

estimating SED and PA intensity developed using the vertical axis, with the accelerometer 

worn on the hip in a sample of Chinese children. The authors observed a better accuracy 

with the cut-points proposed by Evenson et al. [12], Vanhelst et al. [73], and those internally 

developed [72] than with the rest of the cut-points tested [68, 74, 75] (all these cut-points 

were developed with former models of ActiGraph).

Five studies developed cut-points for vector magnitude counts from the hip [13, 38, 57, 76]. 

Peterson et al. [76] suggested that 150 cpm from hip mounted accelerations is the most 

accurate SED cut-point compared with direct observation. Hänggi et al. [13] developed their 

cut-points using a 1-s epoch in comparison with indirect calorimetry and obtained a ROC-

AUC of 0.96 for SED, light PA and moderate physical activity. These cut-points [13] 

obtained better correlations with other brands of accelerometers than other vertical axis 

based cut-points [77]. Jimmy et al. [57] developed cut-points utilizing a 5-s epoch against 

indirect calorimetry and attained a ROC-AUC ranging from 0.89 to 0.94 for all intensities. 

Romanzini et al. [38] validated cut-points using a 15-s epoch against indirect calorimetry 

and obtained a ROC-AUC of 0.93–0.99. Finally, Santos-Lozano et al. [27] validated cut-

points utilizing a 60-s epoch against indirect calorimetry and found the lowest ROC-AUC 

(0.6–0.8).

Vector magnitude cut-points from the wrist placement were developed in three studies [15, 

22, 37]. Chandler et al. [15] validated cut-points for the non-dominant wrist using a 5-s 

epoch against direct observation and attained a ROC-AUC ranging between 0.64 and 0.89. A 

higher ROC-AUC was obtained by Crouter et al. [37] using cut-points for the dominant wrist 

which were developed in a 5-s epoch against indirect calorimetry (ROC-AUC of 0.83–0.94). 

It is important to highlight that Crouter et al. [37] applied linear regression models to the 

dominant wrist and obtained non-significant differences between the accelerometer outputs 

and indirect calorimetry (mean biases ranged from 2.2 to 8.4% for all cut-points).

Finally, we found two studies using metrics extracted directly from raw data instead of 

activity counts by ActiGraph. Aittasalo et al. [78] developed a method based on amplitude of 

accelerations from the hip’s raw accelerations. These cut-points were validated against 

heart-rate monitoring using an ordinal logistic regression and showed a correlation 

coefficient of 0.97. However, these results must be interpreted carefully since only walking 
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and running at different intensities were used during the development of the intensity cut 

points. Hildebrand et al. [22] used a linear regression analysis to establish the relation 

between an accelerometer metric based on raw data (i.e., Euclidean Norm Minus One) and 

energy expenditure measured through indirect calorimetry. Then, from the developed 

regression equations, they defined two sets of cut-points for the hip and the non-dominant 

wrist. They obtained correctly classified values between 96 and 97% for SED and light PA, 

33 and 55% for moderate PA, and 68 and 80% for vigorous PA.

3.8.3 Adults—Kozey-Keadle et al. [79] tested some vertical axis-based cut-points and 

determined that 150 cpm using the vertical axis from hip accelerations was the most accurate 

SED cut-point compared with direct observation. Santos-Lozano et al. [27] validated cut-

points for PA intensity against indirect calorimetry and obtained a ROC-AUC between 0.6 

and 0.8. Sasaki et al. [7] used a linear regression model to establish the relation between 

ActiGraph vector magnitude counts from the hip and energy expenditure measured by 

indirect calorimetry. The mean differences between the metabolic equivalents (METs) 

predicted by the cut-points derived from the regression model and the actual METs were 

−0.3, −0.4, and 0.7 at moderate, vigorous, and very vigorous intensities, respectively.

Three studies developed cut-points from raw data metrics. Vähä-Ypyä et al. [80] developed 

an amplitude-domain method for raw hip accelerations. The cut-points were validated 

against heart-rate monitoring and showed an excellent agreement (ROC-AUC = 0.99 for all 

cut-points); however, they were not used during free-living conditions. Hildebrand et al. [22] 

validated regression models for the hip and the non-dominant wrist against indirect 

calorimetry and defined cut-points from the regression equations generated. They obtained 

correctly classified values between 93 and 96% for SED and light PA, 54 and 59% for 

moderate PA, and 89 and 92% for vigorous PA. Finally, Staudenmayer et al. [24] developed 

a classifier for PA intensity based on decision trees for the dominant wrist and they obtained 

75% of values correctly classified using indirect calorimetry. Within this context, they 

reported preliminary results that their model performs well in a free-living environment [24].

3.8.4 Older Adults—Keadle et al. [30] observed that cut-points using the vertical axis or 

vector magnitude are not comparable. Unfortunately, they could not report which cut-points 

were the most accurate since they did not determine a criterion to compare the outcomes 

[30]. Aguilar-Farias et al. [26] validated SED cut-points utilizing vector magnitude counts 

acquired from the hip with 1-, 15-, and 60-s epochs against ActivPAL3™ (Pal Technologies 

Ltd., Glasgow, UK) and found a high classification accuracy (ROC-AUC of 0.82, 0.85, and 

0.86 for 1-, 15-, and 60-s epochs, respectively). Santos-Lozano et al. [27] validated 

moderate, vigorous and very vigorous PA cut-points against indirect calorimetry and 

obtained a ROC-AUC of 0.7 for all intensities examined.

3.9 Physical Activity Energy Expenditure (PAEE) Algorithms

Ten studies that developed PAEE algorithms were found [7, 20, 22, 27, 28, 43, 64, 71, 81, 

82]. Due to an insufficient number of studies that used doubly labelled water or room 

calorimetry as criteria, this section combines age groups. Only two studies validated their 

algorithms against doubly labelled water or room calorimetry in preschoolers. Butte et al. 
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[71] developed cross-sectional time series and multivariate adaptive regression splines to 

predict PAEE using both GT3X+ and heart-rate monitoring. They validated the algorithms 

under controlled conditions using room calorimetry and in free-living conditions utilizing 

doubly labelled water [71]. The multivariate adaptive regression splines obtained a better 

prediction of PAEE against room calorimetry, i.e., inter-method mean difference equal to 

0.006 ± 0.085 kcal/min; however, the cross-sectional time series model achieved a better 

prediction in free-living conditions, using doubly labelled water (mean difference 41 ± 97 

kcal/day) [71]. Zakeri et al. [81] used the same two statistical methods described above with 

GT3X/+ and heart-rate monitoring. They obtained better prediction with the cross-sectional 

time series model against room calorimetry (i.e., 0.001 ± 0.070 kcal/min), but they did not 

validate the method in a free-living environment [81]. All these studies were carried out with 

hip-worn GT3X/+.

3.10 Sleep-Related Behaviors

3.10.1 Preschoolers—We did not find any study comparing different sleep algorithms 

in this age group. Only Meredith-Jones et al. [83] used the Sadeh et al. [16] sleep algorithm 

to identify sleep time in preschoolers. However, this algorithm was developed in an older 

sample (10–25 years), and the results should be interpreted cautiously.

3.10.2 Children and Adolescents—Hjorth et al. [39] compared the performance of 

existent sleep algorithms from the hip versus the non-dominant wrist placements. Despite 

the fact that these algorithms were developed for wrist accelerations, they obtained good 

accuracy (86.6–89.9%) [16, 17] at both placements; however, the hip-worn device 

overestimated total sleep time compared to the wrist (60.1–73.8 min/day). These findings 

may be affected by the fact that bedtime was reported by participants using diaries and not 

through an algorithm.

Tudor-Locke et al. [18] developed an algorithm to detect bedtime for the hip-worn GT3X/+, 

and Barreira et al. [19] refined and validated it in a free-living environment against self-

reported bedtime. They obtained a non-significant absolute difference of 9 ± 36 min of 

bedtime per night [19].

3.10.3 Adults—Cellini et al. [54] found an accuracy of 82.8% for classifying epoch-by-

epoch sleep or awake status against polysomnography (i.e., the gold standard to measure 

sleep patterns) using the Sadeh et al. [16] sleep algorithm. However, they found an 

overestimation of total sleep time (i.e., inter-method mean difference equal to 8.80 min) and 

sleep efficiency (i.e., inter-method mean difference equal to 14.53%), as well as an 

underestimation of sleep onset latency (ICC = 0.56) and awakenings after sleep onset (ICC = 

0.54) during a 2-h sleep protocol. Rosenberger et al. [84] observed a mean difference of 4 

min of sleep time for the Sadeh et al. [16] sleep algorithm compared to the Z-machine 

(portable monitor to measure brain activity which is relatively comparable to 

polysomnography [85]). Equally, Slater et al. [86] reported good accuracy of the Sadeh et al. 

[16] algorithm to detect total sleep time and moderate validity for awakenings after sleep 

onset against polysomnography from the wrist, but not from the hip. Finally, Zinkhan et al. 

[87] tested the performance of the Cole et al. [17] algorithm for the hip, even though it was 
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developed for wrist accelerations. They observed a limited agreement with total sleep time 

measured by polysomnography (mean difference of 81.1 min/night).

3.10.4 Older Adults—No data about sleep algorithms were found in the papers 

reviewed for older adults.

3.11 Step Counting

Only data on step counting estimated by ActiLife software are available in adults. Tudor-

Locke et al. [44] found a higher accuracy for step counting from the hip-mounted monitors 

over wrist-mounted ones under controlled conditions against direct observation. Under free-

living conditions, the wrist-worn accelerometer detected more steps than the hip-worn one 

independently of the filter used. See Sect. 3.4 for more information about how different 

filters influence step counting [44].

4 Discussion

The use of objective methods when assessing SED, PA, PAEE, and sleep in various research 

settings has increased enormously as indicated by the large number of articles included in 

this review. Accelerometry has several advantages over questionnaires and self-report 

methods [4, 10]; however, data collection and processing criteria have a large impact on the 

interpretation of the data. Thus, predetermined decisions about data collection and 

processing in relation to the study participants and the objective of the study are important 

when planning research in this area.

A major finding of this review is that many of the studies did not report on key 

methodological issues. Therefore, data cannot be accurately compared between studies and 

readers may have difficulties interpreting how various methodological decisions may have 

influenced the main findings/conclusions. We recommend that future studies should report 

the complete set of criteria included in the present review in order to improve data 

comparability and reproducibility.

The next subsections provide practical considerations for every criterion based on the critical 

information extracted from the validation/calibration studies reviewed.

4.1 Device Placement

Traditionally, cut-points to assess SED and PA variables, as well as PAEE estimates, were 

developed with the device placed on the hip, while algorithms to assess sleep-related 

behaviors were more commonly developed based on wrist accelerations. Ideally, researchers 

may want to collect accelerometer data using a 24-h protocol with one accelerometer 

attached to either the hip or the wrist and be able to estimate SED, PA, and sleep-related 

behaviors. However, lack of validated algorithms in some age groups [15, 18, 19, 22, 24, 37] 

preclude this.

We decided not to differentiate between the right or left hip because no significant 

differences were found by Aadland et al. [40]. We consider that both the hip and the wrist 

are feasible places to attach the GT3X/+. Better compliance for wrist- compared to hip-worn 
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devices has been reported in children and adolescents [23], but similar wear-time was found 

in large-scale studies in adults using hip and wrist placements [36]. We therefore cannot 

confirm the general belief supporting better compliance for wrist-worn devices. More 

studies are needed to investigate compliance differences between wrist- and hip-worn 

devices as well as the extent to which these differences influence the validity and reliability 

of accelerometer outcomes.

There are only a few studies directly comparing two placement sites using the GT3X/+ and 

they have consistently shown more accurate classification of SED and PA intensity as well 

as estimates of PAEE when the accelerometer was worn on the hip compared to the wrist 

[13, 15, 22, 28, 37, 38, 43]. However, one study found a better performance for the wrist-

worn device for PA intensity classification [24] (see Table 3). Step count also differs greatly 

depending on the device placement, i.e., more steps (>2500) were counted when wearing the 

accelerometer on the wrist compared to the hip in free-living conditions [44]. When studied 

under controlled conditions, hip placement has shown more accurate step counting than 

wrist placement from a speed of 54 m/min and upwards (at lower speeds, accuracy was 

better in the wrist) [44]. The lower accuracy for the wrist-worn devices could be due to the 

fact that accelerations such as brushing ones teeth might be interpreted as steps when the 

device is placed on the wrist, but not on the hip; nevertheless, this is just a hypothesis that 

needs to be confirmed by data under free-living conditions.

With regard to sleep algorithms, Hjorth et al. [39] compared the functioning of two 

algorithms applied to hip data against wrist data, finding an overestimation of the sleep time 

and a high accuracy (86.6 and 89.9 for each algorithm) from the hip compared to the wrist. 

However, it is important to note that these investigators imputed sleep and wake time 

manually from logs kept by the participants. The use of logs by the participants might 

explain the high accuracy achieved using a wrist-developed sleep algorithm on the hip.

4.2 Sampling Frequency

Our recommendation is to use the highest sampling frequency possible, as we cannot 

anticipate future data processing needs. However, given the issues associated with other 

sampling frequencies other than 30 Hz or its multiples as described in Sect. 3.2, sampling 

frequencies in multiples of 30 Hz seem to produce more accurate estimates when processing 

the signal using the methods proposed by ActiGraph. Therefore, the most reasonable 

conclusion for the time being would be to use 90 Hz when researchers are using the 

manufacturer methods, and 100 Hz when researchers are filtering and processing the signal 

on their own.

4.3 Valid Day and Valid Week

To ensure that data are representative of an entire day, it is necessary to establish how many 

hours of wear-time are required. It is also necessary to set how many valid days are needed 

to be representative of the total assessment period, which is usually 1 week (7 complete 

days).

Wear-time criteria for a valid day depend on the registration period protocol, i.e., waking 

hours or 24 h. In studies in which the accelerometer is worn for 24-h periods to assess both 
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physical activity and sleep-related behaviors, the number of hours required for a day to be 

considered valid has to be larger than studies in which the accelerometer was taken off at 

night.

Similarly, increasing requirements for a valid day and a valid week provides more reliable 

data (more information can be found in Table 5 from the study by Aadland et al. [49]); 

however, it results in greater sample loss. Our recommendation is to test different criteria to 

get the best compromise between sample size (and therefore optimal statistical power) and 

reliability of the measure. However, a minimum of 4 days of valid data is recommended as 

was suggested in a previous systematic review [88].

4.4 Filter

When movements (accelerations) occur at too low or high frequencies, ActiGraph interprets 

that this acceleration might not be compatible with human movement and should therefore 

be excluded from the analyses (e.g., if someone is using a drill). The GT3X/+ filtering 

process to exclude this kind of acceleration is implemented in the ActiLife software 

(ActiGraph, Pensacola, FL, USA). This software allows users to choose between two 

different filters when processing the data: normal (default) and low-frequency extension 

(LFE) filters.

The algorithms for these filters are proprietary information. It is known that a normal filter 

detects accelerations from a frequency range of 0.25–2.5 Hz, while the LFE filter establishes 

a lower threshold to capture slower movements; however, it is unknown exactly how much 

lower this threshold is. A weighting function is applied to the accelerations between the 

range of 0.25–2.5 Hz, so that the full weight (i.e., 1.0) is given to a frequency of acceleration 

of 0.75 Hz, and lower weighting is given to higher and lower movement frequencies 

progressively [89]. Accelerations at a frequency greater than 2.5 Hz are removed by the 

filter, although it is important to highlight that accelerations up to 3.4 Hz can be produced by 

the human body when performing physical activity at vigorous intensities when the device is 

attached to the hip (higher frequencies are achieved in the wrist) [90, 91]. Therefore, 

ActiGraph’s filtering process might remove accelerations associated with vigorous PA, and 

consequently, minutes in vigorous intensities might be misclassified as moderate PA [46, 

92]. As the filter used has a large impact on the accelerometer outputs, it is alarming that 

74% of the studies reviewed did not report this key information (Fig. 2).

When selecting a set of cut-points or an algorithm to estimate a variable from activity 

counts, our recommendation is to select the same filter that was used in the validation study 

for the cut-points or algorithm employed (Table 5 shows the filters used in all the cut-points 

identified). If cut-points or algorithms are not used, then researchers can decide which filter 

to use, we suggest using the LFE filter when low movements are of greater importance (e.g., 

when analyzing SED, sleep or PA in older adults). From the studies discussed above, 

researchers and practitioners should be aware that enabling the LFE filter compared with the 

normal filter will result in decreased SED, greater time in PA at all intensities and an 

increase in the number of steps per day.
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4.5 Epoch Length

Activity counts produced by filtering raw accelerations need to be summed into specific time 

intervals or epoch in order to estimate PAEE, time spent in SED, in various levels of PA 

intensity, as well as estimating sleep/wake state, and this is usually done by applying specific 

intensity cut-points and algorithms.

Given that epoch length influences activity counts, it is important to use the same epoch 

length that was used in the validation study for the cut-points or algorithms (see Table 5). 

Epoch length should also be taken into account when comparing data from different studies. 

In young people (from preschoolers to adolescents), shorter epochs (1–15 s) are 

recommended to capture short bouts of activity occurring frequently in these age groups. In 

adults and older adults there are currently no data comparing the effect of epoch length on 

the outcomes studied. However, our own unpublished data suggest that selecting a 1-s versus 

a 60-s epoch length has a marked impact on the accelerometer outcomes, i.e., +45–60 

min/day in MVPA using a 1-s compared to a 60-s epoch. This large impact on the 

accelerometer outputs warrants further research on this topic in order to obtain more 

comparable and accurate data. Considering sleep measurements there is an overall consensus 

for using a 60-s epoch (probably due to the stable movement pattern during sleep), as all 

sleep algorithms have been validated using that epoch length [16, 17, 18, 19].

4.6 Non-Wear-Time Definition

In free-living studies, accelerometers are usually removed during water based activities, e.g., 

swimming or showering and when sleeping (in some studies). As a result, individuals might 

forget to wear the accelerometer for a day(s) or part of day. Consequently, non-wear-time 

must be identified (e.g., by a diary or algorithms) and excluded from data before analysis. 

Otherwise, this time is likely categorized as SED. Generally, algorithms to detect non-wear-

time consist of intervals of time with consecutive 0 cpm with or without an allowance of 

several minutes in which small accelerations are allowed, with optional windows of 0 cpm 

before and after this allowance. Toftager et al. [47] studied the effect of different non-wear-

time definitions and concluded that the most accurate algorithm might differ among 

subgroups of children/adolescents. For example, studies focused on overweight adolescents 

might need to set a longer time of consecutive 0 cpm, since they have higher SED that can 

be misclassified as non-wear-time.

More studies are needed to examine the accuracy of different non-wear-time detection 

algorithms in all age groups. Based on the reviewed studies, we cannot recommend a non-

wear-time definition for preschoolers, children, or adolescents. For adults, 20 min of 

consecutive 0 cpm without allowance showed the lowest misclassification error; however, it 

may result in slightly more loss of data (6% of the sample size [60]). As the accuracy 

between 20 and 60 min of consecutive 0 cpm was similar (i.e., the ROC-AUC was virtually 

identical = 0.94), we suggest using 60 min of consecutive 0 cpm without allowing for 

interruptions in counts in this period for adults, to avoid the risk of misclassification of non-

wear-time as SED. In older adults, we recommend the Choi et al. algorithm [45], which 

consists of 90 min of 0 cpm with an allowance of 2 min of activity when it is placed between 
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two 30-min windows of 0 cpm. This algorithm outperformed other algorithms on the 

detection of non-wear-time [45] compared with the non-wear-time reported by participants.

4.7 Registration Period Protocol: Waking Hours versus 24 Hours

In line with recent and large-scale studies [63], we suggest registration periods of 24 h 

instead of waking hours (more recording time, therefore more valid data). This is mainly due 

to an interest in assessing sleep-related behaviors and better compliance.

4.8 SED and PA Intensity Classification

Traditionally, SED and PA intensity have been estimated based on the number of activity 

counts accumulated in a certain period (epoch length). Cut-points are the thresholds of 

activity counts used to categorize activity as SED, light, moderate, vigorous or very vigorous 

PA. Table 5 presents the cut-point values (expressed as counts per time unit) that are 

currently available for SED, and for light, moderate, vigorous, and very vigorous PA by age 

group. It is important to keep in mind that although the GT3X/+ is a triaxial accelerometer, 

the data are provided separately for the three axes plus the vector magnitude, so that it is still 

possible to use the data registered only by the vertical axis and apply it to the previously 

developed algorithms for the vertical axis.

When applying cut-points to a specific data set, it is recommended to follow the same data 

collection and processing criteria which were used in the original validation/calibration 

study (see Table 5). All derived intensity thresholds are influenced by the activities chosen 

when performing the calibration studies. Thus, it is impossible to recommend the most 

appropriate set of intensity thresholds for free-living assessment. Also, different generations 

of ActiGraph devices have shown to be comparable under controlled conditions [7, 93], but 

not in a free-living environment [7, 52, 53, 94]. This suggests that if a certain cut-point was 

developed, for instance using the vertical axis from the GT1M, that cut-points may not be 

used for data collected with the GT3X/+ vertical axis, since they are not fully comparable. 

Therefore, our recommendations are based on cut-points developed only with GT3X/+ 

accelerometers. This review shows the need for future meta-analytic studies summarizing 

cut-points for each age group in order to obtain a set of cut-points with a wide range of 

activities influencing its development. Finally, across the studies reviewed, we have 

observed a widely accepted criterion to define PA intensity in the studies validating cut-

points against indirect calorimetry, i.e., 1–1.5 MET for SED, 1.5–3 MET for light PA, 3–6 

MET for moderate PA, and >6 MET for vigorous PA.

The criteria considered for cut-point recommendations are: (1) the cut-points cover the 

whole activity spectrum (i.e., SED, light PA, moderate PA, and vigorous PA), (2) calorimetry 

as an objective criterion is better than direct observation; (3) for young populations, cut-

points developed in short epochs; (4) the number and type of activities included in the study 

that derived the cut-points; and (5) results obtained in comparison with the criterion.

Preschoolers experience a rapid anatomical development and their patterns of PA change 

dramatically during the first years of life; therefore, the age of the sample is very important 

in preschoolers. Thus, for the hip placement we recommend Costa et al. [35] cut-points for 

early preschoolers (2–3 years old) and Jimmy et al. [57] cut-points for older preschoolers 
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(4–6 years old). They have been developed in short epochs which enables the devices to 

capture small bouts of vigorous PA, which is typical for this age group, while obtaining high 

accuracy in their validation. For young preschoolers (15–36 months) using the wrist 

placement, we recommend Johansson et al. [34] cut-points developed using a 5-s epoch 

because they obtained similar accuracy to hip-developed cut-points.

For children, we recommend using the Hänggi et al. [13] cut-points developed in 1-s epoch 

for the hip. For adolescents, the Romanzini et al. [38] cut-points developed utilizing a 15-s 

epoch appears appropriate. Both of these obtained excellent classification accuracy (ROC-

AUC >0.90 for all cut-points) and cover almost the whole spectrum of PA intensities. For the 

dominant wrist, and working with counts data, we recommend Crouter et al. [37] cut-points 

and for the non-dominant wrist Chandler et al. [15] cut-points. If a researcher is interested in 

working directly with raw data, Hildebrand et al. [22] cut-points seem to be the best options 

since they were validated against indirect calorimetry and they obtained relatively high 

accuracy, except for moderate and vigorous PA (33–80%).

For adults, 150 cpm measured using the vertical axis from hip accelerations are the best 

option to estimate SED [79]. For PA intensity classification, we recommend Sasaki et al. [7] 

cut-points developed utilizing a linear regression equation. Staudenmayer et al. [24] and 

Hildebrand et al. [22] cut-points are the only alternative at the moment to estimate PA from 

the dominant and the non-dominant wrists, respectively, considering that raw data metrics 

have to be used to apply them, not activity counts.

For older adults, we only found the SED cut-points proposed by Aguilar-Farias et al. [26] 

and the PA cut-points by Santos-Lozano et al. [27]. By combining these cut-points we can 

assess the whole spectrum of PA levels, which is the only option at present.

4.9 PAEE Algorithms

PAEE can be estimated using algorithms applied to GT3X/+ data. Since the same movement 

can produce different energy expenditure depending on the characteristics of the individuals, 

caution is advised when interpreting PAEE estimated from accelerometry. It is worth 

highlighting that PAEE algorithms developed in a laboratory or a controlled setting are 

influenced by the activities selected in the study, while only studies under free-living 

conditions using doubly labelled water as a criterion to test validity can actually measure 

PAEE. Thus, in this review we have only focused on studies using doubly labelled water and 

room calorimetry as a criterion.

The criteria considered for PAEE algorithm recommendations were: (1) free-living studies 

are better than lab/controlled studies; (2) for young populations, algorithms developed in 

short epochs; (3) whether cross-validation was performed; and (4) results obtained in 

comparison with the criterion.

As noted in Sect. 4.8, different generations of ActiGraph devices are not fully comparable in 

free-living conditions [7, 52, 53, 94], thus, our recommendations are based on PAEE 

algorithms developed only with GT3X/+ accelerometers. PAEE has been expressed 

differently across studies, which needs to be considered when choosing a suitable algorithm. 
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Overall, our conclusion is that more validation studies during free-living conditions utilizing 

doubly labelled water are needed in all age groups.

For preschoolers, we recommend to use the algorithm proposed by Butte et al. [71] as it is 

the only one validated in free-living conditions against doubly labelled water and they 

obtained a high accuracy. There are no algorithms for wrist accelerations in this age group. 

Likewise, we do not recommend algorithms for the rest of age-groups since none of them 

were developed using doubly labelled water or room calorimetry as a criterion.

4.10 Sleep-Related Behaviors

The ActiGraph GT3X/+ can identify sleep-related behaviors from movement/non-movement 

patterns by applying sleep algorithms to activity counts. The overall conclusion is that more 

studies developing and validating sleep algorithms for the wrist and the hip mounted 

ActiGraphs are needed in all age groups. However, based on the aforementioned information 

and the ages of the samples in the validation studies for sleep algorithms, we recommend use 

of the Barreira et al. [19] algorithm in children and adolescents when the accelerometer is 

attached to the hip to document bedtime that is not reported by the participants. Also, we 

recommend the Sadeh et al. [16] algorithm if it is placed on the wrist to score the sleep time 

and the rest of sleep-related behaviors. Moreover, we recommend the Sadeh et al. [16] 

algorithm for young adults (i.e., up to 30 years of age) and Cole-Kripke et al. [17] algorithm 

for older adults (i.e., >30 years of age) (in both cases with the accelerometer placed on the 

wrist).

4.11 Step Counting

We have reviewed studies using the default step counting function by ActiLife. In this 

regard, we recommend using the normal filter when the step count is a variable of interest, 

as it has been demonstrated to be more comparable to other criterion devices than the LFE 

filter (see Sect. 3.4).

5 Limitations and Strengths

Several limitations need to be acknowledged. Studies with earlier models than GT3X/+ (e.g., 

GT1M) have not been included in our review, so our recommendations are limited to the 

triaxial ActiGraph models (GT3X/+). Another limitation is that for certain age groups and 

for some accelerometer criteria analyzed, the number of studies was small; therefore, the 

recommendation should be revisited when more studies on those topics are available. In 

addition, the field of accelerometry is rapidly developing and continuously changing. 

Therefore, reviews are needed every few years in order to update the recommendations 

provided in this review. Another major issue is that proprietary algorithms used by the 

manufacturer when processing the data to obtain activity counts are unavailable to the public 

and these affect outputs. Future work using the raw acceleration signal (i.e., before any 

filtering is applied) should overcome this problem. Finally, another limitation is that some of 

our recommendations are based on few studies and should be interpreted cautiously. Thus, 

further studies such as a formal meta-analysis may provide the most optimal intensity 

thresholds for the different intensity thresholds.
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The strengths of this review are: (1) the inclusion of a large number of studies, summarizing 

the methodologies used in each of them, which will allow for more accurate comparability 

of the data; (2) the separate sections for the validation/calibration studies in order to provide 

guidance and recommendations to researchers and practitioners; (3) the inclusion of all age 

groups in one single review, which will allow researchers to find/read the information about 

the age group they are working with/interested in; and (4) the set of tables included in this 

review were developed to assist researchers in their decision making process (see the 

examples included in Sect. 5).

6 Practical Implications

This review will help researchers and practitioners to make better decisions when designing 

their study and processing the data from the GT3X/+ accelerometer in order to obtain the 

most accurate and comparable information. Here, we provide some hypothetical examples 

illustrating how the information presented in the tables in this review can be used.

• A researcher intends to evaluate accelerometry in a new study and needs to know 

where to place the accelerometer. Table 3 summarizes the most important results 

obtained when comparing the outputs from the GT3X/+ attached to the hip 

versus the wrist and provides recommendations depending on the variables to be 

analyzed by age group.

• A researcher has collected accelerometry data and wishes to compare the data 

with those from other studies to generate an accurate and meaningful discussion. 

Table 2 lists the criteria used for data collection protocols and data processing in 

studies. Electronic Supplementary Material Appendix S3 lists all articles that 

have been used for each of these criteria.

• A researcher has collected accelerometry data with the device placed on the wrist 

(for example) and wishes to know which cut-points, PAEE or sleep algorithms 

can be applied to those data. Tables 4 and 5 will help the researcher answer these 

questions.

• A researcher has decided to apply a specific set of cut-points based on the 

characteristics of his/her sample but is uncertain which exact setting was used in 

the original study (and is aware that it is recommended that the same settings be 

used to ensure the cut-points are applied correctly to the new data). Table 5 lists 

all criteria needed to correctly apply these cut-points (i.e., placement, filter, 

vector and epoch).

7 Conclusion

We suggest that researchers who assess SED, PA, PAEE, sleep-related behaviors, and/or 

steps using GT3X/+ select the specific placement, sampling frequency, filter, epoch length, 

non-wear-time definition, valid days and valid week criteria, SED and PA intensity 

classification, PAEE, and sleep algorithms depending on the population’s age (i.e., 

preschoolers, children and adolescents, adults, or older adults). Likewise, when selecting a 

specific cut-point or algorithm, it is important to apply the same criteria as in the original 
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validation/calibration study. Moreover, this review has identified some issues in the studies 

using the GT3X/+ during the last 5 years, such as that many studies do not report all of the 

criteria used in their analyses (see Fig. 2). Future studies are recommended to report the 

criteria as summarized in the present review.

Although ideally researchers should select all the data collection and processing criteria 

before the assessment period, it is important to note that only the placement and sampling 

frequency criteria have to be decided a priori (i.e., before the measurement period), while the 

rest of processing decisions can be made a posteriori. This is important since new and better 

analytical methods might emerge after a study was planned, and they should be considered 

and tested, at least as sensitivity analyses. The preliminary evidence comparing wrist and hip 

placements seems to support the idea that a similar compliance can be achieved wearing the 

accelerometer on the wrist or on the hip, while wearing it on the hip might produce more 

accurate estimates of PAEE and better SED and PA intensity classifications; however, these 

notions need to be confirmed or refuted in future studies. We recommend recording raw data 

for complete days (i.e., 24-h periods), so that collected data will have the maximum potential 

for future analyses. The summary tables presented in this systematic review will help 

researchers to make better decisions on how to design and process the GT3X/+ data.
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Key Points

Methods regarding data collection and processing criteria when using ActiGraph GT3X 

are summarized, and age-specific practical considerations that will be useful for 

researchers and practitioners are provided.

The tabulated data generated will facilitate comparisons between studies using ActiGraph 

GT3X and aid in the selection of the most appropriate method to use for each specific 

research purpose.
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Fig. 1. 
Flowchart of the literature search and study selection process. 1Studies using accelerometers 

for other purposes (e.g., accelerometers attached to dogs). 2Studies that included two age 

ranges were counted in both age groups. 3Studies focused on validation, calibration or 

comparison of functions related to data collection or processing criteria. 4All cross-sectional, 

longitudinal, or intervention studies, which used the GT3X/+ device and met the inclusion 

criteria
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Fig. 2. 
Percentage of the 235 included papers that did not report key methodological issues, 

separated by age group. NWT non-wear-time
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Table 1

Summary of practical considerations by age group

Age group/criterion Preschoolers Children and adolescents Adults Older adults

Placement Hipa and wrist Hipa and wrist Hipa and wrist Hipa and wrist

Sampling frequency 90–100 Hz 90–100 Hz 90–100 Hz 90–100 Hz

Filterb Normal Normal Normal Low-frequency extension

Epoch lengthb 1–15 s 1–15 s 60 sc 60 sc

Non-wear-time definition Not clearc Not clearc Not clearc Choi et al. [45] algorithm

Valid dayd ≥10 h ≥10 h ≥10 h ≥10 h

Valid week ≥4 days ≥4 days ≥4 days ≥4 days

Registration period protocol 24 h 24 h 24 h 24 h

SED/PA intensity classificatione,f

Dominant wrist No data found Crouter et al. [37] Staudenmayer et 
al. [24] No data found

Non-dominant wrist Johansson et al. 
[34] (2–3 y)

Hildebrand et al. [22]
Chandler et al. [15]

Hildebrand et al. 
[22] No data found

Hip

Costa et al. [35] 
(2–3 y)
Jimmy et al. [57] 
(4–6 y)

Hänggi et al. [13] (7–11 years)
Romanzini et al. [38] (12–19 
years)

Sasaki et al. [7] Aguilar–Farias et al. [26]
Santos–Lozano et al. [27]

PAEE algorithme

Non-dominant wrist No data found Hildebrand et al. [22] Ellis et al. [42] No data found

Hip Butte et al. [71] 
(2–3 years) Crouter et al. [20] (7–11 years) Hildebrand et al. 

[22] Santos–Lozano et al. [27]

Sleep algorithme No data found Sadeh et al. [16]

Sadeh et al. [16] 
(20–30 years)
Cole et al. [17] 
(>30 years)

Cole et al. [17]

Hz hertz, SED sedentary time, PA physical activity, PAEE physical activity energy expenditure

Note These recommendations should be considered with caution. We strongly recommend reading Sect. 4 for an understanding of the specific 
considerations for each age group

a
There are no algorithms currently available to estimate sleep-related behaviors from data obtained from hip-worn devices

b
Criterion that could highly affect the output. In these cases, when estimations of PA, PAEE or sleep are the variables of interest, the same criterion 

as selected in the validation study is recommended. If acceleration metrics are the variables of interest (e.g., counts), the recommendation is 
provided in this table

c
There is a need to thoroughly test this criterion

d
Number of hours per awake period in a day

e
Citation of the study in which the cutpoints or algorithms were validated

f
Cutpoints are specified in Table 5
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Table 2

Summary for the criteria used for data collection protocols and data processing from articles reviewed by age 

group (see Electronic Supplementary Material Appendix S1 for the criteria used by each of the studies listed 

in this table)

Reference Preschoolers (n = 24) n 
(%)

Children and 
adolescents (n = 81) n 
(%)

Adults (n = 103) n 
(%)

Older adults (n = 
51) n (%)

Placement

  Hip 22 (92) 73 (90) 87 (84) 44 (86)

  Non-dominant wrist 2 (8) 6 (7) 8 (8) 5 (10)

  Dominant wrist 0 (0) 1 (1) 6 (6) 5 (10)

  Othersa 0 (0) 2 (2) 21 (20) 2 (4)

  Not reported 0 (0) 5 (6) 6 (6) 0 (0)

Sampling frequency

  30 Hz 16 (67) 53 (65) 70 (68) 39 (76)

  40 Hz 0 (0) 0 (0) 2 (2) 0 (0)

  50 Hz 0 (0) 0 (0) 2 (2) 0 (0)

  60 Hz 2 (8) 2 (2) 6 (6) 2 (4)

  70 Hz 0 (0) 0 (0) 1 (1) 0 (0)

  80 Hz 1 (4) 6 (7) 9 (9) 5 (10)

  90 Hz 0 (0) 0 (0) 2 (2) 0 (0)

  100 Hz 1 (4) 4 (5) 6 (6) 1 (2)

  Not reported 4 (17) 18 (23) 15 (15) 5 (10)

Filter

  Normal 8 (34) 14 (17) 25 (24) 6 (12)

  Low-frequency extension 2 (8) 11 (14) 15 (15) 6 (12)

  Not reported 14 (58) 53 (65) 67 (65) 40 (80)

Epoch length

  1 s 1 (4) 8 (10) 15 (15) 6 (12)

  2 s 0 (0) 1 (1) 2 (2) 0 (0)

  3 s 0 (0) 1 (1) 0 (0) 0 (0)

  5 s 6 (25) 6 (7) 1 (1) 0 (0)

  10 s 0 (0) 16 (20) 6 (6) 1 (2)

  15 s 13 (54) 28 (35) 8 (8) 3 (6)

  20 s 0 (0) 0 (0) 0 (0) 1 (2)

  30 s 1 (4) 3 (4) 0 (0) 0 (0)

  45 s 0 (0) 1 (1) 0 (0) 0 (0)

  60 s 6 (25) 17 (21) 52 (50) 38 (74)

  Not reported 0 (0) 5 (6) 16 (16) 3 (6)

Non-wear-time definitionb
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Reference Preschoolers (n = 24) n 
(%)

Children and 
adolescents (n = 81) n 
(%)

Adults (n = 103) n 
(%)

Older adults (n = 
51) n (%)

  10-0-0 3 (13) 6 (7) 7 (7) 4 (8)

  20-0-0 3 (13) 21 (26) 3 (3) 0 (0)

  20-0-2 0 (0) 0 (0) 1 (1) 0 (0)

  30-0-0 2 (8) 5 (6) 1 (1) 0 (0)

  30-0-1 0 (0) 3 (4) 0 (0) 0 (0)

  60-0-0 3 (13) 5 (6) 16 (16) 3 (6)

  60-0-2 0 (0) 7 (9) 15 (15) 12 (24)

  60-30-2 0 (0) 0 (0) 0 (0) 1 (2)

  90-0-0 0 (0) 1 (1) 5 (5) 1 (2)

  90-0-2 0 (0) 0 (0) 3 (3) 2 (4)

  90-30-2 0 (0) 0 (0) 2 (2) 14 (27)

  120-0-0 0 (0) 0 (0) 1 (1) 0 (0)

  180-0-0 0 (0) 0 (0) 0 (0) 1 (2)

  Not reported 6 (25) 7 (9) 15 (15) 6 (12)

Cut-points for sedentary time (cpm and vector used) [original reference]

  25 cpm VA [26] 0 (0) 0 (0) 1 (1) 1 (2)

  50 cpm VA [79] 0 (0) 0 (0) 1 (1) 0 (0)

  60 cpm VA [35] 1 (4) 0 (0) 0 (0) 0 (0)

  100 cpm VA
[11, 12, 14, 40, 49, 61, 95, 96, 97, 98]

4 (17) 31 (38) 40 (39) 31 (61)

  100 cpm VM 0 (0) 1 (1) 1 (1) 0 (0)

  120 cpm VM [13] 0 (0) 2 (2) 0 (0) 0 (0)

  148 cpm VA [67] 3 (13) 1 (1) 0 (0) 0 (0)

  150 cpm VA [74] 0 (0) 2 (2) 5 (5) 1 (2)

  150 cpm VM [79] 0 (0) 1 (1) 2 (2) 1 (2)

  184 cpm VA [38] 0 (0) 1 (1) 0 (0) 0 (0)

  200 cpm VA [79, 99] 0 (0) 0 (0) 1 (1) 1 (2)

  200 cpm VM [26] 0 (0) 0 (0) 1 (1) 2 (4)

  240 cpm VA [71] 1 (4) 0 (0) 0 (0) 0 (0)

  250 cpm VA [79] 0 (0) 0 (0) 1 (1) 0 (0)

  274 cpm VA [66] 2 (8) 0 (0) 0 (0) 0 (0)

  384 cpm VM [35] 1 (4) 0 (0) 0 (0) 0 (0)

  500 cpm VA [100] 0 (0) 1 (1) 0 (0) 0 (0)

  720 cpm VM [38] 0 (0) 1 (1) 0 (0) 0 (0)

  796 cpm VA [68] 2 (8) 1 (1) 0 (0) 0 (0)

  820 cpm VM [71] 1 (4) 0 (0) 0 (0) 0 (0)

  1068 cpm VA [34] 1 (4) 0 (0) 0 (0) 0 (0)

  1204 cpm VA [65] 2 (8) 0 (0) 0 (0) 0 (0)

  1260 cpm VM [37] 0 (0) 1 (1) 0 (0) 0 (0)
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Reference Preschoolers (n = 24) n 
(%)

Children and 
adolescents (n = 81) n 
(%)

Adults (n = 103) n 
(%)

Older adults (n = 
51) n (%)

  1452 cpm VA [65] 2 (8) 0 (0) 0 (0) 0 (0)

  1488 cpm VA [101] 2 (8) 0 (0) 0 (0) 0 (0)

  1592 cpm VA [65] 3 (13) 0 (0) 0 (0) 0 (0)

  1932 cpm VM [15] 0 (0) 1 (1) 0 (0) 0 (0)

  2652 cpm VM [34] 2 (8) 0 (0) 0 (0) 0 (0)

  3300 cpm VM [37] 0 (0) 1 (1) 0 (0) 0 (0)

  3660 cpm VM [15] 0 (0) 1 (1) 0 (0) 0 (0)

Cut-points for physical activity intensity classification [original reference]

  Aguilar-Farías et al. [26] 0 (0) 0 (0) 1 (1) 3 (6)

  Aittasalo et al. [78] 0 (0) 1 (1) 0 (0) 0 (0)

  Andersen et al. [100] 0 (0) 1 (1) 0 (0) 0 (0)

  Butte et al. [71] 1 (4) 0 (0) 0 (0) 0 (0)

  Chandler et al. [15] 0 (0) 1 (1) 0 (0) 0 (0)

  Copeland et al. [14] 0 (0) 0 (0) 0 (0) 9 (18)

  Costa et al. [35] 1 (4) 0 (0) 0 (0) 0 (0)

  Crouter et al. [37] 0 (0) 1 (1) 0 (0) 0 (0)

  Davis et al. [99] 0 (0) 0 (0) 0 (0) 1 (2)

  Evenson et al. [12] 8 (34) 36 (45) 0 (0) 0 (0)

  Freedson et al. [11] 0 (0) 1 (1) 30 (29) 14 (27)

  Freedson et al. [74] 0 (0) 8 (10) 0 (0) 0 (0)

  Grydeland et al. [102] 0 (0) 1 (1) 0 (0) 0 (0)

  Hänggi et al. [13] 0 (0) 2 (2) 0 (0) 0 (0)

  Hildebrand et al. [22] 0 (0) 1 (1) 0 (0) 0 (0)

  Jimmy et al. [57] 1 (4) 1 (1) 0 (0) 0 (0)

  Johansson et al. [34] 2 (8) 0 (0) 0 (0) 0 (0)

  Matthews et al. [103] 0 (0) 1 (1) 6 (6) 8 (16)

  Mattocks et al. [75] 0 (0) 1 (1) 0 (0) 0 (0)

  Metzger et al. [98] 0 (0) 0 (0) 3 (3) 1 (2)

  Pate et al. [67] 4 (17) 1 (1) 0 (0) 0 (0)

  Pruitt et al. [104] 0 (0) 0 (0) 0 (0) 1 (2)

  Pulakka et al. [70] 2 (8) 0 (0) 0 (0) 0 (0)

  Puyau et al. [68] 2 (8) 2 (2) 0 (0) 0 (0)

  Reilly et al. [66] 3 (13) 0 (0) 0 (0) 0 (0)

  Romanzini et al. [38] 0 (0) 1 (1) 0 (0) 0 (0)

  Santos-Lozano et al. [27] 0 (0) 1 (1) 1 (1) 1 (2)

  Sasaki et al. [7] 0 (0) 0 (0) 6 (6) 2 (4)

  Sirard et al. [65] 3 (13) 0 (0) 0 (0) 0 (0)

  Treuth et al. [95] 0 (0) 4 (5) 0 (0) 0 (0)
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Reference Preschoolers (n = 24) n 
(%)

Children and 
adolescents (n = 81) n 
(%)

Adults (n = 103) n 
(%)

Older adults (n = 
51) n (%)

  Troiano et al. [61] 0 (0) 0 (0) 8 (8) 4 (8)

  Trost et al. [21] 0 (0) 2 (2) 0 (0) 0 (0)

  Vähä-Ypyä et al. [80] 0 (0) 0 (0) 1 (1) 0 (0)

  Van Cauwenberghe et al. [101] 3 (13) 0 (0) 0 (0) 0 (0)

  Vanhelst et al. [73] 0 (0) 1 (1) 0 (0) 0 (0)

  Zhu et al. [72] 0 (0) 2 (2) 0 (0) 0 (0)

  Zisko et al. [105] 0 (0) 0 (0) 0 (0) 1 (2)

Physical activity energy expenditure algorithms [original reference]

  Butte et al. [71] 1 (1) 0 (0) 0 (0) 0 (0)

  Crouter et al. [106] 0 (0) 1 (1) 0 (0) 0 (0)

  Crouter et al. [107] 0 (0) 0 (0) 2 (2) 0 (0)

  Crouter et al. [20] 0 (0) 3 (4) 0 (0) 0 (0)

  Ellis et al. [28] 0 (0) 0 (0) 1 (1) 0 (0)

  Evenson et al. [12] 0 (0) 1 (1) 0 (0) 0 (0)

  Freedson et al. [74] 0 (0) 3 (4) 0 (0) 0 (0)

  Hildebrand et al. [22] 0 (0) 1 (1) 0 (0) 0 (0)

  Liu et al. [108] 0 (0) 1 (1) 0 (0) 0 (0)

  Mattocks et al. [75] 0 (0) 1 (1) 0 (0) 0 (0)

  Pate et al. [67] 1 (4) 0 (0) 0 (0) 0 (0)

  Puyau et al. [68] 1 (4) 3 (4) 0 (0) 0 (0)

  Santos-Lozano et al. [27] 0 (0) 1 (1) 1 (1) 1 (2)

  Schmitz et al. [109] 0 (0) 1 (1) 0 (0) 0 (0)

  Stec et al. [43] 0 (0) 0 (0) 1 (1) 0 (0)

  Treuth et al. [95] 0 (0) 3 (4) 0 (0) 0 (0)

  Trost et al. [21] 0 (0) 3 (4) 0 (0) 0 (0)

  WET 0 (0) 1 (1) 1 (1) 1 (2)

  WET + Freedson et al. [11] 0 (0) 1 (1) 3 (3) 2 (4)

  WET + Sasaki et al. [7] 0 (0) 1 (1) 1 (1) 1 (2)

  Zakeri et al. [81] 1 (4) 0 (0) 0 (0) 0 (0)

  Zhu et al. [82] 0 (0) 1 (1) 0 (0) 0 (0)

Sleep algorithm [original reference]

  Barreira et al. [19] 0 (0) 1 (1) 0 (0) 0 (0)

  Cole-Kripke et al. [17] 0 (0) 1 (1) 1 (1) 3 (6)

  Sadeh et al. [16] 1 (4) 2 (2) 4 (4) 0 (0)

  Tudor-Locke et al. [18] 0 (0) 4 (5) 0 (0) 0 (0)

cpm counts per minute, Hz hertz, s seconds, VA vertical axis, VM vector magnitude, WET work energy theory

Note 1 Studies using several criteria have been considered in each criterion, thus, in these cases percentages do not have to sum to 100%
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Note 2 Criteria used for the data collection and processing validated with other devices but have been applied to GT3X/+ data have been also 
considered

a
Other placements used for different aims from physical activity intensity classification, physical activity energy expenditure, or sleep estimation 

(e.g., physical activity type identification, light sensor validation, etc.)

b
Non-wear-time definition expressed as: minimum minutes of 0 cpm—minimum minutes for before and after allowance windows—maximum 

minutes of allowance
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Table 3

Summary of studies comparing hip- and wrist-worn GT3X/+ accelerometers

References Age group Aims (principal outcomes studied in 
italics) Main findings/conclusions

Ellis et al. [28] Adults

To compare GT3X/+ worn on the right 
hip and the non-dominant wrist, and the 
added value of heart rate data, for 
predicting PA type and PAEE estimation

In estimating PAEE, both device positions produced 
comparable results. The wrist GT3X/+ was superior 
predicting activities with significant arm movement, 
while the hip GT3X/+ was superior for predicting 
locomotion

Fairclough et al. 
[23] Children

To compare right hip and non-dominant 
wrist compliance, and to compare PA 
derived from wrist and hip raw data

Wrist placement was associated with superior 
compliance compared with the hip. Raw 
accelerations were significantly higher for the wrist 
compared with the hip

Hildebrand et al. 
[22] Children and adults

To compare raw GT3X/+ output from the 
right hip and the non-dominant wrist and 
to develop PAEE equations for each 
placement

The output from the wrist monitor was higher during 
more intense activities but similar or lower during 
sedentary activities. Hip PAEE equation showed a 
higher accuracy

Hjorth et al. [39] Children
To compare GT3X/+ sleep scoring from 
the right hip and the non-dominant wrist 
using existing algorithms

Hip-worn and wrist-worn GT3X/+ cannot be used 
interchangeably for estimating sleep-related 
behaviors

Ozemek et al. 
[41] Adults

To test the reliability of GT3X+ placed 
on the hip, dominant wrist and ankle in 
measuring activity counts recorded by 
axis 1, 2, 3 and VM during daily living

GT3X/+ worn on the hip, wrist and ankle showed a 
high test–retest agreement across all axes and VM. 
Specifically, lower variability in activity counts was 
observed in hip placement compared to wrist- or 
ankle-worn accelerometers

Slater et al. [86] Adults

To examine the GT3X/+ validity for 
sleep scoring from right hip and left 
wrist compared to polysomnography 
using the same algorithm

The wrist-worn GT3X + provided more valid 
measures of sleep but with only moderate capability 
to detect periods of wake during the sleep period. 
With Sadeh’s algorithm[16] GTX3+ Actigraph worn 
on the hip does not provide valid or accurate 
measures of sleep

Staudenmayer et 
al. [24] Adults

To develop algorithms for dominant 
wrist to estimate: METs-hours, minutes 
in PA intensities, minutes in sedentary 
activities vs. not and minutes in 
locomotion vs. not, validate them against 
indirect calorimetry and compare them 
against previously developed hip 
algorithms

The wrist models, applied to 15-s epoch, estimated 
METs better than a previously developed model that 
used counts per minute measured at the hip

Stec et al. [43] Adults

To estimate the optimal placement (right 
wrist, right hip, or right ankle) to attach 
the GT3X/+ for PAEE estimation during 
resistance exercise

The hip-worn GT3X obtained better results for 
estimating PAEE in resistance exercise

Tudor-Locke et 
al. [44] Adults

To compare GT3X/+ step outputs 
obtained from right hip and non-
dominant wrist

In laboratory conditions, the hip detected more steps 
than the wrist independently of the filter selected. In 
free-living, the wrist produced a higher average step 
counts than the hip. The hip step counts were more 
accurate than the wrist in controlled conditions

METs metabolic equivalents, PAEE energy expenditure, PA physical activity, VM vector magnitude
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