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Abstract—This paper presents an approach to fall detection 

with accelerometers that exploits posture recognition to identify 

postures that may be the result of a fall. Posture recognition as a 

standalone task was also studied. Nine placements of up to four 

sensors were considered: on the waist, chest, thigh and ankle. The 

results are compared to the results of a system using ultra-

wideband location sensors on a scenario consisting of events 

difficult to recognize as falls or non-falls. Three accelerometers 

proved sufficient to correctly recognize all the events except one 

(a slow fall). The location-based system was comparable to two 

accelerometers, except that it was able to recognize the slow fall 

because it resulted in lying outside the bed, whose location was 

known to the system. One accelerometer was able to recognize 

only the most clear-cut fall. Two accelerometers achieved over 

90% accuracy of posture recognition, which was better than the 

location-based system. Chest and waist accelerometers proved 

best at both tasks, with the chest accelerometer having a slight 
advantage in posture recognition. 

Keywords— Ambient intelligence, fall detection, posture 

recognition, activity recognition, accelerometers, accelerometer 

placement, classification.  

I.  INTRODUCTION 

There are many studies describing new ways of improving 
the life of elderly. Improving the quality of life of Europe’s 

increasing elderly population is one of the most pressing 

challenges facing our society. Nearly 14% of the EU 

population is over 65 and this figure is expected to double by 

2050 [8]. By then Europe will have 80 million elderly citizens 

who should continue to play an active role in our society, 

despite limitations which the ageing process often brings. To 

cope with this situation, intelligent systems and techniques are 

being developed, which can give these people self-confidence 

to actively and independently live their life despite their age 

limitations. 
The detection of falls is important task in ambient assisted 

living. Furthermore, activity/posture recognition is an essential 
component in such systems. In this paper we present our work 
on the detection of falls and alarming situations using wearable 
accelerometers. Fall detection is improved by body posture 
recognition. In posture recognition we were focused on seven 
basic body postures. We also investigated the performance of 
posture recognition and fall detection with different numbers of 

accelerometers (1 to 4) and different placements on the body 
(chest, waist, ankle and thigh). This way we showed the 
tradeoff between the intrusiveness of the system and the 
achieved accuracy. The final system should be as non-intrusive 
as possible (fewer wearable sensors), but still accurate enough 
to detect each fall. Eventually a comparison with a system 
based on location sensors was made. This system was 
developed in a European FP7 project - Confidence [11]. 

II. RELATED WORK 

Lots of studies in ambient intelligence, particularly in 

ambient assisted living are focused on detecting alarming 

situations using different kinds of technical equipment. Many 

of the studies on human body posture analysis and fall 

detection use image processing, location sensors or 

accelerometers. However, each of these approaches has certain 

problems. 

The image processing approach [6] has several operational 

complexities. One of them is the process of installation of the 

camera in each room we want the system to work. Another 

issue is limitation of functioning only in indoor environment. 
Also common disadvantages are the low image resolution and 

target occlusion. And probably the biggest issue in this 

approach is the user privacy. The user has to accept the fact 

that a camera will record him/her. 

Some researchers have tried to analyze the body posture 

and fall detection using location sensors [3, 9, 10, 11]. The 

problem with this approach is the variation of the sensors 

precision (not constant rate of distance error) and price of the 

sensors. For reasonable results high precision is required 

(Ubisense 2011). High precision means high cost of sensors. 

This price is many times higher than the price of 

accelerometers. In addition, accelerometers are far more 
commercially available and nowadays they can be found 

almost in any smart phone. Similarly to the image processing 

approach, these location systems are limited to indoor 

environment and require installation in each room where we 

want the system to work. The advantage of location sensors 

compared to accelerometers is knowing the location of the 

person. That can be seen in our comparison with the location-

based system [11] presented in the fall detection results 

section.  



Another way of formulating posture recognition and fall 

detection task is by using accelerometers.  

The most common approach for posture recognition is the 

data mining [1, 2]. In a narrow sense it can be interpreted as a 

pattern recognition problem [1]. Therefore good attributes that 

explain the body posture are essential in this approach. 
Usually the results are presented in detection of the whole 

process of the activity/posture (e.g. lying for 20 seconds as 

one sample). In our work we tried to predict each data sample 

and the results are presented that way.  

Also there are studies that use manually created algorithms 

to formulate the accelerometer based posture recognition task 

[13]. With this approach the achieved accuracies are very 

good (around 99%), but it requires using multiple 

accelerometers (6). 

Most studies on fall detection use accelerometers (which 

measure linear acceleration) and gyroscopes (which measure 

angular velocity). Some researchers used machine learning 
instead of threshold-based algorithms [14, 15]. In these 2 

approaches they used a triaxial accelerometer worn on the 

waist. Using SVM machine learning algorithm on various 

features derived from accelerations, they detected falls with 

96.7 % and 100 % accuracy, respectively. 

Typical approach is detection of falls by applying 

thresholds to accelerations, velocities and angles [7]. In [12] 

they used a 3-axis accelerometer worn on the chest; by 

applying a simple threshold to the acceleration, they detected 

falls with 98.9% accuracy. In [4] they used a 3-axis 

accelerometer worn on the waist; by applying thresholds to the 
acceleration, they detected a potential fall and the 

activity/posture after the fall, resulting in 100% accurate fall 

detection.  

Of particular interest to us is the work in [5]. They used 

two 3-axis accelerometers and gyroscopes worn on the chest 

and thigh; by applying thresholds to accelerations, angular 

velocities and angles, they detected a potential fall and the 

activity/posture after the fall, resulting in 90.1% accurate fall 

detection. The lower accuracy compared to the previous work 

is most likely due to the more difficult test data: their method 

sometimes failed on lying down quickly and on two atypical 

fall types. Exactly such situations are tested in this paper. Fall 
detection using accelerometers may appear straightforward, 

but detecting all types of falls is challenging. Most of the 

researches show only accuracy in detecting fast falls. Because 

of that, having a good testing scenario which includes all kinds 

of falls is one of the key steps in fall detection procedure. In 

our approach we were interested in different alarming 

situations that were more difficult to detect only acceleration 

signal: falling slowly (e.g. losing consciousness) and sliding 

from chair (quickly and slowly). In addition, we tested sitting 

down quickly. All these events are included in the test 

scenario. 

III. PROBLEM DESCRIPTION 

In this section we describe the hardware components used 
in this research, and the architecture of our system for posture 
recognition and fall detection. 

A. Hardware 

The sensors used in this research were four 3-axis 
accelerometers. A 3-axis accelerometer is a sensor that returns 
a real-valued estimate of the acceleration along the x, y and z 
axes from which velocity and orientation angle can also be 
estimated. Accelerometers measure the acceleration and output 
the projections of the acceleration vector represented in a three 
dimensional coordinate system. Each accelerometer has its own 
coordinate system and gives the relative vector projections. 
Because of the Earth’s gravity, all objects experience a 
gravitational pull towards the Earth’s center. The acceleration 
unit of the pull is referred to as g or g force. Consequently all 
objects are subject to 1 g acceleration. When the accelerometer 
is at rest, only Earth’s gravity is measured. Accelerometers can 
be used as motion detectors as well as for body-posture 
recognition and fall detection. Acceleration sensors used in this 
research have data sampling frequency of 6 Hz. This is not a 
high frequency, but it gives enough information for our final 
goal and makes the system more compact and portable even on 
devices with low memory and low processing power. It is also 
equal to the sampling frequency of the location sensors we 
used for comparison. 

B. System Architecture 

The posture recognition and fall detection process described 
in this paper is divided in several phases (Figure 1). It begins 
with the real world in which wearable accelerometers are 
affixed to a person’s body. The next phase is the sensory part. 
Accelerometers sample the signal and send the raw data to the 
software attribute extraction module. The software analyzes the 
raw data and extracts new attributes. To solve the problem of 
posture recognition and detecting fall situations two software 
modules were developed: data mining body posture recognition 
and fall detection. Each of these modules gives an output: the 
real time posture of the body and a fall or non-fall event. 

 

Figure 1: System Architecture  

The data mining posture recognition module classifies the 
acceleration data samples into 7 predefined postures. Five of 
the postures were chosen to be common and general: standing, 
sitting, lying, standing up and going down (which includes 
sitting down, lying down or falling). Two of the postures are 
more specific and are related to fall detection: on all fours and 
sitting on the ground. The process of walking is included into 
posture standing, therefore standing can be a static or a 
dynamic posture. 

As we already mentioned, each accelerometer experiences 

the gravitational acceleration. This is an important reference 

for calculating sensor orientation angle and distinguishing 
different body postures. The orientation angle is extracted as 

the angle between the acceleration vector (g – if the posture is 

static) and each of the axis unit vectors (x, y and z). Using 



these 3 angles we have a unique sensor space orientation. With 

the extraction of the orientation angle attribute, the data 

mining algorithm can easily distinguish static postures that 

have different sensor orientation angles. For instance the chest 

accelerometer is perpendicular to the ground for standing and 

sitting postures, but parallel to the ground for lying and on all 
fours postures. Because of such similarities and differences in 

the orientation of the sensors the body postures can be 

recognized. Also a special movement attribute is extracted for 

distinguishing dynamic from static postures.  This attribute 

captures the changes in the acceleration vector; the greater the 

changes, the fiercer the motion. 

The fall detection module is focused on the detection of 

fall events. The first algorithm in this module detects high 

accelerations. It is a threshold-based algorithm which has 

some improvements for reducing false alarms. The second 

algorithm uses the information from posture-recognition 

module as input. It analyzes the recognized postures and 
decides if a fall occurred. 

The number and placements of the accelerometers on the 
body can affect the recognition of particular postures. Placing 
an accelerometer on the thigh can help distinguishing sitting 
(accelerometer is parallel to the ground) and standing 
(accelerometer is perpendicular to the ground), but 
distinguishing sitting and lying is a problem. On the other 
hand, an accelerometer on the chest can distinguish sitting and 
lying, but has problems with standing and sitting. By 
combining these two accelerometers the algorithm was able to 
distinguish each of the discussed postures. Because of 
situations like this, we decided to compare the results using 
different numbers of accelerometers and different body 
placements. The idea is to use as few sensors as possible to 
maximize the user’s comfort, but to use enough of them to 
achieve satisfactory performance. It is very important that the 
accelerometers are firmly fixed, because the orientation of the 
sensor is the most important feature in posture recognition. The 
body placements of the accelerometers were chosen to be: 
chest, waist, right thigh and the right ankle. The chest and waist 
positions are common in fall detection, so we wished to 
compare them. 

IV. METHODS 

In this section we describe the methods and algorithms used 
in each of the modules in our system. Because we use data 
mining classification techniques for body posture recognition, 
the data collecting is one of the main steps. We use supervised 
classification techniques, therefore the data had to be labeled 
with the appropriate posture. As the raw data sample was 
received from the sensors, firstly it was labeled with the 
appropriate class value (posture) and afterwards saved in a 
database together with the correct posture. This was done 
manually while recording. We should note that because the 
labeling was done online, small delays in labels could happen. 
Therefore, successive activities (e.g. standing -> going down -> 
lying) may have some samples mislabeled at the beginning and 
at the end of each posture/activity. This can affect the 
recognition accuracy especially for short postures/activities 
(going down or standing up) that do not have lots of samples. 

In addition, the border between two successive postures is to 
some degree subject to interpretation. 

A. Body Posture Recognition Module 

The real-time posture recognition module uses a 

classification model to classify (recognize) every data sample 

that is received from the accelerometers. Therefore good 

attributes that describe the person’s posture are essential for 

successful classification. The first set of attributes are the raw 

acceleration vector projections (3 attributes for each 

accelerometer) ax, ay and az. Additional 18 attributes are 

extracted for each accelerometer: 

 Length of the acceleration vector (1 attribute) 

 Orientation angles for each axis – x, y and z (3 attributes) 

 Statistical attributes for each axis and for the length of the 
acceleration vector 

o Mean Value (4 attributes) 

o Root Mean Square (4 attributes) 

o Standard Deviation (4 attributes) 

 Movement detection attributes (2 attributes) 

The first derived attribute is the length (module) of the 

acceleration vector. It is a simple but very useful attribute, 

which is also used further in the process of extraction of new 

attributes. Its definition is: 
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During static postures this attribute is constant with the value 

equal to the Earth’s gravity (M = 1g). Otherwise in dynamic 

activities the acceleration vector is changing the direction and 

its module. 

The most important characteristics for static body posture 

recognition are the orientation angles of the accelerometer. 

The orientation angles are calculated as the angles between the 

actual acceleration (Earth’s gravity for static postures) and 

each of the axes (x, y and z). For instance, the angle φx 
between the acceleration vector and the x axis (perpendicular 

to the ground) is computed as follows: 
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This attribute improves the classification for static postures 

that have different sensor angle orientations.  Since each 

person has his/her characteristic posture and each 

accelerometer may not always be worn in exactly the same 
way, a method for the adaptation to the user is performed. At 

the beginning of each recording for each person there is 

initialization (normalization) period of 15 seconds. The 

average orientation angle of posture standing was measured as 

φ0. The difference between the “ideal” standing orientation 

angle (e.g. 180o for the x axis) and φ0 was calculated as φdiff = 

φideal – φ0. After the normalization period, to each newly 

calculated orientation angle φi the difference angle φdiff is 

added and finally the normalized angle is calculated as φnormal 

= φi + φdiff. This adaptation procedure is performed for each 

axis for each accelerometer. Without this adaptation technique 

the model and the results were person dependable. There was 
a big difference in the accuracy for people wearing the 

accelerometers in slightly different way. 



A sliding window is used for calculation of the statistical 

attributes. The current data sample and 5 past data samples are 

combined in one window. The window size is chosen to be 6 

data samples (1 second interval) because in this task there are 

short-lasting activities that the system should detect (going 

down, standing up). The first attribute from this group is the 
Mean value of the data in the window. This attribute is 

actually performing a low-pass filter to the raw data. The 

filtered data is smoother and has fewer changes. This is a good 

feature for the posture recognition process. The mathematical 

definition for the x axis is:  
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The number of data samples n is 6 (1 second window size). 

The variable i

xa  is the acceleration along x axis. Using the 

same formula, mean values for other axes Meany and Meanz 

are calculated. Also the mean value for the length of the 

acceleration vector Meanlength is calculated. A similar approach 

is used for the Standard deviation and the Root mean square 

attributes. 

The Root Mean Square is a similar attribute to the Mean 

value, but it is useful when the observed value is varying 

above and below zero. That is the case in our acceleration 

values. Depending of the orientation of the accelerometer, the 
values can be positive or negative (e.g. +g or –g). The RMS 

for the length of the acceleration vector is computed as 

follows: 
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The variable 2

ilength  is the square of the length of the 

acceleration vector for the current member in the sum. 

Similarly the RMSx, RMSy and RMSz were calculated. 

The Standard Deviation attribute is good for distinguishing 
long-lasting static postures/activities from transitional 

postures/activities. It can detect when the movement of the 

accelerometer is intense. The mathematical definition for the 

length of the acceleration vector is: 
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The variable 
ilength is the length for the current member in 

the sum and length is the mean value in the current window. 

Also the standard deviation for each of the axes was 

calculated: STDx, STDy and STDz. 

When a person’s body is static, the accelerometers respond 

only to the gravity, producing a constant 1 g total acceleration. 

During motion the accelerometers produce changing 

acceleration signal and the fiercer the motion, the greater the 

change in the signal. Using these changes in the acceleration 

vector an attribute is computed for the detection of sensor 

movement - Acceleration Vector Changes (AVC). AVC value 

of this attribute increases as the accelerometer is in movement 
(walking, going down, standing up etc.). This attribute takes in 

consideration the last 2 seconds of data (12 data samples). It 

sums up the last 12 differences of lengths of the acceleration 

vector and divides the sum with the time interval (2 seconds) 

of the data. AVC is computed as follows: 
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T0 is the time stamp for the first data sample in the window 

and Tn is the time stamp of the last data sample. With this 

attribute the movement of the person can be detected: it 

distinguishes static from dynamic postures. A boolean 

(true/false) attribute, which compares the AVC attribute value 

to a threshold, is also computed. If the value is above the 

threshold, the boolean attribute is true, otherwise it is false. 
The threshold value is 0.0015 and it was chosen empirically 

after series of tests on recordings different from the test ones. 

All these 21 attributes were extracted for each 

accelerometer and collected together in one attribute vector. 

This vector was passed through to the classification model, 

which tried to predict the appropriate posture. The 

classification model was previously trained. Because we 

recorded 11 people, the model was trained on 10 people and 

tested on the remaining person. This procedure was repeated 

for each person. The decision which classification algorithm to 

be used was made after evaluating the results in the Weka 
toolkit. Several commonly used classification algorithms were 

analyzed: Naïve Bayes, SVM, J48 and Random Forest. The 

algorithm that achieved the best results for almost all postures 

was Random Forest. 

B. Fall Detection Module 

The second module is focused on the detection of fall 
events. In this module two acceleration-based algorithms are 

used. The first one detects high accelerations using only one 

accelerometer (chest or waist). It is a threshold-based 

algorithm and has some improvements for reducing false 

alarms. The acceleration pattern during a typical fall is a 

decrease in acceleration followed by a fast increase. This is 

shown in Figure 2. The reason for this pattern is that the 

acceleration at rest is 1 g and during free fall 0 g. When a 

person starts falling, the acceleration decreases from 1 g to 

around 0.5 g (perfect free fall is never achieved). Upon the 

impact with the ground, a short increase in the acceleration is 
measured. 

 

Figure 2: Acceleration pattern during a fall. 

 



To detect falls with a threshold, we used the length of the 

acceleration vector, which means that we ignored the 

orientation of the accelerometer. The first idea was to use a 

simple threshold that will detect only the high acceleration 

(impact). This resulted in false positives during quickly 

standing up. The reason for this is that the quickly standing up 
has also a high acceleration and can be confused with a fall. 

However, the pattern during standing up is a reverse compared 

to the fall pattern: first the increase is detected followed by the 

decrease. Using this information the minimum and the 

maximum acceleration within 1.5 second window were 

measured. If the difference between the maximum and the 

minimum exceeded the threshold and the maximum (impact) 

appeared after the minimum (fall), we declared that a fall had 

occurred. The threshold was chosen empirically for each of 

the accelerometers individually. Eventually the waist 

accelerometer had the threshold of 0.8 g and chest 

accelerometer had 1 g. The reason for this is the placement of 
the accelerometers on the body and the impact with the 

ground. This method works perfectly on normal fast falls, and 

the false alarms rate during normal activities is reduced to 

minimum.  

The problem with this algorithm appears if there is high 

acceleration (decrease followed by increase) but the event is 

not fall (e.g. quickly sitting on the chair). To solve this issue 

we used a second algorithm, which takes into account the 

recognized posture after a potential fall event. The improved 

algorithm developed for detecting fall events used the postures 

recognized from the posture recognition module as input. It 
analyzed the recognized postures and decided if a fall was 

detected. Two rules were implemented. The fall had occurred 

if: 

 Acceleration has exceeded the threshold as described in the 

first algorithm AND the person is lying for more than 10 

seconds; OR 

 The person sits on the ground more than 10 seconds. 

The assumption of the second rule, which is already implicit in 

the scenario, was that the elderly usually do not sit on the 

ground. 
The decision about the posture of the person in 10 seconds 

interval was done by choosing the major predicted posture in 
this interval. In other words, the posture with highest number 
of data samples was chosen. 

V. EXPERIMENTAL RESULTS 

We compared the performances of the posture recognition 
and fall detection methods on a test scenario. It was recorded 
by 11 healthy volunteers (7 male and 4 female), 5 times by 
each person. We made a comparison to a location system. This 
was possible because each person was wearing four 
accelerometers and four location tags during the recordings. 

A. Test Scenario 

The test scenario is around 15 minutes long and includes 

all the target body postures. It was designed specifically to 

investigate events that may be difficult to recognize as falls or 

non-falls. The events are listed in Table 1. They were recorded 

in single recordings interspersed with short periods of 

walking. 

TABLE 1: EVENTS SEQUENCE IN THE TEST SCENARIO. 

No. Description 

1 Sitting down normally on the chair 

2 Tripping, falling fast on the ground 

3 Lying down normally on the bed 

4 Falling slowly (trying to hold onto furniture), lying 

on the ground 

5 Sitting down quickly on the chair 

6 Falling from chair slowly when trying to stand up 

(trying to hold onto furniture), landing sitting of 

the ground 

7 Sitting down quickly on the chair 

8 Falling from chair quickly when trying to stand up, 

landing sitting of the ground 

9 Searching for something on the ground - on all 

fours and lying 

 
As shown in the section on related work, accelerometers 

can accurately detect typical falls, so we included only one 
such fall (event number 2) to demonstrate that the system can 
recognize it accurately. We included two atypical falls (4, 6 
and 8) to test the use of posture information, namely that a 
person is not expected to sit on the ground (as opposed to the 
chair). Furthermore, we included two events (5 and 7) that 
involve high acceleration and could thus be misclassified as 
falls by accelerometers. We also included an event (9) that 
involves voluntary lying on the ground, which could mislead 
the methods that use information other than acceleration. The 
last two events (1 and 3) are perfectly normal and were 
included to verify that all the methods work correctly and do 
not recognize them as falls. 

B. Results 

The results are shown for each of the modules in separate 

and different ways. For body posture recognition the results 
are presented as the accuracy of the classifier for each of the 

class values (postures). The confusion matrix for the waist 

accelerometer is also shown. The results for fall detection are 

shown in terms of events from the test scenario. 

1) Body Posture Recognition 
For body posture recognition module, leave one person out 

technique was used for evaluating the results. That means the 

model was trained on 10 people and tested on the remaining 

person. This procedure was done 11 times, once for each 

person. At the end the average accuracy was calculated for 

each posture separately and the overall accuracy was 

calculated for all the postures together. This evaluation 
approach is more reliable than the ones that use separate 

testing scenarios for each activity (only standing, only lying) 

or that use the same person for training and testing. Using the 

same person would give overly optimistic results if the 

intended use of the model is to classify the postures of 

previously unseen people. As we mentioned before every data 

sample is classified. That means for one event of lying on the 



bed for 10 seconds there are 600 samples that should be 

classified as lying. Therefore the possibility for errors in a few 

samples at the beginning and at the end of each event is high. 

We compared the accuracy of the accelerometer-based 

posture recognition to a location system consisted of four 

wearable tags. We did not train this system on our data. 
Instead, we used a classification model included in the system 

and just run it on the newly recorded data (11 people). The 

model was previously built on a similar scenario. 

The results of this posture recognition module are shown 

in Table 3. Because there is a lot of related work that presents 

accuracies using different numbers and placements of 

accelerometers, we decided to include nine different sensor 

placements in our table. It should be noted that accelerometers 

placed only on the thigh or ankle did not achieve reasonable 

results, so they are omitted from the final table. The results 

showed that the chest and waist accelerometers are best suited 

to posture recognition. Since the chest accelerometer is more 
difficult to wear, we wished to test whether it can be 

successfully replaced by the waist accelerometer. From the 

results that we got, we concluded that by replacing the chest 

with waist accelerometer the system loses a few percents in 

the overall accuracy. 

If we analyze the confusion matrix for the waist 

accelerometer shown in Table 2, we can make several 

conclusions. For system with only one accelerometer (chest or 

waist): 

 It is difficult to distinguish sitting and standing, or sitting 

and sitting on the ground. This is because the orientation of 

the sensor is similar during these static postures. 

 On all fours is usually confused with lying on the stomach, 

because the sensor orientation is the same (parallel to the 

ground and facing the ground). 

 Transitional activities are difficult to distinguish and are 

usually mutually misclassified or confused with dynamic 

standing – walking. The small errors in other postures are 

because of the mistakes in manual data labeling.  

TABLE 2: CONFUSION MATRIX FOR THE WAIST  

ACCELEROMETER. LYING (LY), SITTING (SIT),  

STANDING (STA), ON ALL FOURS (ON4), SITTING ON THE  

GROUND (SITG), GOING DOWN (GD), STANDING UP (SU) 

Waist Classified as 

Posture Ly Sit Sta On4 SitG GD SU 

Ly 94% 0% 0% 1% 0% 2% 3% 

Sit 0% 66% 14% 0% 19% 0% 1% 

Sta 0% 11% 84% 0% 3% 1% 1% 

On4 50% 0% 0% 44% 0% 0% 6% 

SitG 0% 38% 9% 0% 53% 0% 0% 

GD 3% 1% 26% 5% 1% 39% 26% 

SU 5% 1% 9% 5% 1% 15% 64% 

 

If we return to Table 3, another thing that is obvious is a 
big improvement in accuracy when the system is using two 

accelerometers. When the chest or waist accelerometer is 

combined with the ankle accelerometer, there is a noticeable 

improvement in sitting and sitting on the ground. When it is 

combined with the thigh accelerometer, there is an 

improvement in distinguishing between sitting and standing, 

and also lying and on all fours. The orientation of the thigh 

sensor in both cases is parallel vs. perpendicular to the ground.  

With introducing the third accelerometer there is an 

improvement in each of the postures, and with 4 

accelerometers the system is almost perfect. It should be 

emphasized that 100% accuracy is almost impossible because 
of the previously discussed issue with the labeling.  

If we compare accelerometers to body posture recognition 
using location sensors, we see that results using only 2 
accelerometers outperform 4 location tags in almost any 
posture. Three accelerometers offer 7–9 percentage points 
better accuracy. 

TABLE 3: COMPARISON OF POSTURE RECOGNITION ACCURACY USING DIFFERENT NUMBER OF ACCELEROMETERS (1, 2, 3 OR 4) PLACED 

ON THE CHEST (C), WAIST (W), ANKLE RIGHT (AR) AND THIGH RIGHT (TR) AND USING 4 LOCATION TAGS 

Posture C 

C + 

AR 

C + 

TR  

C + AR  

+ TR W W + AR W + TR 

W + AR 

+ TR 

C+W+ 

AR+ TR 

4 Location 

tags 

Lying 98% 99% 99% 99% 94% 97% 96% 97% 99% 93% 

Sitting 49% 77% 89% 96% 66% 82% 97% 98% 99% 89% 

Standing 81% 93% 99% 99% 84% 83% 98% 99% 99% 94% 

On all fours 49% 53% 88% 93% 44% 48% 84% 92% 97% 22% 

Sit on ground 53% 95% 88% 93% 53% 86% 86% 92% 96% 44% 

Going down 45% 54% 54% 66% 39% 47% 49% 55% 75% 42% 

Standing up 67% 73% 79% 82% 64% 70% 78% 78% 82% 74% 

Overall 75% 91% 93% 98% 77% 89% 93% 96% 99% 89% 

 



2) Fall Detection  
We compared the performance of fall detection using 

posture recognition with all the sensor placements. Table 4 

shows the accuracies of the recognition of the four falls and 

the three potentially misleading events described in the 

previous subsection. Both events consisting of sitting down 

quickly are merged into one line. The average accuracy was 
averaged over the seven events. The accuracies of the two 

normal events (1 and 3 in Table 1) are not included explicitly; 

instead, the total number of other false alarms (activities 

incorrectly recognized as falls) during these two events and 

during the walking between the events is given. 

The first event in Table 4, tripping, is a typical fall that was 

recognized fairly accurately by all algorithms. This is the 

event that is mostly detected by the methods described in 

related work.  

Falling slowly was difficult to recognize using only 

accelerometers, because the falling was too slow and lying 

itself is not alarming. Such fall can be recognized if one 
knows where the bed is and that a person is not supposed to lie 

outside the bed. Such information can be extracted using 

location sensors or simple pressure sensors installed on the 

bed (and the chair).  

Falling from chair slowly was difficult to recognize using 

only the acceleration threshold. The reason is the low 

acceleration during this event. During the second (quickly) 

falling from chair the acceleration is bigger, which resulted in 

better accuracy. The improved method, which uses the 

posture, was able to detect these events with higher accuracy, 

because the posture of the person was recognized as sitting on 
the ground for more than 10 seconds. Some problems emerged 

when using only 1 accelerometer because the accuracy of the 

recognition of sitting on the ground posture is little more than 

50%. Location sensors also performed well because they could 

recognize sitting, and they had the information about the 

location, which was not the chair. 

The two sittings on the chair quickly were easy to 

recognize for the location-based system because it knew that 
they were taking place on the chair. The algorithm using 

acceleration threshold only had problems with this event, 

because the acceleration was high and the pattern was similar 

to fall. The improved algorithm recognized sitting quickly 

quite accurately, because posture recognition (sitting) 

correctly indicated that no fall had occurred.  

In the case of searching on the ground, the knowledge of 

the location was a disadvantage, because the posture was 

similar to lying and the location was not the bed. However, the 

acceleration-based algorithms were 100% accurate. 

The false alarms appeared only in the improved algorithm 

with only one accelerometer. The problem occurred while the 
person was sitting on the chair and the posture recognition 

module incorrectly recognized sitting on the ground. 

Looking at the average accuracies and other false alarms, one 

can make the following conclusions: 

 There is a big improvement using 2 instead of 1 

accelerometer. But there was a slight difference in accuracy 

of using 3 or 4 instead of 2. One can make a decision by 

comparing the price of the system and the comfort of 

wearing on one side, and the accuracy on the other side. 

 There is no big difference between the chest and the waist 

accelerometer. Because the chest tag is more difficult to 

wear, the waist tag may be preferable for fall detection. 

TABLE 4: FALL DETECTION ACCURACY OF THE ACCELEROMETER-BASED METHODS:  

THRESHOLD AND THRESHOLD + BODY POSTURE RECOGNITION FOR FALL AND NON-FALL EVENTS (EVENT NUMBERS FROM TABLE 1 ARE IN 

PARENTHESES). ACCELEROMETER PLACEMENTS - CHEST (C), WAIST (W), ANKLE RIGHT (AR) AND THIGH RIGHT (TR). 

  Threshold Threshold + Body Posture Recognition   

Events C W C W 
C + 
AR 

C + 
TR 

W+ 
AR 

W + 
TR 

C + 
AR + 
TR 

W+ 
AR + 
TR 

C + W 
+ AR 
+ TR 

4 
Location 
Sensors 

Falls 
           

  

Tripping 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Falling slowly 11% 8% 11% 8% 11% 11% 8% 8% 11% 8% 11% 98% 

Falling from 

chair slowly 
17% 11% 63% 66% 96% 92% 93% 90% 100% 100% 100% 92% 

Falling from 

chair quickly 
49% 38% 72% 71% 95% 93% 93% 92% 100% 100% 100% 96% 

Non-falls 
           

  

sit quickly 36% 33% 82% 82% 90% 96% 92% 100% 100% 100% 100% 100% 

on all fours 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 80% 

  
           

  

Average 52% 48% 71% 71% 82% 82% 81% 82% 85% 85% 85% 94% 

Other false 

alarms 
0 0 5 5 0 0 0 0 0 0 0 2 



VI. CONCLUSION 

We investigated the impact of accelerometer number and 

placement on the accuracy of posture recognition. Our goal 

was to recognize seven postures. We compared the results to 

a system using four ultra-wideband location tags. With one 

accelerometer placed on the chest or waist, the classification 
model was able to distinguish between two groups of 

postures ({lying and on all fours} and {standing, sitting and 

sitting on the ground}). This is because of the difference in 

sensor angle orientation. The problems emerged while 

distinguishing postures within each group. When including 

one more accelerometer in the system, the overall accuracy 

improved up to 90% with almost any sensor combination. 

This is already better than 89% achieved with the location 

system with 4 tags. Three accelerometers improved the 

accuracy for 3-5 percentage points (depending on the sensor 

combination) and by including the fourth accelerometer the 

accuracy increased to 99%. Our experiments proved that 
accelerometers are superior to location sensors in posture 

recognition task. Furthermore the location sensor system is 

more expensive and also requires installation in the 

apartment. The chest and waist are the most common places 

to put an accelerometer and a comparison of the two 

revealed that they perform very similarly, with the chest 

having a small advantage. 

The posture recognition methods were used to improve 

fall detection by recognizing whether the posture could be 

the result of a fall. We again investigated the impact of 

accelerometer number and placement. Using one 
accelerometer on the chest or waist improved the threshold-

based method for 20 percentage points overall.  Significant 

improvements appeared in the falls ending with sitting on 

the ground and non-falls ending with sitting. Two 

accelerometers (each of the analyzed sensor combinations) 

improved the results for 10-11 percentage points mostly 

because of the correctly recognizing the posture sitting on 

the ground. Including the third accelerometer (in both cases) 

the system achieved overall accuracy of 85%. Using all four 

accelerometers didn’t improve the overall accuracy.   

In fall detection the waist accelerometer proved to have 

almost same performances as the chest accelerometer. So, 
one could choose the waist because wearing an 

accelerometer there is more comfortable. 

In fall detection the location sensors proved to be better, 

but only because they could use the knowledge about the 

location of the bed and chair. It was very hard for 

accelerometers to distinguish slowly falling down and lying 

on the bed using only acceleration signals. The 

accelerometers fall detection performance can be improved 

by the information about the location where a potential fall 

is taking place. In future we plan to include this information 

in the system, thus the events that end up with lying outside 
the bed or sitting outside the chair would probably be 

correctly recognized as falls. 

The second issue for further work is developing more 

sophisticated methods for recognizing the transitional 

activities/postures (standing up, going down). This may 

make it possible to distinguish between standing and sitting 

with only one accelerometer. 
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