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Abstract—Quality of experience (QoE) measures the overall 

perceived quality of mobile video delivery from subjective user 

experience and objective system performance. Current QoE 

computing models have two main limitations: 1) insufficient 

consideration of the factors influencing QoE, and 2) limited 

studies on QoE models for acceptability prediction. In this paper, 

a set of novel acceptability-based QoE models, denoted as A-QoE, 

is proposed based on the results of comprehensive user studies on 

subjective quality acceptance assessments. The models are able to 

predict users’ acceptability and pleasantness in various mobile 

video usage scenarios. Statistical nonlinear regression analysis 

has been used to build the models with a group of influencing 

factors as independent predictors, including encoding parameters 

and bitrate, video content characteristics, and mobile device 

display resolution. The performance of the proposed A-QoE 

models has been compared with three well-known objective 

Video Quality Assessment metrics: PSNR, SSIM and VQM. The 

proposed A-QoE models have high prediction accuracy and 

usage flexibility. Future user-centred mobile video delivery 

systems can benefit from applying the proposed QoE-based 

management to optimize video coding and quality delivery 

strategies. 

 
Index Terms— Acceptability, mobile video, modeling, 

pleasantness, quality of experience (QoE).  

I. INTRODUCTION 

O improve the quality of mobile video services, research 

from academics and industry service providers have 

focused on developing quality of experience (QoE) models to 

predict overall user-perceived quality for optimizing quality 

provision. However, modeling QoE is challenging due to the 

complex influences of user experience and diverse conditions 

of video content, network bandwidth, and mobile devices.  

Many objective video quality assessment (VQA) metrics, 

such as structural similarity (SSIM) [1], multiscale SSIM 

(MS-SSIM) [2], and NTIA general model of video quality 

metric (VQM) [3], have been widely used as the QoE models. 

However, these metrics need reference videos, and their 

efficiency in predicting overall quality of mobile video has not 

been fully studied. Reference-free QoE models have used 

network-related factors such as encoding parameters and video 

content features as predictors to estimate the users’ mean 
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opinion scores (MOS) of received video quality [4-6]. 

However, it is argued that the MOS-based measurement are 

unable to indicate whether video quality is acceptable or not 

[7, 8].  

Telecommunication standardization sector of International 

Telecommunication Union (ITU-T) defines QoE as the 

end-user’s overall acceptability of a service or application [9]. 

However, a little research has focused on establishing models 

to predict the user acceptance of mobile video [7, 10-12]. The 

work could be improved by involving more influencing 

factors of user experience such as device characteristics and 

use context. In addition, previous research on user’s 

acceptance threshold may become inadequate in reflecting 

user experience for pleasant viewing [13].  

To address these limitations in QoE modeling of mobile 

video, this paper has focused on the following objectives:  

• Develop QoE models based on user-centered 

acceptability for pleasant viewing 

• Examine the performance of some well-known VQA 

metrics, used as objective QoE models, for predicting 

user acceptability 

In order to build the dataset required for modeling the QoE, 

we conducted two user studies that involved a total of 80 

participants, two types of mobile devices (iPhone 3GS and 

iPhone 4), and 870 test clips from 15 video sources. In these 

studies, participants were asked to select the lowest acceptable 

and the lowest pleasing quality using a customized mobile app 

while viewing a set of different groups of video qualities. The 

lowest acceptable quality means that below this quality, users 

are not willing to watch; the lowest pleasing quality refers to 

the quality they feel would be comfortable enough for regular 

viewing, while being mindful of reducing cost in data 

consumption.  

Binary logistic regression analysis was used to determine 

the significant factors influencing the user acceptance. Based 

on the influencing factors and the relationship between lowest 

acceptable and lowest pleasing quality metrics, we established 

a set of acceptability-based QoE (A-QoE) models to predict 

quality acceptability by mapping its relationship with the key 

influencing factors. These A-QoE models can be used for 

various purposes, including quality control for mobile video 

coding, and automatic quality decision for mobile video 

delivery.  

The rest of the paper is structured as follows. Section 2 

discusses the related work, and Section 3 describes the details 

of the user study data collection and analysis. Section 4 

discusses the QoE modeling process and the proposed A-QoE 
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models. In Section 5, we evaluated the performance of three 

full-reference objective VQA metrics, PSNR, SSIM, and 

VQM, by comparing their correlations with subjective 

acceptability measures. Discussion and conclusion are given 

in Section 6 and 7, respectively. 

II. RELATED WORK 

Modeling QoE is challenging due to the difficulties in 

representing a complex subjective measure of user experience 

in a simple and objective way. Generally, QoE models are 

constructed by three steps: (i) collecting subjective evaluation 

data; (ii) identifying critical elements (or operations) 

influencing the subjective value; and (iii) determining the 

relationship between the subjective value and these elements. 

[4, 14, 15]. 

Objective metrics for perceptual video quality assessment 

(VQA) are often used as objective QoE (oQoE) in video 

services [5]. These models focus on the impact of low-level 

video characteristics on human visual system (HVS) and are 

developed to fit in Mean Opinion Scores (MOS) gained from 

subjective assessments. Common objective VQA metrics 

include PSNR, SSIM [1], MS-SSIM [2], and NTIA general 

model VQM [3]. Although PSNR was not developed based on 

subjective assessments, the heuristic mapping between PSNR 

and MOS [16] has been widely used. The performance of 

these VQA metrics has been evaluated by comparing the 

correlation between the objective scores and the subjective 

assessment scores [17]. The results showed that both the 

MS-SSIM and the VQM metrics performed well, while the 

PSNR was the worst. However, a study evaluating perceptual 

quality of scalable video content on mobile screens indicate 

that the PSNR is slightly better than the SSIM and VQM 

metrics [18]. These conflicting conclusions warrant further 

study to investigate how the objective VQA metrics can be 

used to evaluate the subjective quality of mobile video. 

Advanced metric such as MOtion-based Video Integrity 

Evaluation (MOVIE) [19] provides better performance than 

those common VQA metrics [17]. However, we did not 

attempt to examine its performance for estimating mobile 

video quality due to its high computing complexity. 

Reference-free QoE models rely on seeking the factors that 

cause the quality loss in the entire video delivery process. 

ITU-T has recommended many VQA metrics for quantifying 

the QoE of an audiovisual service as perceived by the end user 

[20]. For example, the E-model (Recommendation G.107) 

[21] predicts the quality affected by various transmission 

impairments of bandwidth, delay, jitter and loss. The opinion 

model (Recommendation G.1070) evaluates video quality 

based on packet loss and coding distortion under the 

combination of bitrate and frame rate [22]. Recent Additive 

Log-Logistic Model (ALM) [6] is formulated by better 

capturing the relationship of visual quality against lossy 

compression and transmission error (slicing and freezing) and 

by taking into account the content features of content 

unpredictability and motion homogeneity to achieve better 

accuracy. In mobile video streaming scenario, two types of 

models were proposed in [23] to estimate video quality for the 

most frequent content types: news, soccer, cartoon, panorama, 

and rest. One is based on average bitrate and four content 

characteristics of motion; the other is a content dependent low 

complexity metric based on bitrate and frame rate for each 

content class. Major QoE models are established to predict 5 

or 11 scales of MOS. However, it is argued that the scales are 

not sufficient to determine acceptable quality for end users [8]. 

Binary measure is therefore suggested to be used in assessing 

acceptability of mobile TV (videos) [24, 25].  

Based on ITU-T’s definition of QoE as the overall 

acceptability [9], it should encompass not only user’s 

perception for video quality, but also user’s desire and need. 

One psychological method for measuring people’s acceptance 

is known as Method of Limits, which is often accomplished by 

asking participants to decide whether or not they accept the 

quality of various videos viewed in successive discrete steps, 

as an ascending or descending series [14]. Only a few 

researchers have worked on QoE modeling based on 

acceptability. In [10], M2A models are built to measure the 

extent of a quality being acceptable based on the full-reference 

metric VQM, thus not suitable for real-time QoE management. 

In [7, 11], QoE models are proposed for six video content 

types (news, sports, animation, music, comedy and movie) and 

three viewing devices (mobile phone, PDA, and laptop), based 

on a linear combination of bitrate and frame rate. These 

models do not consider other influencing aspects, such as 

video resolution, and are dependent on the ability of knowing 

the video content types. In [12], a decision tree of audiovisual 

quality acceptance is determined by means of network type, 

transport protocol, video quality, and user watching behavior. 

The research made in living context, yet the subjective 

assessments for only two video qualities may not be enough to 

delegate the usage situations. 

There is a little research that determines the relationships 

between acceptability and MOS. The G.107 E-model provides 

mapping formula from MOS to the binary measure of Good or 

Better (GoB) and Poor or Worse (PoW) [21]. However, some 

researchers found that the G.107 e-model overestimates the 

actual acceptability for mobile TV, and they proposed a set of 

more precise mapping formula M2A for different content 

types [10]. However, the M2A may not be sufficient for 

videos with bigger resolution than 320×240 pixels (which was 

evaluated in [10]) due to a lack of consideration in the effect 

of image resolution. Another study [8] addressed the mapping 

of MOS to Acceptability for mobile broadband data services. 

Based on a series of lab and field experiments, they found a 

consistent mapping between the binary acceptance and the 

ordinal MOS ratings across different applications, such as web 

browsing and file downloads. Nonetheless, an acceptable 

quality does not necessarily mean that the video is pleasant for 

regular viewing [13]. It motivates our study to develop QoE 

models to estimate both the lowest acceptability and the 

pleasing acceptability. 

There are two processes in developing QoE models: i) 

identifying inputs and the respective features of the model, 

and ii) mapping the features to a quality index [26]. The 

feature identification depends on the available data, which is 

often obtained from subjective quality assessments. The 
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suitable features for a quality model should be those that are 

directly related with user perception, which are usually 

identified through statistical analysis techniques. The mapping 

process is to find the best-fit quality prediction model. There 

are many different approaches, including discriminant analysis 

[14], machine learning classification algorithm – decision tree 

[11, 12], multiple linear regression [15], and non-linear 

regression [4, 6]. Discriminant analysis and decision tree are 

suitable for classifying groups, such as acceptable or 

unacceptable, whereas linear and non-linear regression are 

appropriate for calculating an index, such as acceptability and 

MOS. In this paper, we show a novel process to collect user 

acceptance data through mobile phones, and adopt non-linear 

regression technique to produce mathematical QoE models for 

acceptability prediction based on the nature of data fit curve.  

III. USER STUDY 

To develop A-QoE models, the quality acceptability data 

was derived from two user studies conducted in 2010 and 

2011, denoted as Study1 and Study2 respectively. The settings 

of the studies are described in the following sections. 

A. Test Tool 

The iPhone 3GS and iPhone 4 were used as test equipment 

in Study1 and Study2 respectively. Both devices have a 

3.5-inch screen, supporting different display resolutions. The 

screen of iPhone 3GS is 480×320-pixel resolution at 163 ppi, 

and iPhone 4 is 960×640-pixel resolution at 326 ppi (denoted 

as “retina display”).  

B. Test Videos 

In total, we used 15 high-resolution (>=1280×720 pixels) 

videos as sources, consisting of standard and real-world 

datasets that are depicted in Fig. 1. The seven standard videos 

[27, 28] are uncompressed YUV 4:2:0 format and include 

nature scenes and crowd. The eight real-world videos are 

compressed videos at high bitrates (>3500kbps), 2-4 minutes 

long, covering five typical content genres of mobile videos: 

news, movie, music, sports and animation [29-31]. These 

real-world videos were from recorded broadcast news and 

soccer matches, movie trailers, a movie segment, music 

videos, and open movie source [32]. All of the 15 sources 

(/contents) were used in Study2, while only five of them, 

“Planet51”, “Backupplan”, “Miley”, “Tennews” and “Sports”, 

were used in Study1. 

To produce the test video clips, the video sources were 

encoded into H.264/AVC format with a set of combinations of 

encoding parameters: spatial resolution (SR), frame rate (FR) 

and quantization parameter (QP). The encoding parameters 

used in Study1 and Study2 are listed in Table I and Table II 

respectively, of which a little bit of difference is related to the 

display capability of the test equipment. It should be noted that 

in Study2 the FR of 12.5fps was applied for only nine contents 

(i.e., “Planet51”, “Backupplan”, “Miley”, “Tennews”, 

“Sports”, “Oldtown”, “Parkjoy”, “Pedestrain” and “Shields”) 

due to the consideration of assessment time and necessity. 

Eventually, a total of 870 degraded video sequences were 

generated as the test videos, where 150 sequences 

(2FR×3SR×5QP×5Content) were used in Study1, and 720 

sequences with 450 (3SR×10QP×15Content) encoded at 25fps 

and 270 (3SR×10QP×9Content) encoded at 12.5fps were used 

in Study2. 

For evaluation purpose (details in subsequent section D), 

these produced test videos were assembled in groups of 10 for 

each content, shown in column 1 of Table I and II. In each 

quality group, the 10 video clips are arranged in a bitrate order. 

Study2 used a finer QP level than Study1 in order to make the 

participants feel that the quality-change transition smoother. 

C. Participants 

A total of 80 people were recruited, 40 in Study1 and 50 in 

Study2, with 10 of them taking part in both. There was a 

gender balance (20 male, 20 female) in Study1, and 27 

females and 23 males in Study2. These participants have 

different ages (between 17 and 40 with an average of 26.24), 

experiences of viewing videos on mobile phones, and 

study/career backgrounds (including education, marketing, 

information, administration, and nursing).  

In Study2, 35 participants were involved in the assessment 

for the 450 test videos encoded at 25fps of frame rate, and 15 

were involved into the evaluation of the 270 test videos at 

12.5fps. 

D. Procedure 

We designed the subjective assessment process as a 

scenario-based evaluation task, and guided through a 

customized iPhone application, depicted in Fig. 2. The 

participants were allowed to adjust the video quality within a 

quality group while they were watching. Their task was to 

select the lowest acceptable quality and the lowest pleasing 

quality from each video quality group. The lowest acceptable 

quality refers to the quality below which one is not willing to 

watch; the lowest pleasing quality refers to the quality that one 

feels good enough for regular and comfortable watch. 

Using the test application, after a participant randomly 

chose one of video contents (Fig. 2a) to watch, the video 

played starting from the lowest or the highest quality within 

one test video group. Swiping left or right on the screen could 

adjust the video quality to be higher or lower gradually within 

the same group (Fig. 2c). Double tapping on the screen and 

clicking the relative confirmation button from a pop-up 

message window (Fig. 2d) could confirm the current video as 

the lowest acceptable/pleasing one. Once both the lowest 

acceptable and the lowest pleasing qualities were determined, 

a “Next” button would appear to allow the participant to 

evaluate next group. The participant did not need to watch the 

rest qualities in the same group; however, he/she could change 

his/her decisions before clicking the “Next” group button. The 

iPhone application automatically recorded the participants’ 

decisions and stored into the device (Fig. 2b). During the 

process, a test video was playing in a loop mode. When 

switching the quality, the next quality of the same video 

content would start to play from the break point of the content 

(allowing up to 1-second overlap).  

In Study1, the participant was asked to select only the 
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lowest pleasing quality for each of the 15 test video groups (5 

content ×3group). The testing time was about 20 minutes. In 

Study2, the participant was required to choose both the lowest 

acceptable and the lowest pleasing quality. It took around 

30-45 minutes to complete the 270 videos (encoded at 

12.5fps), and around one hour for the 450 videos (encoded at 

25fps). To avoid fatigue, we gave 10-minute break when a 

participant completed a half of his/her task during the data 

collection period. 

 

   

   

   

   

   

Fig. 1. Thumbnails of video sources. In left-to-right and top-to-down order: 

Standard: Bluesky, Oldtown, Parkjoy, Pedestrian, Shields, Station2, Tractor; 

Real: Bigbunny, Planet51, Backupplan, Lucid, Miley, Mountaintop, Tennews, 

and Sports. 

 
TABLE I 

COMBINATION OF ENCODING PARAMETERS FOR 1ST STUDY 

Group SR (pixels) FR (fps) QP 

1 
320×240 12.5 40 36 32 28 24 

320×240 25 40 36 32 28 24 

2 
480×320 12.5 40 36 32 28 24 

480×320 25 40 36 32 28 24 

3 
640×480 12.5 40 36 32 28 24 

640×480 25 40 36 32 28 24 

SR = Spatial Resolution, FR= Frame Rate, QP = Quantization Parameter 

 

TABLE II 

COMBINATION OF ENCODING PARAMETERS FOR 2ND STUDY 

Group 
SR 

(pixels) 

FR 

(fps) 
QP 

1 480×270 12.5 40 38 36 34 32 30 28 26 24 22 

2 640×360 12.5 40 38 36 34 32 30 28 26 24 22 

3 960×540 12.5 40 38 36 34 32 30 28 26 24 22 

4 480×270 25 40 38 36 34 32 30 28 26 24 22 

5 640×360 25 40 38 36 34 32 30 28 26 24 22 

6 960×540 25 40 38 36 34 32 30 28 26 24 22 

 

          
(a)                                          (b) 

  
(c)                                                   (d) 

 Fig. 2 The test iPhone application. (a) a list of video content with a demo 

video has been demonstrated to the participant; (b) an example of recorded 

data; (c) an instruction of how to use the application; (d) a screenshot of 

determining the selection of video quality 

E. Data Processing 

The original assessment data was the subjects’ acceptable 

quality levels, which is then transformed into binary data to 

denote whether a certain video quality is acceptable/pleasing 

or not. For each of the participant’s records, video clips with 

lower quality (i.e. less bitrate) than the selected lowest 

acceptable quality within the same SR and FR group were 

regarded as “unacceptable” and represented with “0”, and the 

others with equal or greater quality were regarded as 

“acceptable” and represented with “1”. The same 

transformation was made for the pleasing quality evaluation 

data. After shifting missing data and outliers, a total of 76870 

binary assessments (0/1) were obtained for the 870 test clips 

from the 80 participants. The outlying cases identified by the 

studentized residuals less than -2 or greater than +2, which 

was suggested in [33] for binary logistic regression.  

Based on the binary data, the degree of user acceptance for 

each test clip was computed as the ratio of the accumulation of 

“1”s in the total number of the ratings. There are two 

acceptability indexes used: general acceptability GAcc and 

pleasant acceptability PAcc. Their computing equations are 

shown in (1) and (2). Strictly speaking, the GAcc score 

(QGAcc) means the possibility of a video quality being 

generally accepted by viewers and the PAcc score (QPAcc) 

means the possibility of a video quality making viewers 

pleasant or comfortable.  

Q
GAcc

=
the number of basic acceptable ratings

the total number of ratings
 (1) 

Q
PAcc

=
the number of acceptable ratings for pleasant watch

the total number of ratings for pleasant watch
 (2) 

Ultimately, 720 of QGAcc scores and 750 of QPAcc scores 

were obtained. These scores, which were originally derived 

from the subjective assessments, reflect the end-users’ overall 
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perceived quality and therefore will be used as the indicators 

of QoE in Section 4. They will also be used to assess the 

performance of objective VQA metrics in predicting user 

acceptability in Section 5. 

IV. ACCEPTABILITY BASED QOE MODELS 

From the user studies, two acceptability indicators, QGAcc 

and QPAcc, have been obtained to represent the quality of 

experience in accordant with user acceptability to a mobile 

video under general and pleasant viewing circumstances. To 

establish the acceptability-based QoE (A-QoE) models, this 

section firstly examines the relationship between QGAcc and 

QPAcc to determine whether different models need to be 

established. Then, the section presents the detailed process of 

modeling QoE, including determination of model predictors, 

modeling criteria, and models forms and coefficients.  

A. Relationship between QGAcc and QPAcc 

Fig. 3 shows that there is a close cubic relationship between 

QGAcc and QPAcc. Based on the nonlinear regression analysis, 

their relationship can be represented as the function (3) with 

the R
2
 value of 0.966, which means that the function accounts 

for about 96.6% of the QGAcc variability in the dependent 

variable QPAcc. Due to their strong correlation, we only need to 

build QoE models for the pleasant acceptability, as the general 

acceptability can be deduced from (3). It should be noted that 

only the QGAcc greater than 6.7% could be computed through 

(3). In fact, it is unnecessary to calculate a very low 

acceptability because there is no point providing such a low 

quality of videos to users. Another reason for using QPAcc is 

that the pleasant acceptability was investigated for both 

iPhone 3GS and iPhone 4 devices, and therefore it can reflect 

the impact of the mobile devices. 

Q
GAcc

=
2.805Q

PAcc
− 3.28Q

PAcc

2

+1.416Q
PAcc

3

+ 0.067

1

0 ≤ Q
PAcc

< 0.9

0.9 ≤ Q
PAcc

≤ 1

#
$
%

(3) 

 

Fig. 3. Relationship between general acceptability and pleasant acceptability 

of mobile video quality 

B. Model Predictors 

QoE modeling is the process of establishing the relationship 

between the QoE indicator (i.e., QPAcc in this paper) and a 

series of independent variables (i.e., predictors). Certain 

factors that significantly affect the subjective quality 

acceptability were considered as the predictors of our QoE 

models. To determine these factors, binary logistic regression 

analysis was conducted based on the original 76870 binary 

data, where statistical significance level was set as α=0.05. 

The results revealed a significant impact of QP, SR, FR, 

bitrate, video content, and mobile device screen resolution 

(p<.001). Therefore, factors associated with these aspects will 

be considered as potential predictors for the QoE models. To 

accommodate these aspects into the QoE models, the 

followings will define the predictors and the normalization 

computation where required, and discuss their correlations 

with the acceptability. Table III summarizes the selected 

variables, which can be used as the possible predictors of a 

QoE model.  

 
TABLE III 

POTENTIAL PREDICTORS IN QOE MODELS 

Category Variable Description 

Displaying 

device related 

SDPPI Mobile device screen PPI divided by 163 

RVD Video resolution divided by display device 

screen resolution 

Video coding 

parameters 

SSR Video resolution divided by 320×240 pixels 

QP Quantization parameter 

FR Frame rate 

LBR Common logarithm of bitrate 

CI in sematic 

definition 

CTmovie Whether a video is a “movie” (1-yes, 0-no) 

CTsport Whether a video content is about “sport” 

(1-yes, 0-no) 

CI in 

uncompressed 

domain 

ASI & ATI Averaged spatial and temporal complexity 

NSI & NTI Normalized SI and TI 

W Weight of spatial complexity over temporal 

complexity 

CI in 

compressed 

domain 

MAI Mean motion vector (MV) magnitude 

MAD Mean deviation of MV directions from the 

dominant direction 

MAP Proportion of motion in a video 

 

Scaled Device Screen PPI (SDPPI): Different mobile 

devices have different display features.  In this study, the 

devices used have the same screen size of 3.5-inch but with 

different screen resolutions. As a result, the mobile devices 

can be characterized by an index, pixel per inch (PPI), which 

represents the number of pixels that can be displayed within 

one inch of a video frame. Our studies have used the iPhone 

3GS and the iPhone 4 with two PPI values, 163 and 326 

respectively. These PPI values divided by 163 are indicated by 

a variable SDPPI with two values: 1 and 2. 

Scaled Spatial Resolution (SSR): There is an obvious trend 

that the acceptability increases with the increase of a video’s 

resolution. However, the video resolution in pixels is too big 

to be of suitable use in a model, where other predictors have 

much smaller values. Instead of using it directly, a scaled 

spatial resolution SSR has been adopted. Each SR is scaled by 

the smallest SR (320×240=76800 pixels) used in this study, 

thus the resulting SSR values are 1, 1.687, 2, 3, 4, and 6.75 for 

the respective SR values of 320×240, 480×270, 480×320, 

640×360, 640×480, 960×540 pixels.  

Ratio of video frame resolution to device resolution (RVD): 

Findings from data analysis showed an interaction video 

resolution and display device on the acceptability. Fig. 4 

illustrates the mean pleasantness of various spatial resolutions 
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at 25fps for both test devices. It can be observed that PAcc at a 

given image resolution (e.g., 480×270 pixels) on iPhone 4 is 

much lower than that of similar resolution (e.g., 480×320 

pixels) on iPhone3GS. It indicates that people needs a higher 

video quality for watching videos on a mobile device with a 

higher display resolution, more so than if they were using a 

device with a lower display resolution (this confirms the 

natural hypothesis). To delegate this correlation, a variable 

RVD is computed as the value of a video frame resolution 

divided by the device display resolution (in this case, 480×320 

pixels for iPhone3GS and 960×640 pixels for iPhone 4). The 

resulting RVD values are 0.693, 1.0 and 1.387 for the SR of 

320×240, 480×320 and 640×480 pixels on iPhone 3GS 

respectively, and 0.477, 0.636 and 0.955 for 480×270, 

640×360 and 960×540 pixels on iPhone 4 respectively. Fig. 4 

shows a reasonable growth of PAcc with RVD increase. 

 

 
Fig. 4. Impact of QP, SR and RVD on pleasant acceptability 

 

Fig. 5. Impact of LBR and FR on pleasant acceptability for Tennews and 

Soccer videos 

 

Quantization Parameter (QP): From Fig. 4, it can also be 

observed that the curve of QP to the acceptability has a 

sigmoidal, or “S” shape, which indicates a logistic 

relationship. Moreover, the SR or RVD influences the 

midpoints of the QP_PAcc curves. 

Logarithm Bitrate (LBR): In our studies, the relationship 

between QP and bitrate is logarithm at any combinations of 

SR and FR. To achieve consistency with QP and to avoid 

using a big value of bitrate, a variable LBR = log10 (BR)  has 

been used. Fig. 5 shows a logistic relationship between LBR 

and PAcc, which is slightly affected by SR but importantly 

affected by FR. 

Frame Rate (FR): Frame rate is closely related to the 

smoothness of video content and the bitrate reduction, but its 

impact on user acceptability is highly dependent on the 

content type. From Fig. 5, it can be seen that for videos with 

relatively slow motion (e.g., Tennews), a low FR (12.5fps) 

reaches certain acceptability at a lower bitrate than a high FR 

(25fps) does; while for videos with relatively fast motion (e.g., 

Soccer), there is no significant bitrate saving by using a low 

FR. It may be explained by the fact that frame jump is easier 

to be perceived when viewing a fast and large movement 

video with a low FR; and to compensate for the visual 

distortion, better image quality is required, which leads to the 

consumption of bitrate that is saved from reducing frame rate. 

Considering the above discussion, the correlation between FR 

and video content, and between FR and bitrate need to be 

considered. The normalization of FR is to divide it by 12.5fps. 

Content identification (CI): The significant impact of video 

content on the acceptability was shown in different directions 

when working with QP and bitrate together. For example, 

under the control of QP, the acceptability of “movie” video is 

lower than others such as “music” and “news” videos (based 

on McNemar tests that compared the subjective assessment 

0/1 for each pair of content types, p<.05), as people had a 

higher quality requirement for “movie” videos in order to see 

human faces and expressions clearly, according to interview 

data. Under the controlled bitrate, “sports” video has a much 

lower acceptability than other content types. Fig. 5 shows the 

comparison between Tennews and Soccer’s acceptability at 

the same LBR, which indicates a higher demand for 

compressing video content with global and fast motion.  

To accommodate video content information as predictors in 

the QoE modeling, variables representing CI need to be 

defined. There are a lot of video content features can be used 

to distinguish videos, but only the features that can generate 

best fit models will be selected. We have examined a series of 

CI variables, shown in Table III. Categorical variables 

CTmovie and CTsport have been used to denote whether a 

video belongs to the content type of “Movie” or “Sport” 

(1-yes, 0-no). These variables somehow reflect user’s 

preference. Content information can be obtained from the 

description of video sources, but if unavailable, some 

technical content characteristics need to be extracted. We have 

applied two approaches to attain the characteristics. The first 

approach follows the method suggested in ITU-T 

Recommendation P.910 [34] to calculate spatial information 

(i.e., complexity)  (SI) and temporal information (TI) of a 

video content. The SI is based on the Sobel filter over the 

luminance space of a video frame and the TI is based on the 

temporal difference between successive frames. On the basis 

of the SI and TI values for each frame, we used the following 
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variables: ASI and ATI (the averaged SI and TI), NSI and NTI 

(the normalized SI and TI by the maximum values), and W 

(the ratio of the NSI to the NTI, which indicates the relative 

dominance of spatial complexity over the temporal complexity 

[35]).  

The second approach works in video compression domain 

for MPEG4 or H.264/AVC formatted videos to extract motion 

characteristics: motion activity intensity (MAI) defined as the 

mean magnitude of motion vector (MV); motion activity 

proportion (MAP) defined as the proportion of the number of 

non-zero MVs in the total number of MVs; and motion activity 

direction (MAD) defined as the deviation of MV directions 

from the dominant movement direction. A high MAI value 

often indicates fast movement; a big MAP value often 

indicates large movement areas; a small MAD relates to 

consistent movement. These motion characteristics have been 

used to classify content successfully in [23]. The three motion 

features are calculated by (4).  

MAI =
1

Nt

xi
2
+ yi

2

i

∑

MAP =
Nnz

Nt

MAD =
1

N
ni (Di −Dm )

2

i=1

24

∑

                  (4)  

where x  and y  are the coordination of a motion vector (MV) 

in H.264 video coding; Nt is the total number of MVs, and Nnz 

is the number of non-zero MVs. Three steps are needed to 

compute the MAD for a particular frame. First, the whole 

coordinate is divided by 15 degree into 24 subsectors 

( D
i
, i =1,2,...24 ), and each MV direction ( arctan(y / x) ) is 

mapped into one of the subsectors. n
i
is the number of MVs in 

D
i
. Then, the dominant direction D

m
 is selected where most 

MV directions belong. Lastly, the deviation of other directions 

from the dominant direction is accumulated.  

C. Curve Fitting  

The next important QoE modeling step is to map the 

relationship between the QoE indicator and the various 

predictors. The ultimate choice of predictors depends on the 

curve fit and the usage situations of QoE models. We adopted 

statistical technique to find the QoE models that can generate 

the best-fitting estimate of the true acceptability curves. In a 

QoE model, some variables are unnecessary when their effects 

are reflected by other variables/correlations, or when they 

cannot significantly improve the ability of the prediction 

model. Only the most efficient predictors that have the highest 

simple correlation for the desired outcome were chosen. 

As discussed earlier, there are sigmoidal curves between QP 

and PAcc and between LBR and PAcc. Thus, a logistic curve 

model will do a good job to fit the curving sigmoidal shape of 

the acceptability data. A widely used logistic function is the 

four-parameter logistic (4PL) [22, 36]. The 4PL model can fit 

curves in logit-log space well, but cannot effectively model 

asymmetric data [37]. With our acceptability data, the curves 

were not symmetrical, that is, the upper curvature and the 

lower curvature are different, as illustrated in Fig. 6. 

Therefore, a more suitable function – five-parameter logistic 

(5PL) model – was chosen for the asymmetric curves [37]. 

The general formula of 5PL is given by (5), where c>0 and 

g>0, and setting g=1 leads to the 4PL function. The effects of 

parameters c, b and g are illustrated in Fig. 6. 

y = a+
d

1+
x

c

!

"
#
$

%
&

b!

"
##

$

%
&&

g   (5) 

where: 

a: estimated value for the minimum asymptote 

b: slope factor 

c: mid-range concentration 

d: estimated value for the maximum asymptote 

g: asymmetry factor 

 

 
Fig. 6. Asymmetric logistic curve illustrating effects of parameters of a 5PL 

function. In this example a=0 and d=1. 

 

 According to statistical regression theory, a common way 

to determine a best-fitting model is to find the parameters that 

minimizes the sum of squared errors, also called residual sum 

of squares (RSS). The quality of the curve fit is often accessed 

by the R square (R
2
). The R

2
 equals the ratio of the regression 

sum of squares to the total sum of squares (shown in (6)), 

which explains the proportion of variance accounted for in the 

dependent variable by the model. by the model. The R
2
 has a 

value between 0 and 1. A value of the R
2
 close to 1 means a 

good curve fit. 

 
R

2
=

Explained variation

Total variation (Total sum of square)

=
TSS − RSS

TSS
=1−

RSS

TSS

      (6) 

Another way of evaluating the model performance is to 

examine the correlation between the predicted responses and 

the observed responses. The Pearson linear correlation 

coefficient (PC r) is a measure of the strength of linear 

dependence between two variables, is used to indicate model 

accuracy. The Spearman rank order correlation coefficient 

(SROC rho) indicates prediction monotonicity. The coefficient 

r or rho is between 0 and 1, and the value equal to ±1 indicates 

a perfect relationship. 

In addition, root-mean-square error (RMSE) is frequently 

used to measure the differences between values predicted by a 

model and the values actually observed. The lower the RMSE 

is, the more accurate the model is.  

D. A-QoE Models  

The strong relationship between general acceptability 
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(GAcc) and pleasant acceptability (PAcc) suggests that we 

only need to develop models for the PAcc. Therefore, based 

on the logistic relationships between QP and PAcc and 

between LBR and PAcc, we propose the following two 

metrics (7) and (8), containing QP and LBR, respectively. 

Equation (7) and (8) are in the form of 5PL (refer to (5)) with 

the minimum asymptote as zero (i.e., a=0 in (5)) and the 

maximum asymptote as one (i.e., d=1 in (5)). 

When determining the parameters, C1, B1, and G1 in (7) 

and C2, B2 and G2 in (8), the factors influencing the changes 

of the curves (see also Fig. 6) have been considered. For the 

model using QP as the main predictor, C1 is affected by 

spatial resolution (SR), displaying device (DEV), frame rate 

(FR) and video content types or characteristics (CI), and B1 is 

affected by SR and DEV. For the model using LBR as the 

main predictor, C2 is affected by SR, FR and CI, B2 is 

affected by FR and DEV, and G2 is affected by DEV. As a 

result, equation (7) and (8) become (9) and (10), respectively. 

These parameter functions are linear combinations of various 

dependent variables that associate with the influencing 

aspects, such as SSR and RVD (representing SR), FR, DPPI 

(representing DEV), CTmovie, W, and MVP (representing 

CI), and their interrelations. The linear parameter functions are 

decided due to two main reasons: 

• When determining a mathematical function, the linear 

function is firstly considered due to its simplicity, which is 

important in a real application. 

• We have examined a variety of non-linear combinations 

(e.g., combinations of SR/FR and content features, quadratic 

and logarithm functions) to test if a better fit can be obtained. 

The result were either no improvement or worse than the 

linear function. 

 

Q
PAcc
(QP) =

1

1+
QP

C1

!

"
#

$

%
&

B1!

"
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$

%
&&

G1

                                                    (7) 

Q
PAcc
(LBR) =

1

1+
LBR

C2

!

"
#

$

%
&

B2!

"
##

$

%
&&

G2

                                              (8) 

QPAcc (QP) =
1

1+
QP

f (SR,FR,DEV,CI )

!

"
#

$

%
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"
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#

$

%
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        (9) 

QPAcc (LBR) =
1

1+
LBR

f (SR,FR,CI )

!

"
#

$

%
&

f (FR,DEV )!

"

#
#

$

%

&
&

f (DEV )
       (10) 

 

The functions (9) and (10) can be expressed in diverse 

manners depending on the different application conditions. 

We have considered two conditions: (i) whether or not the 

display features of the mobile device are known; and (ii) 

which type of video content identification (in Table III) is 

known. In line with the combinations of these two conditions, 

several scenarios and their corresponding QoE prediction 

models (11) – (16) have been developed based on (9) or (10), 

summarized in Table IV.  
TABLE IV 

SCENARIOS AND THE CORRESPONDING MODELS 

 Aware of 

device display 

feature 

Unaware of 

device display 

feature 

Aware of semantic CI (11) (12) 

Aware of uncompressed domain CI (13) (14) 

Aware of compressed domain CI (15)  (16) 

 

The variables in (11) – (16) were determined by stepwise 

regression to ensure they are statistically independent and 

significant at the criterion level p<.001 based on the t-tests. 

The weighting coefficient of each variable in each model, 

shown in Table V, was determined by nonlinear regression for 

the overall QPAcc to minimize the sum of squared error. The 

model performance is indicated by the values of R
2
, RMSE, 

PC r and SROC rho. Fig. 7 (a-d) show the scatter plots 

between the subjective PAcc values and the predicted values 

by QP-based model (11) (13) and LBR-based model (15) and 

(16) respectively.  
1

1+
QP

a+ b ⋅RVD+ (c+ d ⋅FR) ⋅CTsport + e ⋅CTmovie

"

#
$

%

&
'

h⋅RVD+i"

#

$
$

%

&

'
'

g

 (11) 

 
1

1+
QP

a+ b ⋅SSR+ (c+ d ⋅FR) ⋅CTsport + e ⋅CTmovie

"

#
$

%

&
'

h⋅SSR+i"

#

$
$

%

&

'
'

g
  

(12)

 

 

1

1+
QP

a+ b ⋅RVD+ d ⋅FR ⋅ ATI + e ⋅NSI + f ⋅W

"

#
$

%

&
'
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'
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(13) 

 

1

1+
QP
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"

#
$

%
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'
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      (14) 

 

1

1+
LBR

a+ b ⋅SSR+ c ⋅FR+ d ⋅MAP+ e ⋅MAD

"

#
$

%

&
'

h⋅FR⋅SDPPI+i"

#
$$

%

&
''

g+ f ⋅SDPPI

(15)

 

 

1

1+
LBR

a+ b ⋅SSR+ c ⋅FR+ d ⋅MAP+ e ⋅MAD

"

#
$

%

&
'

h⋅FR⋅+i"

#
$
$

%

&
'
'

g

    (16) 

 

As these models are concerning some conditions of 

information availability, they are flexible for various 

applications and use case scenarios. When the information of 

the mobile device targeted is known, the models involving the 

display resolution variable (e.g., (11), (13) and (15)) can be 

used for QoE prediction. When predicting the acceptability of 

a compressed video, the models (15) and (16) can be utilized. 

When encoding a video to a targeted acceptability, the models 
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(11) or (12) can be simply used if content type information 

(e.g., a sport video) is aware; otherwise (13) or (14) can be 

adopted with the detected content complexity information. 

In general, taking account the mobile screen feature into the 

QoE models provides more accurate prediction, which can be 

seen by comparing the performance of (11), (13) and (15) with 

(12), (14) and (16), respectively. The important influence of 

device screen resolution on prediction accuracy can also be 

visualized through Fig. 7(c) and 7(d), whereby the blue ‘x’ 

markers indicate the data derived on 163ppi screen (Study1) 

and the red ‘o’ markers on 326ppi screen (Study2). According 

to Fig. 7(d), without considering the screen resolution the 

video acceptability may be underestimated when viewing on 

the screen with a small display resolution. 

These series of A-QoE models reflect the comprehensive 

impact of various factors on the user pleasantness. In (11) to 

(14), because the mid-range concentration (C1) of the 

QP-PAcc curve increases with the increase of video resolution 

related parameters (RVD or SSR), the coefficient b is positive; 

because the effect of FR on the QP-PAcc curve is more 

sensitive for fast “sport” videos, FR ⋅CTsport  or FR ⋅ATI are 

involved to reflect their interrelation; and because “movie” 

and “sport” had a lower acceptability than other types of 

videos, the coefficients c for CTsport and e for CTmovie are 

negative in (11) and (12). Furthermore, as a larger resolution 

(RVD or SSR) leads to a slightly steeper QP-PAcc curve for 

the same video, the coefficient h in the slope function (B1) is 

positive. 

In (15) and (16), the impact of video content is best 

represented by the motion features MAP and MAD in 

compressed domain. The two variables indicate how big the 

movement area is and how complex the movement is. The 

impact of SSR and FR on the mid-range concentration (C2) of 

the LBR-PAcc curve is positive. Differing from the QP 

models, the slope of the LBR-PAcc curve is more sensitive to 

FR, or the interrelation of FR and DEV. Moreover, the 

coefficient f in (15) reflects the effect of the device feature on 

the curve’s asymmetry.  
TABLE V 

PARAMETERS FOR A-QOE MODELS AND MODEL PERFORMANCE 

Coeffi- 

cients 

Values in the equation 

(11) (12) (13) (14) (15) (16) 

a 26.916 33.806 19.89 28.165 1.916 1.901 

b 9.951 0.694 9.832 0.673 0.03 0.043 

c -6.455 -5.588 –– –– 0.099 0.155 

d 3.154 2.717 0.054 0.064 1.174 1.333 

e -2.638 -2.689 5.264 1.947 0.053 0.049 

f –– –– 0.549 0.678 1.05 –– 

g 2.028 2.844 2.370 3.030 -0.313 0.841 

h 5.575 0.429 5.867 0.452 2.732 3.454 

i 5.913 7.342 5.360 7.120 -25.473 -24.734 

R square 0.955 0.900 0.951 0.895 0.929 0.889 

RMSE 0.079 0.117 0.082 0.121 0.098 0.124 

PC r 0.977 0.949 0.975 0.946 0.964 0.943 

SROC rho 0.973 0.948 0.974 0.945 0.955 0.934 

 

 
(a)                                            (b) 

 

 
(c)                                            (d) 

Fig. 7. Scatter plots of predicted acceptability versus observed acceptability by 

(a) QP Model (11), (b) QP Model (13), (c) BR Model (15), and (d) BR Model 

(16). 

V. OBJECTIVE VIDEO QUALITY ASSESSMENTS 

VERSUS SUBJECTIVE ACCEPTABILITY 

To determine whether the existing VQA models can predict 

user acceptability, we investigated the performance of three 

well-known VQA metrics, including PSNR, SSIM, and VQM. 

For each VQA metric, the overall index of a video is 

computed by averaging all frame quality scores. Here, the 

PSNR and SSIM indexes were computed only for the 

luminance channel (Y component) of the video frame, and 

directly acquired during the encoding process of the test 

videos using FFmpeg (http://ffmpg.org). The VQM is based 

on the NTIA general model, which has been standardized by 

ANSI and included into two ITU recommendations ITU-I 

J.144 [38] and ITU-R BT.1683 [39]. The VQM 

implementation was downloaded from 

http://www.its.bldrdoc.gov/vqm/. When calculating each test 

clip’s quality score by the VQM metric, the video source was 

converted into the same resolution and frame rate of the test 

clip using FFmpeg, but keeping the original quantization 

quality using the FFmpeg option ‘–sameq’. 

A. VQA Assessments vs. Subjective Acceptability 

The accuracy of PSNR, SSIM and VQM metrics in 

estimating the quality acceptability were evaluated by 

comparing the correlations between the measured quality 

values and the acceptability data obtained from the user 

assessments. To distinguish from the VQA metric’s name, the 

computed quality prediction by each VQA metric will be 

called as P_xxx, where the ‘xxx’ is a VQA metric’s name, i.e., 

P_psnr, P_ssim, and P_vqm. 

Spearman rank order correlation (SRO) was used to 

measure the monotonicity between the P_VQA and the QAcc, 
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and between P_VQA and QPle. Pearson correlation (PC) was 

used to measure the accuracy of these VQA metrics in 

predicting the quality acceptability. Due to the nonlinear 

correlations between the P_VQA values and the subjective 

scores, the PC was computed after performing a set of 

nonlinear regression with logistic functions. Table VI shows 

the performance of the VQA metrics (PSNR, SSIM, and 

VQM) in terms of SRO and PC coefficients. The logistic 

relations between these P_VQA values and the QAcc are 

illustrated in the scatter plots of Fig. 8 (a-c).  

The SRO and PC coefficients (rho and r) for the overall 

video dataset indicate a strong correlation between the VQA 

metrics of the SSIM and VQM and the quality acceptability, 

indicated by rho and r >0.6; and a medium correlation between 

the PSNR and the acceptability, indicated by rho and r 0.5-0.6. 

This result is consistent with the conclusion from VQA 

comparison studies [17, 40], where the PSNR has a lower 

performance than the SSIM and VQM in terms of the 

accuracy and monotonicity in predicting subjective quality. 

However, when observing the SROC and PLC coefficients for 

real and standard video datasets separately, we found some 

interesting phenomena: the SSIM is generally superior among 

these metrics (rho and r >0.79); the PSNR has a good 

performance for real videos (r >0.8), but the worst for standard 

videos despite of a strong correlation with the acceptability 

(rho and r >0.6); in contrast to PSNR, the best performance of 

VQM is manifested in the estimation for standard videos, but 

underperforms for real videos than the others. 

 
TABLE VI 

COMPARISON OF THE PERFORMANCE OF VIDEO QUALITY ASSESSMENT 

METRICS (PSNR, SSIM AND VQM) IN ESTIMATING QUALITY ACCEPTABILITY  

a. Spearman Rank Order Correlation (rho) 

Metric 
Acceptability (QAcc) Pleasantness (QPle) 

All  Real Std All  Real Std 

PSNR 0.567 0.823 0.638 0.595 0.827 0.741 

SSIM 0.745 0.869 0.819 0.754 0.824 0.851 

VQM -0.73 -0.74 -0.73 -0.69 -0.65 -0.87 

b. Pearson Linear Correlation (r) 

Metric 
Acceptability (QAcc) Pleasantness (QPle) 

All  Real Std All  Real Std 

PSNR 0.539 0.834 0.645 0.588 0.830 0.738 

SSIM 0.659 0.857 0.798 0.707 0.796 0.845 

VQM -0.686 -0.723 -0.704 -0.685 -0.634 -0.867 

 Note: Correlation is significant at the 0.01 level (1-tailed); the highlighted 

are the top value in each column and the values greater than 0.8. 

 

(a)                              (b)                             (c) 

Fig. 8. Scatter plots of VQA scores versus subjective acceptability for (a) 

PSNR, (b) SSIM, and (c) VQM. 

We also examined the factors that mostly affect the 

correlation between each VQA index and the acceptability. 

After examining the effect of SR, FR, and content type on the 

three VQA metrics, we found that SR affected SSIM and 

VQM more than PSNR. Under a controlled SR, FR mostly 

affects PSNR and VQM, but not SSIM. With a fixed FR and 

SR, the standard videos have a looser distribution than the real 

videos and locate themselves in a different area from the real 

videos for PSNR and SSIM. This explains why the overall 

correlation between PSNR and acceptability is low, while the 

separate correlations for real videos and standard videos are 

high. 

B. VQA Metrics vs. proposed A-QoE Models 

According to the above analysis, the objective measures of 

video quality derived from the three VQA metrics (i.e., PSNR, 

SSIM and VQM) have a close correlation with the subjective 

quality acceptability, evidenced by the SROC and PC 

coefficient greater than 0.6. However, these VQA metrics 

cannot provide high accuracy of acceptability prediction. The 

maximum correlation coefficient R is equal to 0.867 (from 

VQM metric for standard videos in Table VI (b)), which can 

explain up to 75.2% of pleasantness variation (R
2
=.752). 

Compared to these models, the developed A-QoE models can 

reach at least 12.5% to 21.3% higher explanation (with the R
2
 

from 87.8% to 96.5% shown in Table V).  

Given that PSNR and SSIM algorithms have a low 

computational complexity and have been used in 

rate-distortion control of video coding, it is worthwhile 

bringing them into the QoE modeling. We have shown how to 

achieve PAcc prediction models that uses PSNR and SSIM in 

(18) and (19), which prediction performances are shown in 

Fig. 9 (a) and (b) respectively. As discussed earlier, 

PSNR-PAcc curve is sensitive to the changes of SR, FR and 

content features, and SSIM-PAcc curve is sensitive to SR and 

content features. Therefore, our models take these effects into 

consideration. For instance, the coefficient g in (19) varies 

with the variables for representing video resolution (i.e., RVD) 

and video content (i.e., NSI). Moreover, the models involve a 

new variable isStd (0–real-world videos; 1–standard videos) to 

indicate the more significant impact of content features of 

standard videos on the PSNR and SSIM values. The prediction 

performance is given in Table VII. Comparing these PC r and 

SROC rho values in Table VII to those in Table VI, it can be 

seen that the improvement of the prediction accuracy is 

significant (see also the last column of Table VII).  

The computation of the VQM has a much higher 

complexity than PSNR and SSIM, therefore we did not try to 

use it as the predictor for A-QoE modeling. Furthermore, 

compared to these full-reference models, the reference-free 

A-QoE models have more flexibility in usage. 
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(a)          (b) 

Fig 9. Scatter plots of predicted acceptability versus observed 

acceptability by (a) PSNR Model (18) and (b) SSIM Model (19) 
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TABLE VII 

PERFORMANCE OF MODEL (18) AND (19) 

Metric Index All Real Std 
Overall 

Improve 

PSNR(18) 

R square 0.911 0.927 0.874 - 

RMSE 0.111 0.102 0.129 - 

PC r 0.955 0.953 0.935 0.367 

SROC rho 0.947 0.964 0.929 0.352 

SSIM(19) 

R square 0.889 0.904 0.857 - 

RMSE 0.124 0.117 0.137 - 

PC r 0.943 0.951 0.926 0.236 

SROC rho 0.939 0.946 0.920 0.185 

. 

VI. DISCUSSION 

In this paper, we propose user-driven A-QoE models that 

consider the impact of subjective and objective quality 

assessments. The A-QoE models offer several contributions to 

the current attempts for QoE modeling.  

The A-QoE models take into consideration significant 

influencing factors of user acceptability, which were 

discovered from a comprehensive user study. Thus, they are 

expected to achieve a closer prediction of user values. User 

data collection involving both standard and real-world video 

materials may help to obtain more realistic user values.  

The A-QoE models are easy to use as we used a unified 

expression, as opposed to different models for each type of 

video contents (e.g [4]) and display devices (e.g [7]), by 

integrating the most important feature of a mobile device (i.e., 

screen resolution) and the video content features.  

 The A-QoE models are novel due to its capability of 

predicting pleasant-quality for regular viewing, rather than just 

lowest acceptable to watch. We also revealed the relationship 

between general acceptability and pleasant acceptability. This 

will be helpful for video providers to evaluate their service 

quality from different levels of user acceptance.  

The A-QoE models can be utilized in a wide area of 

applications, based on the available and derivable information. 

For example, the QP-based models can be used in 

acceptability-based quality control for mobile video coding 

through adjusting the encoding parameters; the bitrate-based 

models can be used to determine an optimal quality of mobile 

videos based on the network bandwidth, or to predict the 

acceptability of a given video where its bitrate is known.  

The A-QoE models predict the acceptable degree of a 

quality, in contrast to QoE models that only predict whether a 

quality is acceptable or not [7]. This provides more flexibility 

for the video providers, as they can decide to what extent they 

would like to delight users through providing a certain range 

of video quality, in order to satisfy the diversity of users’ 

requirements and preferences, mobile devices, and network 

conditions. 

While many studies concentrate on network-parameter 

(such as packet loss and error rates) for QoE modeling [4, 15], 

this study primarily focuses on the aspect of video coding and 

assumes that network transmission is controlled by other 

strategies. However, we still take an important network issue – 

network bandwidth – into consideration. The encoding bitrate 

is related to the requirement of bandwidth. The bitrate-related 

QoE models can be used to manage which quality is to be 

delivered to the end user based on the change of network 

bandwidth. 

Regarding to the correlation between the predicted 

(objective) quality scores by PSNR, SSIM, and VQM and the 

subjective acceptability scores (Table VI), we can conclude 

that these full-reference metrics are effective for predicting 

(subjective) acceptability to some degree. Their prediction 

performance can be significantly enhanced by considering the 

influences of video resolution, frame rate, display 

characteristics, and content features. Comparing the overall 

performance among the three metrics, SSIM and VQM are 

better than PSNR, which conform to the study [17], where 

PSNR’s performance in estimating MOS was reported poorly. 

However, when applied to our real-world video data, simple 

metric PSNR closely relates to the subjective acceptability. 

Considering the advantage of its simplicity, it is argued that 

properly utilizing the PSNR measurements (e.g., combining 

with FR and content features) is able to provide an 

acceptability-based quality control in video encoding 

processing (see also (18)). Similarly, SSIM-based 

acceptability metric is also useful in quality control (see also 

(19)).  

In addition to the modeling study, a few interesting issues 

related to video content have been revealed. When observing 

the scatter plots between the acceptability and QP, LBR, 

P_psnr, and P_ssim, we found that the real-world videos had a 

more concentrated distribution than the short-segmented 

standard videos. This is associated with the high diversity of 

content characteristics for these standard videos. For a 

long-duration video, the calculation of a content identification 

goes through several different segments and the overall score 
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obtained by averaging the calculations brings a smoother 

result. However, the differences between these long videos are 

still clear; for example, “Soccer” has a much higher value of 

ATI (23.93) than “Tennews” (9.88). Moreover, people’s 

requirements for comfortable and pleasant viewing varied with 

content types, evidenced by the interview data analysis (e.g., 

participants wanted to a higher quality for movies than other 

contents [41]). Thus, a direct indicator of content type (e.g., 

CTsport and CTmovie), if available, will be useful for 

weighting different content types to reflect the users’ needs. 

Lastly, from the perspective of user study, our study raises the 

requirement for more high quality benchmarking videos that 

have a long duration (e.g., 1–5 minutes), covering a variety of 

content types, and being freely available for research. 

VII. CONCLUSION AND FUTURE WORK 

Based on the acceptability data obtained from user studies 

on quality acceptance assessment of mobile device, this paper 

concentrates on the quality acceptability-based QoE (A-QoE) 

modeling.  

Using statistical techniques, we proposed a set of eight 

mathematical QoE models to predict pleasant acceptability 

PAcc (i.e., the possibility for regular and comfortable watch) 

for various usage situations in mobile video applications. The 

general acceptability GPAcc (i.e., the possibility for 

acceptable watch) can be measured based on the close cubic 

relationship between PAcc and GAcc. The developed A-QoE 

models used the influencing factors of user acceptance as the 

model predictors and mapped the variation of the acceptability 

with the changes of its influences. The proposed QoE models 

can achieve high prediction accuracy (R>0.9, R
2
>0.85), and 

can be applied into the mobile video system to benefit 

consistent user perception and effective resource allocation. 

Investigations were also undertaken on three full-reference 

objective video quality assessment metrics – PSNR, SSIM, 

and VQM, in order to examine whether and how the objective 

measurements of video quality are related to the subjective 

acceptability. In terms of Spearman Rank Order Correlation 

(SROC) and Pearson Linear Correlation (PLC) coefficients, 

the perceptual video quality predictions given by the SSIM 

and VQM metrics had a close correlation with the subjective 

quality acceptability (R>0.6). However, their prediction 

accuracy and monotonicity are far less than the proposed 

A-QoE models, and they can be improved by involving other 

influencing factors such as SR, FR and content features into 

the model.  

Concerning the limitations of the user studies: lab context 

and task scenario-based test process, our future work will 

focus on developing a A-QoE-based mobile video system, and 

then conducting an empirical user study under real usage 

scenarios and contexts for evaluating and improving the 

A-QoE models, and establishing a QoE management strategy 

for user-centred video services. 
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