
 Open access Proceedings Article DOI:10.1145/238168.238209

Access control and signatures via quorum secret sharing — Source link

Moni Naor, Avishai Wool

Institutions: Weizmann Institute of Science

Published on: 01 Jan 1996 - Computer and Communications Security

Topics: Server, Computer access control, Access control and Secret sharing

Related papers:

 How to share a secret

 Access Control and Signatures via Quorum Secret Sharing.

 Completeness theorems for non-cryptographic fault-tolerant distributed computation

 Multiparty unconditionally secure protocols

 Safeguarding cryptographic keys

Share this paper:

View more about this paper here: https://typeset.io/papers/access-control-and-signatures-via-quorum-secret-sharing-
3rddstngvm

https://typeset.io/
https://www.doi.org/10.1145/238168.238209
https://typeset.io/papers/access-control-and-signatures-via-quorum-secret-sharing-3rddstngvm
https://typeset.io/authors/moni-naor-2mfdt988qr
https://typeset.io/authors/avishai-wool-1h5r5jl3p9
https://typeset.io/institutions/weizmann-institute-of-science-33xmjp8v
https://typeset.io/conferences/computer-and-communications-security-2ph48jj5
https://typeset.io/topics/server-10sn6dgt
https://typeset.io/topics/computer-access-control-300in6bc
https://typeset.io/topics/access-control-1fex5bpp
https://typeset.io/topics/secret-sharing-3ub4x94p
https://typeset.io/papers/how-to-share-a-secret-3uffhcqota
https://typeset.io/papers/access-control-and-signatures-via-quorum-secret-sharing-3skyaou4qz
https://typeset.io/papers/completeness-theorems-for-non-cryptographic-fault-tolerant-45bj26q2g1
https://typeset.io/papers/multiparty-unconditionally-secure-protocols-14nd15ffz7
https://typeset.io/papers/safeguarding-cryptographic-keys-17whrpvzu5
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/access-control-and-signatures-via-quorum-secret-sharing-3rddstngvm
https://twitter.com/intent/tweet?text=Access%20control%20and%20signatures%20via%20quorum%20secret%20sharing&url=https://typeset.io/papers/access-control-and-signatures-via-quorum-secret-sharing-3rddstngvm
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/access-control-and-signatures-via-quorum-secret-sharing-3rddstngvm
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/access-control-and-signatures-via-quorum-secret-sharing-3rddstngvm
https://typeset.io/papers/access-control-and-signatures-via-quorum-secret-sharing-3rddstngvm

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 9, SEPTEMBER 1998 909

Access Control and Signatures
via Quorum Secret Sharing

Moni Naor and Avishai Wool, Member, IEEE Computer Society

Abstract—We suggest a method of controlling the access to a secure database via quorum systems. A quorum system is a
collection of sets (quorums) every two of which have a nonempty intersection. Quorum systems have been used for a number of
applications in the area of distributed systems. We propose a separation between access servers, which are protected and
trustworthy, but may be outdated, and the data servers, which may all be compromised. The main paradigm is that only the servers
in a complete quorum can collectively grant (or revoke) access permission. The method we suggest ensures that, after authorization
is revoked, a cheating user Alice will not be able to access the data even if many access servers still consider her authorized and
even if the complete raw database is available to her. The method has a low overhead in terms of communication and computation.
It can also be converted into a distributed system for issuing secure signatures. An important building block in our method is the use
of secret sharing schemes that realize the access structures of quorum systems. We provide several efficient constructions of such
schemes which may be of interest in their own right.

Index Terms—Quorum systems, replication, secret sharing, security, cryptography.

——————————���F���——————————

1 INTRODUCTION

1.1 Motivation
ONSIDER the following scenario regarding access con-
trol to a database. The satellite photography company

GlobePic has a large digitized-pictures database of various
parts of the earth. This database is updated periodically, as
new photographs are added. GlobePic customers buy the
license to access a set of photographs, say of some geo-
graphic area, and this license is limited in time. When the
license expires, the customer is not allowed access any
more. Furthermore, the company would like to be able to
quickly revoke the customers privileges at any time due to,
say, unauthorized transfer of information. The company
needs a distributed protocol to enforce this licensing policy.
The protocol should run using a wide-spread collection of
access servers, which may be completely separate from the
actual data servers. A basic part of this protocol is just
maintaining a consistent view of the licensing status of
every customer, which is a classical question concerning
replicated databases. Note that servers may be unavailable
due to crashes or communication failures, so the protocol
needs to overcome this and allow high availability of the
service. On the other hand, the protocol should keep the
load on any single server at a minimum.

The information in the database is highly sensitive, so it
must be protected. The protection should be against cheating
users, rather than against dishonest access server personnel.
The first requirement is that a user may not know any partial

data relating to photographs that were not paid for, so the
protection needs to be done per record. A second requirement
is that, after the license expires and GlobePic takes the few
necessary measures to update the access servers, the user is
not allowed to access any photographs at all. A crucial point is
that a typical replicated-database protocol does not update all
the servers that the license has expired, so a cheating user may
attempt to access the outdated servers, which still believe the
license is valid, and, thus, obtain access to the photographs.
Note that the access control needs to be enforced even when
the whole raw database is available to a cheating user.

A closely related problem concerns distributed signa-
tures. Suppose that the SolarCard credit company has an
agreement with the LunarBank which specifies a secure
signature scheme. Any card-holder showing an officially
signed letter of credit from SolarCard is entitled to receive
from LunarBank the amount requested in the letter, and the
credit card company is bound to reimburse the bank for the
sum. Now, SolarCard wishes to create an automatic signing
service for its customers via some signature servers.

A common approach to such a problem is that the user
must obtain partial signatures from k of the n servers so that
fewer than k servers cannot forge a complete signature. This
approach ensures both a high availability and minimal trust
in the servers. We choose to separate these issues by trust-
ing the servers to a large extent. However, as in the previ-
ous scenario, we assume that the servers may not all have
the updated status of each customer. We argue that an im-
portant issue here is consistency: If the request is valid, then
it should be signed, but if it is not, then, no matter which
servers the user applies to, the request must not be signed.
Note that k-of-n signature schemes with k < n/2 do not
guarantee this type of consistency even when all the servers
are not corrupt. And, of course, a basic requirement is that
cheating user should not be able to forge a signature even
after receiving several partial signatures.

1045-9219/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

• � M. Naor is with the Department of Applied Mathematics and Computer
Science, The Weizmann Institute, Rehovot 76100, Israel.
E-mail: naor@wisdom.weizmann.ac.il.

• � A. Wool is with Bell Laboratories, Lucent Technologies, 700 Mountain Ave.,
Murray Hill, NJ 07974. E-mail: yash@research.bell-labs.com.

Manuscript received 16 May 1996; revised 23 June 1998.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 100204.

C

910 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 9, SEPTEMBER 1998

A solution to the problems of both scenarios includes the
idea of a quorum system. This is a collection of sets (called
quorums), every two of which have a nonempty intersec-
tion. Quorum systems are a standard tool used to maintain
consistency in replicated databases. A natural formulation
for the access control problem is that access to the data may
be granted only by a quorum of servers. Then, the intersec-
tion property guarantees that notifying all the servers in
some quorum that a license has expired would make the
license useless. Similarly, in the signature problem, we say
that only a quorum of partial signatures can be combined
into a full signature and, then, the intersection property
guarantees the consistency.

Our purpose in this paper is to show how to add the se-
curity requirements to some of the better quorum systems
via secret sharing. The security we guarantee is against
user’s actions; we assume that the servers are trustworthy,
but possibly unavailable or out of date. We obtain an access
control protocol that has the following properties:

• � Access controlled at record (rather than database)
granularity.

• � Very low overhead in terms of communication and
computation for gaining the access.

• � Low probability of denial-of-service or of giving serv-
ice to an unauthorized user.

• � No on-line coordination required between the servers,
i.e., a user simply gets information from the servers.

We believe that the level of trust which we assume for the
servers is reasonable in applications similar to the ones
sketched above. However, we consider decreasing this
trust, without significant degradation of the protocol’s ad-
vantages, to be a major open question.

1.2 Related Work
Herlihy and Tygar [22] have suggested a scheme to protect
quorum-based replicated databases. However, their scheme
has several drawbacks: Access is controlled over the whole
database and not at record granularity, there is no way to
revoke a user’s access once it is obtained, and the scheme
uses a k-of-n threshold access structure, which implies a
large communication overhead and high load since the
threshold must be k > n/2 for the structure to be a quorum
system.

Reiter and Birman [41] considered a database protection
scheme in a scenario which is the reverse of ours, namely
against servers being corrupted (rather than the users, as is
the underlying assumption in our paper). In their scheme, it
is the responsibility of the users to verify that the data sent
by the servers is genuine. They too rely on a k-of-n thresh-
old scheme and do not separate between the data servers
and the access servers.

The issue of availability is addressed by Gong [19] in the
context of a secure authentication service. The suggested
protocol uses a k-of-n threshold scheme, however, in fact,
any secret sharing scheme could be used instead. Therefore,
if we replace the k-of-n scheme by our quorum secret shar-
ing schemes, the protocol would then gain their efficiency,
high availability and low load.

A related line of research is that of group signatures [11]
and function sharing [10]: For processors to share a function

F means that only a group of k processors can evaluate F(x)
and no information is transferred about F from the shares
related to x. Hence, the issue of granularity is dealt with.
However, their model of failures and security requirements
are much more severe: The servers themselves may be cor-
rupted and no set of < k corrupt servers is allowed to know
any information about F. The corrupted servers are con-
trolled by a malicious adversary who knows all the secret
information they may possess. The authors showed how to
share the RSA function (i.e., modular exponentiation) over a
threshold access structure. However, since their security
requirements are stronger than ours, the problems they face
are more difficult and, therefore:

1)�The solutions obtained are more complex than ours.
2)�They work only over threshold structures.
3)� It is not clear how to solve the problem of database en-

cryption given this assumption on the faulty servers.
The problem is in sharing a pseudorandom function.1

4)�As for signatures, their scheme is restricted to RSA
and is not general. In particular, it is not clear whether
any of the provably secure signature schemes may be
implemented.

1.3 Tools
Quorum systems: Quorum systems have been used in the

study of distributed control and management problems
such as mutual exclusion (cf. [14], [40]), data replication pro-
tocols (cf. [9], [21], [25]), name servers (cf. [35]) and selective
dissemination of information (cf. [49]). We apply some recent
constructions suggested in [1], [28], [36], [39].

Secret sharing: Secret sharing (cf. [44]) was originally sug-
gested for threshold access structures by Shamir [43] and
Blakley [5]. It was extended to arbitrary access structures
in [24]. The issue of efficiency (i.e., share sizes) of such
schemes has been considered in several papers (cf. [7],
[6], [3]). Schemes suggested in [4] for structures repre-
sented by monotone formulas turn out to be important
for our quorum systems. The most general access struc-
tures for which efficient secret sharing schemes are
known is that of span programs [26]. All our schemes
fall into this category. Krawczyk [27] suggested the no-
tion of computational secret sharing, which we adopt for
our purposes.

Pseudorandom functions: Our constructions employ pseu-
dorandom functions (cf. [17], [31]) for two purposes: en-
crypting the database and generating coin flips for the
secret sharing schemes we use. As a heuristic, it is possi-
ble to replace the pseudorandom function with a pri-
vate-key encryption function, such as DES.

Signatures: Digital signatures have been investigated exten-
sively (cf. [18], [12] and the references therein). Our
scheme can take any signature scheme and transform it
into a distributed quorum based scheme without altering
its security. The notion of security we consider is that of
existential unforgeability. However, our transformation is
independent of the basic signature scheme itself, so we

1. We have recently made some progress regarding this question. See also
[33].

NAOR AND WOOL: ACCESS CONTROL AND SIGNATURES VIA QUORUM SECRET SHARING 911

can as easily create a quorum signature scheme out of
heuristic signature schemes, such as RSA with MD5.

1.4 New Results
In this work, we propose a separation between the access
servers and the data servers. The data servers need not be
physically protected, since all the information on them will
be encrypted. We shall assume, however, that none of the
access servers have been compromised, although some of
them may not be up-to-date regarding the access privileges
of users. This may be due to a communication failure or to
high load or because quorum based data replication
schemes allow data not to be updated at all the servers. The
access servers have relatively low storage requirements,
typically much less than that of the database itself.

We make use of quorum systems to enforce consistency
of the access information. When a legitimate user Bob
wants to access a record from the database or to obtain a
signature, he sends a request to all the servers in some quo-
rum of access servers. Each of these servers, after checking
authorization, sends back a message. In the case where Bob
wants to get a record from the database, he also accesses the
data servers and gets the encrypted record. No protection
(other than encryption) is assumed on the data servers.
Combining the messages Bob gets from the access servers
yields the key to decrypting the record or yields the desired
signature. However, if an unauthorized user Alice attempts
the same procedure, she will get only a subset of replies
(from the outdated servers). We show that this partial in-
formation will not help her to forge the signature or to learn
any information regarding the database which she did not
have before.

The properties that interest us in a quorum system are:

• � Low load (and high capacity): The load of a quorum
system is the fraction of the time that a member of the
quorum system (server) is accessed under the best
possible strategy of choosing quorums. Thus, to allow
many accesses to the database, we need a low load.

• � High availability: We want a quorum of available
servers to exist with high probability even when indi-
vidual servers may fail. This ensures that privileges
may be revoked and that legitimate users may con-
tinue accessing the database (or obtaining signatures).

• � Small quorum sizes: to make the communication
overhead small.

Note that not all quorum systems enjoy these properties.
For instance, the majority system [47], i.e., the n+1

2 -of-n
threshold system, has optimal availability but induces a
high load and has large quorums. At the other extreme, the
finite projective plane [32] has optimal load but very poor
availability.

We suggest using some recent constructions of quorum
systems that have optimal performance according to the
above criteria. We show how to convert secret sharing
schemes for access structures corresponding to these quo-
rum systems into solutions for our problems. Our main
results, specified in Theorems 3.1 and 5.1, show how the
transformations work and their security properties. As a
consequence, we get very efficient methods for protecting

information in a database or generating shared signatures.
The work done at a server given a request is the evaluation
of an encryption function at two points. Reconstruction by
a user is also very efficient and mostly involves XORing.
Our schemes require no coordination between the servers.
Each server replies to a request based only on information it
holds locally, and the consistency is guaranteed by the fact
that obtaining replies from less than a quorum of servers
does not leak information to the user.

Secret sharing schemes realizing the access structures of
quorum systems are essential to our method and we pro-
vide several efficient constructions of such schemes. How-
ever, it has been recently shown in [2] that quorum secret
sharing schemes are a fundamental primitive in the solu-
tion of other problems in security, namely secure multi-
party computation. Moreover, [2] uses some of our specific
secret sharing schemes to build efficient protocols that
compute arbitrary circuits and are secure against passive
adversaries.

1.4.1 Organization
The next section contains the definitions of quorum sys-
tems, of their properties, and of secret sharing schemes.
Section 3 presents how to use a quorum secret sharing
scheme to control the access to a database. Section 4 in-
cludes some variants to the basic protocol, with stronger
security guarantees. Section 5 shows how a secret sharing
scheme can be used to convert signature schemes into ones
controlled by a quorum system. Section 6 gives efficient
secret sharing schemes for various quorum systems that
may be used in the methods of Sections 3 and 5. Section 7
describes two protocol variants which require less trust in
the servers, and Section 8 lists some open problems.

2 PRELIMINARIES

2.1 Quorum Systems, Availability, and Load
DEFINITION 2.1. A Set System 4 = {Q1, ¤, Qm} is a collection of

subsets Qi µ U of a finite universe U. A Quorum System
is a set system 4 that has the Intersection property: Q > R
¡ ® for all Q, R ¶ 4.

Alternatively, quorum systems are known as intersecting set

systems or as intersecting hypergraphs. The sets of the system
are called quorums. The number of elements in the under-
lying universe is denoted by n = |U|.

DEFINITION 2.2. A set system $ µ 2U such that ® · $ is called

an access structure if it is monotone increasing: If A ¶ $,
then B ¶ $ for every B ² A. If 4 is a quorum system, then

the collection $(4) = {A ² Q : Q ¶ 4} is an access struc-

ture, called the quorum access structure of 4.

DEFINITION 2.3. A Coterie is a quorum system 6� that has the

Minimality property: There are no S, R ¶ 6, s.t. S ´ R.

DEFINITION 2.4 Let 5, 6 be coteries (over the same universe U).

Then, 5 dominates 6, denoted 5 B 6, if 5 ¡ 6 and, for

each S ¶ 6, there is R ¶ 5 such that R µ S. A coterie 6 is
called dominated if there exists a coterie 5 such that 5 B 6.
If no such coterie exists, then 6 is nondominated.

912 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 9, SEPTEMBER 1998

LEMMA 2.5 [23]. Let 6 be a coterie and let $(6) be its access
structure. Then, 6 is nondominated iff for all X µ U, either
X ¶ $(6) or U\X ¶ $(6) (but not both).

The availability of a quorum system is defined using a
simple probabilistic model of the failures in the system. We
assume that the elements (servers) fail independently with
a fixed uniform probability p. We assume that the failures
are transient, that the failures are fail-stop failures (i.e., a
failed element stops to function rather than functions incor-
rectly, cf. [42]), and that they are detectable. Following [37],
we define:

DEFINITION 2.6. For every quorum Q ¶ 4 let (Q be the event

that Q is hit, i.e., at least one element i ¶ Q has failed. Let

fail(4) be the event that all the quorums Q ¶ 4 were hit,

i.e., fail QQ
()4 (

4
=

∈I . Let the system failure probability

be Fp(4) = Pr(fail(4)).

The failure probability Fp(4) measures the unavailability of
the quorum system 4.

In order to define the load, we first need the notion of a
strategy. A protocol using a quorum system occasionally
needs to access quorums during its run. A strategy is a
probabilistic rule that governs which quorum is chosen
each time. In other words, a strategy gives the frequency of
picking quorum Qj.

DEFINITION 2.7. Let a quorum system 4 = (Q1, ¤, Qm) be given

over a universe U. Then, w ¶ [0, 1]m is a strategy for 4 if

it is a probability distribution over the quorums Qj ¶ 4,

i.e., w jj

m

=∑ =
1

1.

For every element i ¶ U, a strategy w of picking quorums
induces the frequency of accessing element i, which we call
the load on i. The system load, /(4), is the load on the busiest
element induced by the best possible strategy. Formally,
following [36]:

DEFINITION 2.8. Let a strategy w be given for a quorum system 4

= (Q1, ¤, Qm) over a universe U. For an element i ¶ U,

the load induced by w on i is , w jQ i
i w

j

() = ∑
∋

. The

load induced by a strategy w on a quorum system 4 is

/ 4w i U w i() max ()= ∈ , . The system load on a quorum

system 4 is /(4) = minw{/w(4)}, where the minimum is

taken over all strategies w.

2.2 Secret Sharing
DEFINITION 2.9. Let U = {1, ¤, n} and let S be a finite set of se-

crets. A secret-sharing scheme (SSS) is a mapping P : S
� R ° S1 � L � Sn, where R is a set of random strings,
and, for each i ¶ U, Si is a set of secret shares. P is said to
realize an access structure $ if it satisfies the following
conditions:

1)�The secret can be reconstructed by any subset in $.

That is, associated with every set A ¶ $ (A = {i1, ¤,

i|A|}) there is a function h S S SA i i A
:

1
× ×L a such

that for every (s, r) ¶ S � R, if P(s, r) = {s1, ¤, sn},
then h s s sA i i A

(, ,)
1

K = .

2)�No subset, unless it is a member of $, can reveal any
partial information about the secret (in the information
theoretic sense). Formally, for any subset Z · $, for
every two secrets a, b ¶ S, and for every possible collec-
tion of shares {si}i¶Z:

Pr Prs a s bi i Z i i Z
< A4 9 < A4 9∈ ∈

= ,

where the probability is taken over the random string r.

We denote the ith component of P(s, r) by Pi(s, r) (called
the share of element i).

Let |x| denote the bit length of a value x. For a secret s,
we cannot expect the length of the shares to be |Pi(s, r)| <
|s|, hence, the total length of the shares is at least n|s|.
The following definition lets us measure the deviation of an
SSS from the ideal space requirement.

DEFINITION 2.10. The blowup factor of an SSS P is

β Π
Π

0 5
0 5

= =
∑ i
i

n

s r

n s

,
1 .

3 ACCESS CONTROL VIA QUORUM SECRET
SHARING

3.1 Overview
In this section, we show that an SSS P that realizes a quo-
rum access structure $(4) can be used to build a distrib-
uted access control mechanism for a database.

The main elements of the access control are the access serv-
ers which form the universe U. Each server holds a list of all
the users it knows to be currently authorized to access the
database. However, a server’s authorization list may be out-
dated. It may be the case that user Alice has had her authori-
zation revoked, but a set Z µ U of servers is still unaware of
this change when Alice requests access permission. Our re-
quirement is that if all the servers in some quorum Q ¶ 4 are
informed that Alice is no longer authorized, then, no matter
from which set of servers Alice chooses to request access
permission, she will not be able to access the database. This
requirement leads naturally to our basic paradigm:

To access the database, a user must obtain permission
from a quorum of access servers.

The intersection property of a quorum system then ensures
that, in any set A ¶ $(4) (which can collectively grant
permission to Alice), at least one server is informed that the
request is not legitimate.

We assume also that an access server may be unavailable
(due to a crash or communication failure). We would like
such failures not to prevent legitimate users from obtaining
access, and not to allow nonlegitimate users to break in.

A further assumption we make is that each user has a se-
cure and authenticated channel of communication with the
servers. Therefore, we assume that Alice cannot masquer-
ade as Bob and obtain access permission this way.

NAOR AND WOOL: ACCESS CONTROL AND SIGNATURES VIA QUORUM SECRET SHARING 913

The protocol ACP of Fig. 1 shows how to transform an
SSS to an access control mechanism. We use the standard
notion of a pseudorandom function (PRF), cf. [17], [31].

3.2 The Notion of Security
To specify the security of a cryptographic scheme we
should describe

1)� the type of attack assumed, i.e., the power of the ad-
versary, and

2)�what is meant by breaking the system, i.e., what tasks
the adversary can perform as a result of the attack
that it could not perform before.

Usually, there is some “ideal” situation that we are trying to
imitate. In the case of encryption of messages, a common
metaphor used for the ideal is a sealed envelope. Below, we
first specify the model of the ideal environment and, then,
the model of the given environment. The notion of security
shall be that, for any computational challenge and every
user operating in the latter environment, there is a user in
the ideal environment that has the same probability of suc-
ceeding in the challenge. This is an adaptation of semantic
security for the scenario considered in this paper.

In our scenario, the ideal situation is when a user Alice�
interacts with the database as a black box, requesting and
obtaining information about records in the database. Alice�
gets no information (concealed or not) about records she
does not specifically request. At some point, her access
privileges are revoked and she gets no more information
about the database. Her challenge is to compute some
function G of the contents of the database (including both
the parts that were revealed to her and those that were con-
cealed). Depending on the distribution of the the items in
the database, her requests, and the function G, she has a
certain probability of answering this challenge correctly.

Consider now a user Alice using protocol ACP of Fig. 1.
We assume that her computational power is that of a prob-
abilistic Turing machine whose running time is polynomial
(in some security parameter). Alice has the complete en-
crypted database D as input from the data servers. Alice
first performs t authorized rounds of:

• � She adaptively chooses a data index xj and a set Aj ¶
$(4) containing a quorum (based on the entire his-
tory). She requests access to item xj from all the serv-
ers in Aj according to ACP.

• � The servers i ¶ Aj generate the shares and send them
to Alice, i.e., she can then decrypt D(xj).

Then, her authorization is revoked, so she performs , fur-
ther rounds of the same type; however, now she chooses the
set Zj · $(4) (since, in every quorum, some server will
refuse her request). Again, all the servers in Zj send her
their shares of the requested item xj.

Let G be a function on t + , variables. At the end of the
t + , rounds, Alice computes a guess g of the value G(y(x1),
¤, y(xt+,)), based on the database contents of the indices
she requested.

Our notion of security is: For any function G (computable
in probabilistic polynomial time) and every Alice operating in the
mode described above, there is a (probabilistic polynomial time)
Alice� operating in the ideal black box model such that the differ-
ence between the probability that Alice computes G correctly and
the probability that Alice� computes G correctly is negligible.

3.3 The Theorem
THEOREM 3.1. If the access structure $ is a quorum access struc-

ture $(4), then ACP has the following properties:

1)� If all the servers in a live quorum are informed that Bob
is authorized, then he can access item x.

Fig. 1. The access control protocol ACP.

914 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 9, SEPTEMBER 1998

2)� If a quorum of servers is informed that Alice is not
authorized, then she cannot learn any partial informa-
tion about the database, in the sense defined above.

PROOF OF PROPERTY 1. If all the servers in a quorum Q ¶ 4
are alive and informed of Bob’s authorization, Bob
can request permission from them. He will receive the
shares si from all i ¶ Q and, by the definition of the
SSS P, he would then be able to reconstruct k =
Keya(x) correctly and decrypt D(x). o

PROOF OF PROPERTY 2. We must show how to construct Al-
ice�, given a description of Alice. The key point will be
that if Alice and Alice� have different probabilities of
success in evaluating G, then we have a distinguisher
between the pseudorandom functions used and truly
random functions.

The machine Alice� runs a simulation of Alice. To
perform the simulation, Alice� first gives (the simu-
lated) Alice an “encrypted” database D = D(1), D(2),
¤, by choosing completely random values for it.

Then, for the first t rounds, Alice chooses xj and Aj ¶

$(4) and sends this request to Alice�. Alice� asks the

database for the contents yj of record xj. She then de-

rives kj = D(xj) yj, computes the shares { (,)}Π i j i Zk r
j∈

of this key using a random string r, and provides Al-
ice with the appropriate shares.

Then, the privileges of Alice� are revoked, as well
as the privileges of the simulated Alice. Alice� simu-

lates Alice a further , rounds. For each xj and set Zj ·
$(4) requested by the box Alice, Alice� chooses an
arbitrary value ′y j and computes ′ = ⊕ ′k D x yj j j() .

Then, Alice� computes the shares { (,)}Π i j i Zk r
j

′ ∈ of this

“key” using a random string r, and sends the appro-
priate parts to Alice. At the end of these , simulated
rounds, Alice outputs her guess of the function value
G, which Alice� outputs as the guess g�.

Suppose that the probability that Alice� evaluates G
correctly is significantly smaller than that of Alice. To
obtain a contradiction, consider a machine Alice�� that
operates in the same environment as Alice, modified
so the functions R

g
(x) and Key

a
(x) of protocol ACP are

replaced by truly random functions. We claim that the
distribution on the communication that Alice�� sees
and the distribution on the communication that the
simulated Alice sees are identical. This is true since
the encrypted database is completely random and, by
the definition of the SSS P, the shares on a set Zj ·
$(4) are independent of the secret. Therefore, the
probability that Alice� is correct on G is identical to
the probability that Alice�� is correct on G.

If the difference in the probabilities of success of
Alice and Alice�� is nonnegligible, then we have a
method of distinguishing the pseudorandom func-
tions (R

g
(x) and Key

a
(x)) from truly random functions,

which violates the security assumption of PRFs. o

REMARKS.

• � For the proof, we required that the database is en-
crypted by D(x) = y(x) Key

a
(x) (so the simulator

would be able to create a random “key” that will
decode D(x) into the random value y�). This forces
|Key

a
(x)| to be as long as |y(x)|, which could be

undesirable if the value is, say, a large photograph
file. It seems that using Key

a
(x) as the (short) seed

for some other PRF whose (long) output then en-
crypts the data would yield an equally secure
protocol (this is an adaptation of Krawczyk’s [27]
computational secret sharing). However, we do not
know how to prove the security of such a modified
protocol against an adaptive Alice who dynamically
chooses which set Zj to request shares from. (If Al-
ice’s choices are fixed in advance, then this scheme
can be proven to be secure and, furthermore, each
separate record is semantically secure.)

• � Instead of a quorum system, as in Definition 2.1,
we can use its standard generalization to a
read/write system, i.e., a pair of set systems (5, :)
such that R > W ¡ ® for any sets R ¶ 5 and W ¶ :
(cf., [21], [13]). With this formulation, the basic
paradigm is that to gain access a user must obtain
permission from a read-quorum R ¶ 5. To revoke
a user’s access, a write-quorum W ¶ : must be in-
formed. This allows more flexibility in the choice of
systems; however, there is a trade-off between the
availability of the read and write operations. For
simplicity, we choose to concentrate on regular
quorum systems.

3.4 Comparison with Alternative Solutions
Given that one desires to separate the access servers from
the data servers and given the idea of using quorums to
overcome the problem of outdated servers, protocol ACP is
not the only solution. The following is an alternative proto-
col for the access control problem (with two variants),
which is more naive and eliminates the need for quorum
secret sharing. Instead, the consistency is enforced by gate-
ways. Each such gateway holds all the keys to the database.

In the first variant, a user Bob requests the key from a
gateway. Then, the gateway requests authorization from the
access servers on Bob’s behalf (the gateway needs secure
channels of communication with the access servers). If a
quorum of access servers authorizes the gateway to honor
Bob’s request, the gateway sends the key to Bob, in one
piece. This can be done since the gateway knows all the
keys.

The second variant of this protocol works in the “Ker-
beros model” [46]. Here again there are gateways which
hold all the database keys. In addition, the access servers
have a signature scheme2 which the gateways can verify. In
this variant, Bob requests permission from the access servers
directly. Each access server that knows Bob to be authorized
replies with a signed permission token which Bob collects.
Bob then sends all the collected tokens to a gateway. The
gateway sends the requested key to Bob after it verifies the

2. A private-key-based authentication scheme can be used as well.

NAOR AND WOOL: ACCESS CONTROL AND SIGNATURES VIA QUORUM SECRET SHARING 915

signatures on the tokens and ensures that Bob indeed col-
lected permissions from a quorum of access servers.

In order not to impair the availability and load, many
gateways must be used. For example, Ω n3 8 gateways

are required to obtain an availability and a load roughly
equivalent to those of the Paths quorum system of Sec-
tion 6.1.2. Therefore, we see that these alternative solutions
require essentially the same amount of trust as protocol
ACP, i.e., many servers that hold all the keys.

In terms of the computations required, the gateway needs
to verify Ω n3 8 signatures, which could be a costly compu-

tation, especially if the permission tokens are signed using
public-key signatures. Instead, the efficient QSS schemes of
Section 6 require the servers to perform only a few XOR op-
erations for share generation. The key reconstruction, which
is equally efficient, is performed separately by each user,
thus, it does not restrict the capacity of the system.

Moreover, both gateway-based variants require an extra
round of communication, coordinated either by the gateway
or by the user. Finally, the introduction of another type of
servers (the gateways) to the system increases its complexity.

We conclude that both variants of this seemingly simple
protocol are, in fact, inferior to our protocol ACP. Protocol
ACP has a lower communication overhead, a similar (or
lower) computation complexity, requires less coordination,
and has less components. In fact, the alternatives are sim-
pler than our protocol only in that they eliminate the con-
cept of a QSS.

4 STRONGER NOTIONS OF SECURITY

4.1 Protecting Against Collaborative Attacks
The security guaranteed by Theorem 3.1 is against an attack
by a single user. However, as presented, the protocol is vul-
nerable to an attack by a set of two (or more) unauthorized
collaborating users as follows: Let V be a set of users un-
authorized to access item x. If each user v ¶ V obtains the

shares from a different set of servers Zv (none of which

contains a quorum), it may be the case that the set Zvv V∈U
does contain a quorum, so, by pooling their information, the
users in V can access the database item x.

To protect the data against such an attack, we use a
slightly modified protocol, ACP�, in which the shares are
generated depending both on the requested item x and the
requesting user’s ID (see [20]). Fig. 2 contains the descrip-
tion of the modified share generation. All the other parts of
the protocol remain the same and there are no additional
costs in communication or time.

THEOREM 4.1. If the access structure $ is a quorum access struc-
ture $(4), then ACP� has the following properties:

1)� If all the servers in a live quorum are informed that Bob
is authorized, then he can access item x.

2)�For any set V of users, if, for every user v ¶ V, some
quorum of servers Qv is informed that v is not author-
ized, then V collectively cannot learn any partial infor-
mation about the database in the sense defined in Sec-
tion 3.2.

PROOF SKETCH. The only difference from the proof of Theo-
rem 3.1 is noting that a set of shares { }si

v
i Zv∈ generated

by ACP� for any user v ¡ Alice and any set of servers

Zv not containing a quorum can be indistinguishably
generated by the simulating machine Alice�. o

4.2 Ensuring That the Shares Expire
In many applications, it is undesirable to let users accumu-
late shares over a long period of time. As an example, con-
sider how the accounting for such a database could work. A
user should be billed for every key she obtains, i.e., for
every data item x for which she received shares from a quo-
rum of servers. Therefore, every month (say) the logs from
all the servers need to be collected and tallied. If the logs
are then deleted, then an authorized user Alice can avoid
payment by choosing some quorum Q ¶ 4, requesting one
share for item x from some server i ¶ Q in January and re-
questing the rest of shares from Q\{i} in February. By this
she will not be logged as receiving a quorum of shares
during any billing month.

The solution to this problem is to generate the shares de-
pending on the item x and on the current time, in much the
same way as the user-ID is used in protocol ACP�. Note that
the servers must all use the same time value, otherwise the
key cannot be reconstructed. However, maintaining syn-
chronized clocks is a nontrivial and costly task (cf., [45])
which we prefer to avoid. Instead, in our modified protocol
ACP�� (see Fig. 3) the user attaches a timestamp t to the re-
quest for item x, which is then used by the servers in the
share generation. This might allow a cheating user to use
fake timestamps, so, on receiving such a request, the servers
verify that the timestamp is “reasonable” before using it.
For this purpose, we assume that the maximal drift be-
tween any legitimate user’s clock and a server’s clock or
between any two servers’ clocks is at most D (which in-
cludes the time delays caused by the communication net-
work). This D may be a fairly large value (e.g., three hours),
as long as it is significantly smaller than the time period
between accounting log deletions.

Fig. 2. Protocol ACP�. Steps not shown are as in protocol ACP.

916 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 9, SEPTEMBER 1998

Clearly, Theorem 3.1 holds for protocol ACP��. The fol-
lowing proposition, which we state without proof, shows
its additional security guarantee. The statement is in terms
of an imaginary global clock that works at the rate of the
slowest server’s local clock (we are not assuming that all
the clocks have the same rate).

PROPOSITION 4.2 Assume that Alice sends a request (t, x) to
server i, using protocol ACP��, which is received at global
time t and found to be legitimate. Then, any request (t, x)
sent by Alice that is received by any server j at global time
> t + 3D will be refused.

REMARK. A request by Alice for the same item x but with a
different timestamp t�¡ t may be honored later if t� is
legitimate. However, as in Theorem 4.1, shares gener-
ated for such a request cannot be combined with
shares generated for request (t, x).

5 SIGNATURES VIA QUORUM SECRET SHARING

In this section, we show that an SSS P that realizes a quo-
rum access structure $(4) can be used to build a distrib-
uted signature scheme. The model of the user interacting
with the servers is identical to that of Section 3, except that
there are no data servers. Let us stress that, unlike [11], the
faults we allow in the servers are all benign and, therefore,
our scheme has a high level of trust in them. A server in our
scheme that “turns traitor” can generate a complete signa-
ture for any message.

There are signature servers which form the universe U.
Each server holds a list of all the users it knows to be cur-
rently authorized to get signatures and, perhaps, some
more information regarding the types of messages which
should be signed. Again, it may be the case that a server’s
authorization list is outdated. Our requirement is that if all
the servers in some quorum Q ¶ 4 are informed that Alice is
no longer authorized to get a signature on message m, then,
no matter from which set of servers Alice chooses to request
a signature, she will not be able to obtain or forge it. This
requirement leads naturally to our basic paradigm:

To obtain a signature, a user must obtain permission
from a quorum of servers.

The intersection property of a quorum system then ensures
that, in any set A ¶ $(4) (which can collectively sign the
message m), at least one server is informed that the request
is not legitimate.

Our protocol can be based on any signature scheme
without altering the security properties of the scheme. Spe-
cifically, consider the “existentially unforgeable against
adaptive chosen message attacks” definition of security, as
defined by [18]. Let Sigh(m) be a signature scheme obeying
this requirement.3 Suppose that a user Alice was authorized
to get signatures for a while and, then, this authorization
was revoked. Alice should not be able to generate a signa-
ture on any message for which it has not received a signa-
ture prior to revocation.

The idea of the distributed signature protocol is to
imagine a database where at location m the value Sigh(m) is
stored and apply protocol ACP to that virtual database. The
protocol QSig of Fig. 4 shows in detail how to transform an
SSS into a distributed signature scheme.

THEOREM 5.1. If the access structure $ is a quorum access struc-
ture $(4), then QSig has the following properties:

1)� If all the servers in a live quorum are informed that
Bob’s message m is legitimate, then he can get a signa-
ture on m.

2)� If a quorum of servers is informed that Alice’s message
m� is not legitimate, then she cannot generate a signa-
ture for m� unless she obtained the signature legally be-
forehand.

The proof is very similar to the proof of Theorem 3.1.

6 EFFICIENT QUORUM SECRET SHARING SCHEMES

In this section, we show how to build quorum secret shar-
ing schemes from several known quorum systems, with
different availability and load properties. All the schemes
we present are extremely efficient, with blowup factors of at
most two and linear time complexities both for the share
generation and secret reconstruction operations.

3. Note that, using [15], we can convert any signature scheme into one
where each message has a unique signature.

Fig. 3. Protocol ACP��. Steps not shown are as in protocol ACP.

NAOR AND WOOL: ACCESS CONTROL AND SIGNATURES VIA QUORUM SECRET SHARING 917

6.1 The Paths System
6.1.1 The System
The Paths system [36] is based on paths in the following
grid.

DEFINITION 6.1. Let G(d) be the planar grid with vertex set {(v1, v2) :

0 � v1 � d + 1, 0 � v2 � d} and edge set consisting of all

edges joining neighboring vertices except those joining

vertices u, v with either u1 = v1 = 0 or u1 = v1 = d + 1.
Let G*(d) be the dual of G(d) with vertex set

v v d v d+ ≤ ≤ − ≤ ≤1
2

1
2 1 20 1, : ,2 7> C and edge set con-

sisting of all edges joining neighboring vertices except
those joining vertices u, v with either u v2 2

1
2= = − or

u v d2 2
1
2= = + .

See Fig. 5 for a drawing of G(d) and G*(d). Note that every
edge e ¶ G(d) has a dual edge e* ¶ G*(d) which crosses it.
We call such e and e* a dual pair of edges.

DEFINITION 6.2. We identify an element in the Paths quorum
system with a dual pair of edges e ¶ G(d) and e* ¶ G*(d).
A quorum in the system is the union of (elements identified
with) the edges of a left-right path in G(d) and the edges of
a top-bottom path in G*(d).

In [36], it is shown that the Paths system has an optimal
load of /(Paths) = O n13 8 . It also achieves the highest

availability possible for such a load, namely

F np(expPaths) = −Ω3 84 9 . The smallest quorums in the

Paths system have cardinality O n3 8 .

6.1.2 The Scheme Paths-SSS
The scheme is based on the construction of Rudich for s - t
connectivity that was generalized in [26] for span pro-
grams. The system elements in the Paths system are the
edges of the grid; however, we first assign intermediate val-
ues to the vertices, from which we compute the shares.

The basic secret unit s is a single bit. The secret is first
randomly split into four bits l, r, t and b, such that l r t
 b = s.

We describe how the l and r bits are shared by the left-

right paths. Every vertex v is assigned a bit xv. The vertices

on the left boundary of the grid all get xv � l and those on

the right boundary get xv � r. For every other v, the bit xv is
chosen independently at random. An edge e = (u, v) is as-
signed a left-right share bit, s x xr

lr
v u= ⊕ .

This procedure is now repeated on the dual grid, with
bits t and b assigned to the top and bottom vertices, respec-
tively, and random values assigned to all the other vertices.

Fig. 4. The quorum signature scheme QSig.

Fig. 5. The grids G(3) (full lines) and G*(3) (dotted lines).

918 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 9, SEPTEMBER 1998

The dual edges e* are assigned shares se
tb
* analogously. Fi-

nally, the share of a system element identified with the dual
pair of edges e, e* is both the se

lr
* and se

tb
* bits.

PROPOSITION 6.3. Paths-SSS is a secret sharing scheme realizing the
quorum access structure $(Paths), with b(Paths-SSS) = 2.

In order to prove Proposition 6.3, we need to show the
reconstruction function for a quorum, and the independ-
ence of shares of a nonquorum from the secret. We do this
via the following two lemmas.

LEMMA 6.4. A quorum Q in the Paths system can reconstruct the
secret bit s from the shares {se}e¶Q generated by Paths-SSS.

PROOF. By the definition of the quorums, there exists a set
F µ Q such that the edges e ¶ F form a left-right path,
and a set H µ Q forming a top-bottom path on the
dual grid. We claim that

s s s
e F

e
lr

e H
e
tb= ⊕��

�
� ⊕ ⊕��

�
�∈ ∈* * .

This is since, in the first XOR, the random values as-
signed to intermediate vertices in G(d) cancel out and
only l r remains and similarly for t b on the dual
grid. o

LEMMA 6.5. A set Z not containing a quorum can reveal no par-
tial information of the secret s from the Paths-SSS shares
{se}e¶Z.

PROOF. Assume w.l.o.g. that Z contains a top-bottom path,
i.e., the value t b is known to the adversary (this
only helps the adversary). Consider a set of shares z =

{se}e¶Z. Since these are legitimate shares, they have an
extension to a full set of shares. Specifically, there exist

bits xv and a secret l r which define shares s = {se}e¶U

such that s encodes l r by the Paths-SSS scheme, and

s|Z = z. We show that, for every such s, there exists a
different set of shares s� which encodes the secret

l r⊕ and for which s�|Z = z as well.
Since Z does not have a quorum, it does not con-

tain any left-right path. Therefore, we can partition
the vertices into two disjoint sets V and W such that V
contains all the vertices that have a path to the left
boundary of G(d) in Z, and W contains the vertices
with a path to the right. Note that there is no edge in
Z connecting a vertex v ¶ V with w ¶ W.

We now construct the corresponding shares
′ = ′ ∈σ { }se e U , as follows: Every vertex v is assigned a

bit yv. Set yv = xv for all the vertices v ¶ V, and set
y xw w= for all w ¶ W (including the right boundary

vertices which have xw = r). The shares are computed
as before: For every edge e = (v, w), regardless of
whether e ¶ Z or not, set ′ = ⊕s y ye v w .

Now, XORing the shares ′se on a left-right path would

compute l r⊕ , since we flipped the r bit. However, s �|Z

= s|Z = z. This is since the endpoints of an edge e ¶ Z
can be either both in V or both in W, so either ′se is not
touched (if both endpoints are in V) or remains the same
after flipping the bits at both endpoints.

This shows that, for every set of shares z on Z,
there is a one-to-one correspondence between an ex-
tension s encoding l r and an extension s � encod-
ing l r⊕ . Hence, Pr Prζ ζl r l r⊕ = ⊕3 8 3 8 . o

6.2 The HQS and Tree Systems
6.2.1 The Systems
The hierarchical quorum system (HQS) is due to [28]. In
this system, the elements are the leaves of a complete ter-
nary tree, in which the internal nodes are two-of-three ma-
jority gates.

In [36], the availability and load of the HQS are ana-

lyzed. It is shown that /(HQS) = n-0.37. The HQS has the

highest availability possible for such load, namely Fp(HQS) �

exp(-W(n0.63)) when p < 1
3 and Fp(HQS) � n-a(p) when p < 1

2

(for some function a independent of n). The quorums in the

HQS are all of size n0.63.
The Tree quorum system of [1] can also be described as a

ternary tree, with internal nodes which are two-of-three
majority gates. However, only two input lines of each inter-
nal majority gate are connected to lower level gates; the
middle input line is directly labeled with a system element.
Note that the standard description of this quorum system is
via a binary tree; the description given here is from [23].

The smallest quorums in the Tree are of size log n. In
[37], [36], it is shown that the Tree has optimal availability
and load among the quorum systems with logarithmic size
quorums, namely Fp(Tree) = O(n-e) for some constant e(p) > 0,
and

/ Tree0 5 =
�
��

�
��

O
n

1
log .

6.2.2 The Schemes HQS-SSS and Tree-SSS
The building block for both the Tree and HQS systems is
the two-of-three majority gate, which is a threshold func-
tion. As such, it has an SSS, which is Shamir’s scheme [43].
However, a two-of-three majority gate is a very simple case
of the general scheme. The underlying field is the GF(4)
field, i.e., the basic secret unit is a pair of bits. The random
polynomials of the scheme are simply lines (of degree 1).
Therefore, both the share generation and secret reconstruc-
tion require only the few instructions in GF(4) arithmetic
needed for linear interpolation. Applying this scheme re-
cursively in the natural way, from the root of the tree to-
ward the leaves, yields secret sharing schemes for both the
HQS and Tree systems.

Note that, in each internal majority gate, the three shares
generated from a secret value s (a pair of bits) are of two
bits each. Since, in both the Tree and HQS systems, each
element is identified with a single input line, the shares in
the full HQS or Tree scheme are also of two bits each, so
there is no blowup, and b(HQS-SSS) = b(Tree-SSS) = 1.

REMARK. The above scheme works for any quorum system
having a description in the form of a tree of two-of-
three majority gates, with the system elements label-
ing the input lines. In [34], [23], [29], it is shown that

NAOR AND WOOL: ACCESS CONTROL AND SIGNATURES VIA QUORUM SECRET SHARING 919

any maximal quorum system has such a description.
However, no bounds are shown for the number of
times that an element can appear on input lines, so,
using our scheme on such a description could poten-
tially cause a high blowup.

6.3 The Crumbling Wall System
6.3.1 The System
The Crumbling Walls (CW) are a family of quorum sys-
tems due to [39]. This family includes, among others, the
CWlog system (see Fig. 6), the grid of [8], and the trian-
gular wall of [30].

The elements of a wall are logically arranged in rows of
varying widths. A quorum in a wall is the union of one full row
and a representative from every row below the full row. Here,
we concentrate on walls in which the top row has width n1 = 1
and every other row has width ni � 2. In [38], it is shown that
such walls are nondominated coteries (recall Definition 2.4).

In the CWlog system, the width of row i is ni = Ólg 2iã. In
[38], it is shown that the CWlog system is essentially the
only high availability wall. It has small quorums, of size
O(log n), and optimal availability and load among the quo-
rum systems with logarithmic size quorums, namely
Fp(CWlog) = O(n-e) for some constant e(p) > 0, and

/(CWlog) = O(1/log n).

6.3.2 The Scheme CW-SSS
Consider a wall CW of d rows, with row 1 having width

n1 = 1 and ni � 2 for all i � 2. The basic secret unit s is a single
bit. This secret s is first randomly split into d bits such that

v1 L vd = s. Using these vi bits, we can define their par-

tial parities, ti = v1 L vi-1, and t1 = 0. For a row i, split ti

randomly into ni bits hi
j such that h h ti i

n
i

i1 ⊕ ⊕ =L . The

share si
j of the jth element in row i is two bits: vi and hi

j .

LEMMA 6.6. A quorum Q in the wall can reconstruct the secret

bit s from the shares { }si
j generated by CW-SSS.

PROOF. By definition, the quorum Q contains a full row i
and a representative in each row k > i. We claim that

s h v
j

n

i
j

k i
k

i

= ⊕
�
��

�
��

⊕ ⊕��
�
�= ≥1

. (*)

The first XOR computes the value ti of row i, which is
the partial parity of vks above row i, so the whole ex-
pression is precisely the parity of all vks. o

LEMMA 6.7. A set Z not containing a quorum can reveal no par-
tial information of the secret s from the CW-SSS shares.

PROOF. Let s be a set of shares encoding the secret bit s. We
show a corresponding set of shares s � such that s|Z =
s �|Z, but s � encodes the bit s .

As noted above, CW is a nondominated coterie.
Since Z · $(CW), then, by Lemma 2.5, it follows that
U\Z ¶ $(CW). Therefore, there exists a quorum Q µ
U\Z. By definition, Q contains all the elements of
some row ,, and a representative in every row i > ,.

To obtain the shares s �, we flip the v, values for all
the elements in row , (in the quorum Q), and flip the
hi

j values for every representative element of Q which
is in row i > ,. This procedure generates correct shares
for the secret s , since:

• � A quorum R based on a full row i � , necessarily
contains an element of row , (or, possibly, the
whole row ,). So, the flipped value v, enters the
computation in the second XOR in (*) and every
other value is unaffected, hence, the shares of R
construct the secret s .

• � A quorum T based on a full row i > , contains a
representative element of Q in row i, say element j
in this row. Then, the flipped value of this hi

j will
appear in the first XOR in (*) and, again, the shares
will reconstruct s .

However, note that the shares on the set Z in s are
identical to those in s �, since changes were only made
at elements of the quorum Q, which is disjoint from Z.
Therefore, for every set of shares z on Z, we have
shown a one-to-one correspondence between an ex-
tension s encoding s and an extension s � encoding s .
Hence, PR s sζ ζ3 8 3 8= Pr , and we are done. o

PROPOSITION 6.8. For any crumbling wall CW, CW-SSS is a

secret sharing scheme realizing the quorum access struc-

ture $(CW), with b(CW-SSS) = 2.

6.4 The AndOr System
6.4.1 The System
The AndOr system appears in [36] and applies the analysis
of AND/OR trees of [48]. Consider a complete rooted bi-
nary tree of height h and identify the n = 2h leaves of the
tree with the system elements.

The AndOr system is the conjunction of two monotone
Boolean functions, defined by assigning AND and OR gates

Fig. 6. A CWlog with n = 49 elements and d = 15 rows, with one quo-
rum shaded.

920 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 9, SEPTEMBER 1998

to the internal nodes of the tree, over the same inputs. The
gates alternate between AND and OR, level by level. The
only difference between the two functions is that one func-
tion has an AND gate at the root while the other has an OR
gate there.

In [36], it is shown that this indeed is a quorum system,
with quorums of size O n3 8 . It has an optimal load of

/(AndOr) = O n13 8 . The availability is as high as possi-

ble, namely F np AndOr0 5 3 84 9≤ −exp Ω when p < 1
4 , and

F np ≤ −exp .Ω 0 194 94 9 if p n≤ − −0 0 19.38 .Ω4 9 .

6.4.2 The Scheme AndOr-SSS
Since the AndOr system has a very simple description in
terms of Boolean functions, we can apply the scheme of
[4]. The basic secret unit is a single bit. A secret s is (re-
cursively) split over an OR gate by assigning each input
a copy of s, and over an AND gate by assigning the in-
puts with random values s1, s2 such that s1 s2 = s. In [4],
it is proven that this is an SSS for any monotone Boolean
function.

In the formula for the AndOr system, each element ap-
pears on two input gates (one in each alternating tree), so
each element will end with a share of two bits from the
original secret bit s, hence, the blowup is b(AndOr-SSS) = 2.

7 TOWARD DECREASING THE TRUST

7.1 A General Approach
First, we present a simple solution to the access control
problem in which a coalition of servers that does not con-
tain a quorum cannot grant access to any data item x. This
is a general solution, that works for any quorum access
structure. The protocol relies on additional information at-
tached to the database by the dealer, the all-knowing entity
that prepares the database.

We assume that every access server i has a PRF Ei, and
that the dealer knows all the private seeds of these PRFs.
However, the servers do not have the encryption PRF,
Keya(x). The protocol also uses an SSS P for a quorum ac-
cess structure $ = $(4).

When the dealer writes data item x into the database, en-

crypted by k = Keya(x), it also creates all n shares

s k ri i i

n
=

=
Π ,1 6< A 1

, using a random (or private pseudoran-

dom) string r. Then, the dealer generates the values Fi(x) =

Ei(x) si using the servers’ PRFs, and attaches the set of

F xi i

n0 5< A =1
 to the data item x.

The access server’s role is extremely simple. If a user Bob
is authorized to access item x, server i sends back the value
Ei(x). Once Bob collects replies from a set of servers A ¶ $
containing a quorum, he can decode the shares si = Fi(x)
Ei(x) for all i ¶ A, since the values Fi(x) are available to him.
Then, he obtains the key using the reconstruction function
for the set A, k = hA({si}i¶A).

It is not hard to see that this protocol has minimal trust
in the servers. In fact, any set Z · $(4) of malicious servers
can learn nothing about the contents of the database in the

sense of Section 3.2. However, the protocol has several
drawbacks:

• � The size of each data item is increased by n¿ |Keya(x)|
bits. This makes the protocol ridiculous if we make
the assumptions of protocol ACP, namely, that the key
is as long as the data item itself, since the database
size increases by a factor of n + 1. However, if the key
is much shorter than the data (cf. [27]), then this over-
head can be tolerated.

• � The protocol is not flexible in that it requires the
number of servers n and their private functions Ei to
be fixed when the database is created. In contrast, in
our approach, a data item is always encrypted with
the same key. Thus, if the quorum system is changed,
there is no need to modify the data and it suffices to
update the access servers.

• � The protocol cannot be used as a group signature
scheme, since this would require the dealer to pre-
compute and store every possible signature in advance.

• � As presented, the scheme is vulnerable to the attacks
mentioned in Section 4, namely collaborating users
can access the data and keys do not expire. The solu-
tions we suggested there are not applicable since the
servers cannot generate the shares “on-the-fly” (only
the dealer knows the random string r). This can be
overcome by running protocol ACP� (say) in parallel,
using a separate key k�. The content y(x) of item x
would then be encrypted by D(x) = y(x) k k�.

7.2 The Case of the Paths System
Here, we construct another access control protocol, based
specifically on the scheme Paths-SSS of Section 6.1. This
protocol has the same security guarantee as that of the gen-
eral ACP protocol (Theorem 3.1). However, it needs less
trust and can tolerate some malicious servers. More pre-
cisely, there are two classes of servers: the class T of trusted

servers (T n< 4) and the class of regular servers R = U\T.
The security is compromised only if at least two trusted
servers “turn traitor” (in the worst possible choice of trai-
tors). Any number of regular servers can turn traitor with-
out compromising the security.

Instead of the PRF Keya(x) used in ACP, we have four
distinguished PRFs, denoted by Kl(x), Kr(x), Kt(x), and Kb(x).
The content y(x) of item x is encrypted by D(x) = y(x)
Kl(x) Kr(x) Kt(x) Kb(x). We place a copy of Kl at each
vertex on the left boundary of the grid G(d) and a copy of Kr on
the right boundary (see Fig. 5), and, similarly, Kt and Kb at the
top and bottom vertices of G*(d). At each internal grid vertex
v ¶ G(d) or v ¶ G*(d), we place a different PRF Kv(x), which is
unique to that vertex. Note that the PRFs placed at the internal
vertices play no part in the encryption of the database.

Recall that the elements (servers) are identified with dual
pairs of grid edges. Therefore, a server identified with the

dual edges e = (v1, v2) and e* = (u1, u2) is given the four

PRFs that were placed at the vertices v1, v2, u1, u2. The
share that such a server generates for item x is comprised
of a left-right share, s K x K xe

lr
v v= ⊕

1 2
() () and a top-bottom

share, s K x K xe
tb

u u* () ()= ⊕
1 2

.

NAOR AND WOOL: ACCESS CONTROL AND SIGNATURES VIA QUORUM SECRET SHARING 921

As in Proposition 6.3, if e1, ¤, ep is a left-right path in

G(d), then s s K x K xe
lr

e
lr

l rp1
⊕ ⊕ = ⊕L () () and, similarly, on

the dual grid. Therefore, by collecting the shares from a
quorum of servers, the user can reconstruct the key and
access the data item.

A moment’s reflection shows that Theorem 3.1 holds for
this protocol as well. However, here we have the stronger
guarantee of the following proposition.

PROPOSITION 7.1. Let T1, T2, T3, T4 be the (nondisjoint) sets of
servers whose corresponding edges touch the left, right, top,
and bottom boundaries of the grid, respectively. Then, any
set of traitor servers Z for which Z > Tj = ® (for some 1 � j
� 4) can learn nothing about the contents of the database in
the sense of Section 3.2.

Call T Tjj
=

≤ ≤1 4U the set of trusted servers, and call R = U\T

the set of regular servers. Clearly, T n< 4 . If Z is a coali-
tion of traitor servers, then some immediate corollaries of
Proposition 7.1 are:

• � If Z µ R, then Z can learn nothing of the database.
• � If |Z| = 1, then Z can learn nothing of the database.
• � If |Z| = 2 and Z is not a pair of diagonally opposite

corners, then Z can learn nothing of the database.
• � If all four corners are not traitors and |Z| < 4, then Z

can learn nothing of the database.

8 OPEN PROBLEMS

This work suggests several lines of research, which we out-
line below.

• � Make the protocols work with less trust. Ideally, as-
sume that a subset of the access servers are faulty and
pool together all their information. Find an efficient
scheme to protect the information so that a faulty set
of the access servers that does not contain a quorum
can learn nothing about the database, but from a set
of the servers that includes a quorum it is easy to ex-
tract a key for decrypting any database item x.4 Note
that the availability measures the probability that the
faulty processors contain a quorum system (assuming
that each processor becomes faulty independently
with probability p).

• � We have found secret sharing schemes for many in-
teresting quorum systems (falling into the category of
span programs), however, there are some for which it
is not clear whether a good scheme exists, for example
the projective plane [32]. Find secret sharing schemes
for these quorum systems or, better, derive a general
construction.

• � In the remarks following the proof of Theorem 3.1, we
pointed out a delicate problem: What happens when
there are many large files encrypted on, say, a CD-ROM,
and keys for decrypting them may be obtained for a
fee. After some keys have been obtained, how secure
are the remaining files? If the keys encrypting the files

4. We can show that any quorum system has such a scheme, but the key
sizes are, in general, exponential in the number of elements.

are chosen independently, then, at first, it seems obvi-
ous that nothing can be learned about the other files.
However, note that the files are opened at the user’s
request after seeing their encrypted versions. To the
best of our knowledge, the common definition of se-
curity of encryption (semantic, see [16], [31]) does not
allow us to conclude the following: If the keys for de-
crypting 50 out of the 100 files (say) are given, then
nothing can be learned about the remaining 50 files.
Find either a way of showing that the security of the
remaining files does follow from the semantic security
of the encryption scheme, or find an encryption
scheme for which you can prove the security with
keys which are significantly shorter than the files
themselves.

ACKNOWLEDGMENTS

We are very grateful to Hugo Krawczyk for his numerous
comments on an early version of this paper. We thank Don
Coppersmith and an anonymous referee, whose remarks
allowed us to improve our presentation.

An extended abstract of this paper appeared in the Pro-
ceedings of the Third ACM Conference on Computer and
Communication Security, 1996.

Moni Naor is the Incumbent of the Morris and Rose
Goldman Career Development Chair, supported by a grant
from the Israel Science Foundation administered by the
Israeli Academy of Sciences and Humanities and BSF grant
94-00032. Avishai Wool’s work was completed at the De-
partment of Applied Mathematics and Computer Science,
The Weizmann Institute, Rehovot, Israel.

REFERENCES

[1]� D. Agrawal and A. El-Abbadi, “An Efficient and Fault-Tolerant
Solution for Distributed Mutual Exclusion,” ACM Trans. Computer
Systems, vol. 9, no. 1, pp. 1-20, 1991.

[2]� D. Beaver and A. Wool, “Quorum-Based Secure Multi-Party
Computation,” Proc. Advances in Cryptology—EUROCRYPT ’98, K.
Nyberg, ed., pp. 375-390, Espoo, Finland, May 1998.

[3]� A. Beimel and B. Chor, “Universally Ideal Secret Sharing
Schemes,” Proc. Advances in Cryptology—CRYPTO ’92, pp. 183-195,
1992.

[4]� J. Benaloh and J. Leichter, “Generalized Secret Sharing and
Monotone Functions,” Proc. Advances in Cryptology—CRYPTO ’88,
pp. 27-36, 1988.

[5]� G.R. Blakley, “Safeguarding Cryptographic Keys,” Proc. AFIPS,
Nat’l Computer Conf., vol. 48, pp. 313-317, 1979.

[6]� C. Blundo, A. De Santis, L. Gargano, and U. Vaccaro, “On the
Information Rate of Secret Sharing Schemes,” Proc. Advances in
Cryptology—CRYPTO ’92, pp. 148-167, 1992.

[7]� E.F. Brickell and D.M. Davenport, “On the Classification of Ideal
Secret Sharing Schemes,” Proc. Advances in Cryptology—CRYPTO
’89, pp. 278-285, 1990.

[8]� S.Y. Cheung, M.H. Ammar, and M. Ahamad, “The Grid Protocol:
A High Performance Scheme for Maintaining Replicated Data,”
IEEE Trans. Knowledge and Data Eng., vol. 4, no. 6, pp. 582-592,
1992.

[9]� S.B. Davidson, H. Garcia-Molina, and D. Skeen, “Consistency in
Partitioned Networks,” ACM Computing Surveys, vol. 17, no. 3,
pp. 341-370, 1985.

[10]� A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung, “How to Share
a Function Securely,” Proc. 26th ACM Symp. Theory of Computing
(STOC), pp. 522-533, 1994.

922 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 9, SEPTEMBER 1998

[11]� Y. Desmedt and Y. Frankel, “Shared Generation of Authenticators and
Signatures,” Proc. Advances in Cryptology—CRYPTO ’91, pp. 457-469,
1991.

[12]� C. Dwork and M. Naor, “An Efficient Existentially Unforgeable
Signature Scheme and Its Applications,” Advances in Cryptology—
CRYPTO ’94, Y.G. Desmedt, ed., pp. 234-246, 1994.

[13]� A. Fu, “Enhancing Concurrency and Availability for Database Sys-
tems,” PhD thesis, Simon Fraser Univ., Burnaby, B.C., Canada,
1990.

[14]� H. Garcia-Molina and D. Barbara, “How to Assign Votes in a Dis-
tributed System,” J. ACM, vol. 32, no. 4, pp. 841-860, 1985.

[15]� O. Goldreich, “Two Remarks Concerning the Goldwasser-Micali-
Rivest Signature Scheme,” Advances in Cryptology—CRYPTO ’86,
A.M. Odlyzko, ed., pp. 104-110, 1987.

[16]� O. Goldreich, “Foundations of Cryptography (Fragments of a Book),”
Electronic Colloquium on Computational Complexity, 1995. Electronic
Publication: http://www.eccc.uni-trier.de/eccc/info/ECCC-Books/eccc-books.html.

[17]� O. Goldreich, S. Goldwasser, and S. Micali, “How to Construct
Random Functions,” J. ACM, vol. 33, pp. 792-807, 1986.

[18]� S. Goldwasser, S. Micali, and R. Rivest, “A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks,” SIAM J.
Computing, vol. 17, no. 2, 1988.

[19]� L. Gong, “Increasing Availability and Security of an Authentica-
tion Service,” IEEE J. Selected Areas Comm., vol. 11, no. 5, pp. 657-
662, 1993.

[20]� L. Gong and P. Syverson, “Fail-Stop Protocols: An Approach to
Designing Secure Protocols,” Proc. Fifth Conf. Dependable Comput-
ing for Critical Applications (DCCA), pp. 44-55, Sept. 1995.

[21]� M.P. Herlihy, “Replication Methods for Abstract Data Types,”
PhD thesis, Massachusetts Inst. of Technology, MIT/LCS/TR-319,
1984.

[22]� M.P. Herlihy and J.D. Tygar, “How to Make Replicated Data Se-
cure,” Proc. Advances in Cryptology—CRYPTO ’87, pp. 379-391,
1988.

[23]� T. Ibaraki and T. Kameda, “A Theory of Coteries: Mutual Exclu-
sion in Distributed Systems,” IEEE Trans. Parallel and Distributed
Systems, vol. 4, no. 7, pp. 779-794, July 1993.

[24]� M. Ito, A. Saito, and T. Nishizeki, “Secret Sharing Schemes Real-
izing General Access Structure,” Proc. IEEE Global Telecomm. Conf.
(Globecom ’87), pp. 99-102, 1987.

[25]� S. Jajodia and D. Mutchler, “Dynamic Voting Algorithms for
Maintaining the Consistency of a Replicated Database,” ACM
Trans. Database Systems, vol. 15, no. 2, pp. 230-280, 1990.

[26]� M. Karchmer and A. Wigderson, “On Span Programs,” Proc.
Structures in Complexity Theory, pp. 102-111, 1993.

[27]� H. Krawczyk, “Secret Sharing Made Short,” Proc. Advances in
Cryptology—CRYPTO ’93, pp. 136-146, 1994.

[28]� A. Kumar, “Hierarchical Quorum Consensus: A New Algorithm
for Managing Replicated Data,” IEEE Trans. Computers, vol. 40, no. 9,
pp. 996-1,004, Sept. 1991.

[29]� D.E. Loeb, “The Fundamental Theorem of Voting Schemes” J.
Combinational Theory, Series A, vol. 7, no. 1, pp. 120-129, 1996.

[30]� L. Lovász, “Coverings and Colorings of Hypergraphs,” Proc.
Fourth Southeastern Conf. Combinatorics, Graph Theory, and Com-
puting, pp. 3-12, 1973.

[31]� M. Luby, Pseudorandomness and Cryptographic Applications.
Princeton, N.J.:, Princeton Univ. Press, 1996.

[32]� M. Maekawa, “A n Algorithm for Mutual Exclusion in Decentral-
ized Systems,” ACM Trans. Computer Systems, vol. 3, no. 2, pp. 145-
159, 1985.

[33]� S. Micali and R. Sidney, “A Simple Method for Generating and
Sharing Pseudo-Random Functions for Applications to Clipper-
Like Key Escrow Systems,” Advances in Cryptology—CRYPTO ’95,
D. Coppersmith, ed., pp. 185-196, 1995.

[34]� B. Monjardet, “Charactérisation des Éléments Ipsoduaux du Treillis
Distributif Libre,” C.R. Academie de Science Paris, série A, vol. 274,
pp. 12-15, 1972.

[35]� S.J. Mullender and P.M.B. Vitányi, “Distributed Match-Making,”
Algorithmica, vol. 3, pp. 367-391, 1988.

[36]� M. Naor and A. Wool, “The Load, Capacity and Availability of
Quorum Systems,” SIAM J. Computing, vol. 27, no. 2, pp. 423-447,
Apr. 1998.

[37]� D. Peleg and A. Wool, “The Availability of Quorum Systems,”
Information and Computation, vol. 123, no. 2, pp. 210-223, 1995.

[38]� D. Peleg and A. Wool, “The Availability of Crumbling Wall Quo-
rum Systems,” Discrete Applied Math., vol. 74, no. 1, pp. 69-83, Apr.
1997.

[39]� D. Peleg and A. Wool, “Crumbling Walls: A Class of Practical and
Efficient Quorum Systems,” Distributed Computing, vol. 10, no. 2,
pp. 87-98, 1997.

[40]� M. Raynal, Algorithms for Mutual Exclusion. MIT Press, 1986.
[41]� M.K. Reiter and K.P. Birman, “How to Securely Replicate Serv-

ices,” ACM Trans. Programming Language Systems, vol. 16, no. 3,
pp. 986-1,009, 1994.

[42]� F.B. Schneider, “What Good Are Models and What Models Are
Good?” Distributed Systems, S. Mullender, ed., pp. 17-26. ACM
Press/Addison-Wesley, 1993.

[43]� A. Shamir, “How to Share a Secret,” Comm. ACM, vol. 22, no. 11,
pp. 612-613, 1979.

[44]� G.J. Simmons, “An Introduction to Shared Secret and/or Shared
Control Schemes and Their Application,” Contemporary Cryptol-
ogy, The Science of Information Integrity, pp. 441-497. IEEE Press,
1992.

[45]� B. Simons, J.L. Welch, and N. Lynch, “An Overview of Clock Syn-
chronization,” Fault-Tolerant Distributed Computing, B. Simons and
A. Spector, eds. Springer-Verlag, 1990.

[46]� J. Steiner, B.C. Neuman, and J.L. Schiller, “Kerberos: An Authenti-
cation Service for Open Networks,” Proc. Winter USENIX Conf.,
Dallas, Tex., 1988.

[47]� R.H. Thomas, “A Majority Consensus Approach to Concurrency
Control for Multiple Copy Databases,” ACM Trans. Database Sys-
tems, vol. 4, no. 2, pp. 180-209, 1979.

[48]� L.G. Valiant, “Short Monotone Formulae for the Majority Func-
tion,” J. Algorithms, vol. 5, pp. 363-366, 1984.

[49]� T.W. Yan and H. Garcia-Molina, “Distributed Selective Dissemi-
nation of Information,” Proc. Third Int’l Conf. Parallel and Distrib-
uted Information Systems, pp. 89-98, 1994.

Moni Naor obtained his BA (summa cum laude)
from the Technion-Israel Institute of Technology
in 1985 and his PhD from the University of Cali-
fornia at Berkeley in 1989, both in computer
science. After spending four years at the IBM
Almaden Research Center, he joined the de-
partment of Applied Math and Computer Science
of the Weizmann Institute of Science, Rehovot,
Israel, where he is currently an associate profes-
sor. His research interests include cryptography
and computer security, randomness in computa-

tion and concrete complexity. He is on the editorial board of the Journal
of Cryptology and Siam Journal on Discrete Math and has recently
served on the program committees of Crypto ’97, Computational Com-
plexity ’98, and Financial Crypto ’98.

Avishai Wool received a BSc in mathematics
and computer science from the Tel Aviv Univer-
sity, Israel, in 1989, and an MSc and PhD in
computer science from the Weizmann Institute of
Science, Israel, in 1992 and 1996, respectively.
He then joined Bell Laboratories, where he is a
member of technical staff. His research interests
include distributed computing, quorum systems,
security, and fast communication networks.

