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Abstract

Cloud computing has become the focus of attention in the computing industry. However, security concerns still

impede the widespread adoption of this technology. Most enterprises are particularly worried about the lack of

control over their outsourced data, since the authentication and authorization systems of Cloud providers are generic

and they cannot be easily adapted to the requirements of each individual enterprise. An adaptation process requires

the creation of complex protocols, often leading to security problems and “lock-in” conditions. In this paper we

present the design of a lightweight access control solution that overcomes these problems. With our solution access

control is offered as a service by a third trusted party, the Access Control Provider. Access control as a service enhances

end-user privacy, eliminates the need for developing complex adaptation protocols, and offers data owners flexibility

to switch among Cloud providers, or to use multiple, different Cloud providers concurrently. As a proof of concept, we

have implemented and incorporated our solution in the popular open-source Cloud stack OpenStack. Moreover, we

have designed and implemented a Web application that enables the incorporation of our solution into Google Drive.
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1 Introduction
Cloud computing is a technology that offers a cost-

effective way for outsourcing data storage and com-

putation. Nevertheless, despite its intriguing properties,

enterprises are reluctant to fully adopt it, since they are

concerned–among other things–about losing the gover-

nance of their outsourced assets, i.e., losing the ability

to enforce their own, enterprise-specific, security poli-

cies. According to PwC’s Global State of Information

Security Survey 2012 [1], the largest perceived Cloud

security risk is the “uncertain ability to enforce provider

security policies,” whereas according to the survey of

Subashini and Kavitha [2] one of the biggest security chal-

lenges for providing Cloud-based services is the “adher-

ence of the Cloud provider to the security policies of its

clients,” as well as “the administration of user authoriza-

tion systems”. This mismatch between provider-enterprise

security policies severely impedes Cloud adoption and

further research on effective solutions for this problem

is required. Indeed, “effective models for managing and

enforcing data access policies, regardless of whether the

data is stored in the Cloud or cached locally on client
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devices” was identified back in 2010 as a top research pri-

ority, by the European Network and Information Security

Agency (ENISA) [3].

One question that may arise is how likely loss of gover-

nance of the outsourced data is, and what is its impact.

According to ENISA’s Cloud Computing Security Risk

Assessment report [4], the loss of governance is a risk

with very high probability and very high impact. The

same report states that two of the vulnerabilities that

may expose an enterprise to that risk are “unclear roles

and responsibilities” and “poor enforcement of role def-

inition.” This outcome comes as no surprise, since the

organizational structure and the security policies of an

individual enterprise cannot be easily captured by a

Cloud provider. Moreover, the interoperability between

an enterprise and a Cloud provider requires the devel-

opment of complex communication protocols; this, how-

ever, increases the chances of a security breach due to

implementation errors, according to the Cloud Security

Alliance [5]. Armando et al. [6] exploited such implemen-

tation errors in order to bypass the SAML-baseda single

sign-on system of Google apps. Similarly, Somorovsky

et al. [7] gained access to multiple SAML-based systems

by exploiting implementation bugs. Nevertheless, even if

the developed protocol is implemented correctly, it will

be Cloud provider specific, thus hindering the migration
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of an enterprise to another Cloud provider; this condi-

tion is known as lock-in, and has been identified as a high

probability risk by ENISA [4].

In this paper, we propose a novel solution that enables

a trusted entity to store enterprise-specific security poli-

cies and take access control decisions on behalf of a Cloud

provider: the Cloud provider then has only to respect

the access control decision. This trusted entity, which is

referred to as the Access Control Provider (ACP), may

as well be provided by the enterprise itself, for exam-

ple, by leveraging its user management system, or by

a third party. Compared to existing systems, our solu-

tion offers better end-user privacy and requires a much

simpler communication protocol.

This paper extends our previous work presented in [8],

with a more detailed system description, an additional

proof of concept implementation, more extensive over-

head evaluation, and further comparison with existing

systems. The paper is organized as follows. In Section 2 we

discuss related work in this area. In Section 3 we detail our

scheme. In Section 4 we present our prototype that imple-

ments a secure private Cloud file storage service using

OpenStack, an open source Cloud stack, as well as a Web

application that enables the incorporation of our solution

in Google Drive. In Section 5 we evaluate the security

properties of our solution and analyze its performance.

Finally, in Section 6 we discuss further extensions to our

solution and we conclude in Section 7.

2 Related work
Many legacy systems rely on Role Based Access Con-

trol (RBAC) for controlling access to resources stored

by 3rd parties (e.g., Cloud providers, web servers). These

systems (e.g., [9-12]) usually adopt one of the following

approaches for enforcing access control policies: (a) they

either employ an existing language (such as XACML [13])

or define their own to specify the access control policy,

which is then interpreted and enforced by the Cloud, or

(b) they use cryptographic solutions (such as attribute

based encryption [14]) to encrypt data in such a way that

only authorized users can decrypt them. RBAC has a role

that is orthogonal to our system: RBAC policy definition

languages and roles can be used by the ACPs, whereas

data stored in the cloud can be encrypted based on roles.

Our system is concerned with access control delegation,

rather than access control enforcement, where an RBAC

solution may be used.

Single Sign-On (SSO) systems–such as Kerberos and,

more recently, OpenID 2.0 [15] and OAuth 2.0 [16]–

have similar goals with our scheme. Kerberos has been

widely used for controlling access to network resources.

In a Kerberos system a Ticket Granting Service (TGS) pro-

vides a “ticket" to an authenticated user that enables her

to use a resource. The TGS and the resource, however,

have to belong to the same administration domain or they

should be pre-configured with a shared secret. Our sys-

tem requires neither common administrative domains nor

pre-shared secrets.

OpenID is an identity management system that allows

identity management delegation to a third trusted party,

known as the Identity Provider (IdP). IdPs authenticate

users and provide them with an “authentication token”,

which they can use to access a resource. OpenID has

been studied in the context of Cloud computing. Nunez

et al. [17] used OpenID in conjunction with proxy re-

encryption in order to provide Cloud based identity man-

agement services. Similarly, Khan et al. [18] have imple-

mented OpenID based authenticationmechanisms for the

OpenStack platform. OpenID provides only user authen-

tication, therefore, in an OpenID-based access control

system, the Cloud provider is responsible for evaluating

the access control policies. Moreover, the authentication

token is unique per user, therefore user activity can be

tracked. In our system access control policies are evalu-

ated by ACPs and not by the Cloud providers. In addition,

in our system tokens are ephemeral, therefore they cannot

be used to track the long term activity of a specific user.

OAuth 2.0 is an IETF standard for authorizing access

to resources over HTTP. OAuth 2.0 requires the resource

owner to be online during the user authorization pro-

cedure (Section 1.2 of [16]), and requires implicitly the

development of a communication protocol between the

resource server and the authorization server in order

to be able to exchange an access token whose form–as

mentioned in Section 1.4 of [16]–is not specified. This

vagueness impedes implementations of systems where the

resource server and the authorization server belong to

different administrative domains. An approach for imple-

menting access control using OAuth 2.0 is the following:

an access control policy based on attributes that can be

provided by an authorization server (e.g., user age, as pro-

vided by a social network) is defined and stored in the

Cloud, the Cloud provider accesses the required attributes

using OAuth 2.0 and uses them to evaluate the access con-

trol policy. In this scenario, the Cloud provider not only

learns some information about the user (in this example

his age), but it is also able to interpret them. In our sys-

tem, Cloud providers neither learn anything about users

nor do they have to understand any enterprise-specific

semantics.

Policy Based Admission Control [19] is a framework

that allows a Policy Enforcement Point (PEP) to delegate

access control policy decisions to a Policy Decision Point

(PDP). Each Cloud provider can operate a PEP, whereas

PDPs can be implemented by third trusted parties, or

even the enterprises themselves. A PEP is responsible for

collecting all the information required by a PDP, which

includes information about the user that requests access.
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Moreover, a PEP and a PDP should agree on a, usually

complex, communication protocol (e.g., COPS [20]).With

our solution, Cloud providers are completely oblivious

about access control policies. Moreover, Cloud providers

neither collect nor learn any information about users.

Finally, our communication protocol is much simpler,

therefore less prone to implementation errors.

The Security Assertion Markup Language (SAML) is

an XML-based security assertion language [21], used for

exchanging authentication and authorization statements

about subjects. Being a language and not a system, SAML

is orthogonal to our work. As a matter of fact, messages

in our scheme can be exchanged via SAML, using the

Authentication Request Protocol (Section 3.4 of [21]).

3 System design
3.1 Overview

Our scheme is composed of the following entities: the

data owner (owner), the data consumer (consumer), the

Cloud provider (CP), and the access control provider

(ACP). The goal of an owner is to store some data in a CP

and allow authorized consumers to perform operations

over this data. Each operation is protected by an access

control policy. An access control policy is stored in an ACP

and maps the identity of a consumer to a boolean output

(true, false). When the output of an access control policy

is true, the consumer that provided the identification data

is considered authorized.

In our scheme, the following trust relationships are con-

sidered: owners trust ACPs to authorize consumers, and

owners and consumers trust CPs to respect the decisions

of ACPs. The first type of trust relationship can be triv-

ially established if the ACP is implemented by the owner

(e.g., the ACP leverages the enterprise’s user manage-

ment system). The second type of trust relationship is a

relaxed form of the trust relationship that currently exists

between an owner and a Cloud provider: in a contempo-

rary Cloud system where access control is implemented in

the Cloud, an owner trusts a Cloud provider to (i) securely

store some enterprise-specific security policies (ii) to use

these policies correctly, i.e., understand their semantics,

and (iii) to enforce the outcome of the access control

decision.

As illustrated in Figure 1 a typical transaction in our sys-

tem takes place as follows. Initially, an owner stores an

access control policy in an ACP (step 1) and obtains aURI

for that policy (step 2). As a next step, she implements an

operation over some data in a CP and stores the URI of

the policy that protects this operation (step 3). When a

consumer tries to perform a protected operation for the

first time (step 4), she receives in response the URI of

the access control policy that protects the operation and a

unique token (step 5). Then, the consumer authenticates

herself to a suitable ACP by providing some form of iden-

tification data and requests authorization for the access

control policy specified in the obtained URI (step 6). If

the consumer “satisfies” the access control policy, the ACP

signs the token and sends it back to the consumer (step 7).

The consumer repeats her request to the CP including this

time the signed token (step 8). The CP checks the validity

Data Owner
Consumer

Access Control Provider

Cloud Provider

Figure 1 Scheme overview.
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of the token and if the token is valid it executes the desired

operation and returns its output (step 9).

3.2 Goals

Our goal is to build a system in which the following

properties hold:

• The system is secure: Provided that all system entities

respect the trust relationships described previously, it

shall not be possible for an unauthorized user to

perform a protected operation.
• Consumer privacy is preserved: A CP shall gain

minimal information about the identity of a

consumer. Ideally it will only learn that a consumer

can be authorized by a specific ACP. Moreover an

ACP should not be able to tell the operation a

consumer wants to perform or the data she accesses.
• Data can be easily migrated among different Cloud

providers: The only entities that should be aware of

an access control policy and its implementation

details are the ACP and the owner. CPs shall be

oblivious about the access control policy

implementation details. Therefore, if two CPs

implement our solution, moving data from one CP to

another shall be almost as trivial as copy-pasting it.
• An access control policy does not reveal anything

about the data and the operations it protects: Access
control policies should be decoupled from the data

and the operations they protect. An access control

policy should be defined taking into account solely

consumer attributes.
• Access control policies are re-usable: An access

control policy should not be bound to a particular

operation. It should be possible to protect many and

diverse data items, stored in multiple CPs.
• An access control policy can be easily modified: The

modification of an access control policy shall not

involve CPs: the only entity involved in the

modification of an access control policy should be the

ACP where the policy is stored.

3.3 Detailed system description

We now detail our system design (Figure 2). We have

made the following assumptions: (i) ACPs and CPs have

a public-private key pair, (ii) ACP’s and CP’s public keys

are known to the consumers and (iii) all messages are

exchanged over a secure channel. Throughout this section

the notation of Table 1 is used.

Consumer

Cloud Provider ACP

Access Control Policy

URIap

Data, URIap

Operation

URIap, Token 

Identification Data, PubCP, URIap,Token 

Token, Lifetime, PubCP, URIap, SignACP(Token, Lifetime, PubCP, URIap) 

Operation, Token, Lifetime, 

SignACP(Token, Lifetime, PubCP, URIap)

Reponse

Data Owner

Access control policy 

creation and data storage

Unauthorized request

Consumer authentication and 

authorization request

Authorized request

Figure 2 System procedures.
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Table 1 Notation

PubCP The public key of a CP

PubACP The public key of an ACP

URIap The URI of an access control policy

SignACP(Y) The digital signature of plaintext Y generated using
the private key of an ACP

Our system consists of the following procedures:

3.3.1 Access control policy creation and data storage

With this procedure an owner creates and stores an access

control policy in an ACP. The ACP in return provides a

URIap. For each protected operation implemented in a CP,

the owner defines the URIap of the policy that protects

it and the PubACP of the ACP where the policy is stored.

This information is maintained in the CP’s Access Table

that contains tuples of the form:

[ operation,URIap,PubACP]

A URIap is re-usable, i.e., it can be used for protecting

multiple operations stored in various CPs. The mecha-

nisms for creating an access control policy and for updat-

ing an Access Table are ACP specific and CP specific,

respectively.

3.3.2 Unauthorized request

This procedure is executed by a consumer in order to per-

form an operation for the first time. The consumer sends

an operation request message to the CP. Upon receiving

the request the CP creates a unique token (i.e., an ade-

quately large random number) and sends it back to the

consumer, along with the corresponding URIap. There-

fore, the following exchange of messages takes place:

(1) : Consumer → CP : operation request

(2) : CP → Consumer : URIap,Token

In order to keep track of the generated tokens, a CP

maintains a Token Table that contains entries of the form:

[Token, authenticated, expires,URIap]

When a new token is generated, a new entry is added to

this table. The value of the authenticated field of this entry

is set to false and the value of the expires field to the gen-

eration time plus a very small amount of time, sufficient

to obtain an authorization.

3.3.3 Consumer authentication and authorization request

This procedure is executed by a consumer upon receiving

a response to an unauthorized request. Firstly, the con-

sumer sends her identification data, PubCP, URIap and

the token to an ACP responsible for evaluating the access

control policy identified by URIap. If the consumer sat-

isfies URIap, the ACP creates an authorization message

that contains the token, the amount of time that the token

should be valid (i.e., its lifetime), URIap, and PubCP. Then

it signs this message and sends it back to the consumer.

Therefore, the following messages are exchanged:

(3) : Consumer → ACP : ID,PubCP,URIap,Token

(4) : ACP → Consumer : auth, SignACP(auth)

where:

auth = Token, Lifetime,URIap,PubCP

3.3.4 Authorized request

This procedure is executed by an ACP authorized con-

sumer in order to perform an operation. The consumer

sends a message that includes the operation request,

the token, the token’s lifetime and the signature of the

authorization message (i.e., message (4)). Therefore the

following message is sent:

(5) : Consumer → CP :

operation request,Token, Lifetime, SignACP(Auth)

Upon receiving this message, a CP should decide if the

consumer is allowed to perform the requested operation.

Therefore, it executes the following algorithm (Figure 3):

1. Retrieve the entry of the Token Table that contains

the token and check if the token has expired. If it has

expired, return an error

2. If the authenticated field of the corresponding record

in the Token Table is false then

(a) Retrieve the PubACP that corresponds to the

operation from the Access Table

(b) Retrieve the URIap that corresponds to the

token from the Token Table

(c) Reconstruct the authorization message

(d) Verify SignACP(auth), using PubACP
(e) If the signature verification succeeds, update

the Token Table entry as follows: set the

expires field equal to the LifeTime field of the

authorization message and set the

authenticated field to true. Proceed to Step 3a

below.

(f) If the signature verification fails, return an

error

3. If the authenticated field of the corresponding record

in the Token Table is true then

(a) Find the URIap that corresponds to the token

from the Token Table
(b) Find the URIap of the requested operation

from the Access Table
(c) Check if the retrieved values match. If they

match return, else return an error
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Operation request

Token 

Table

Has token 

expired?

entry
ErrorTrue

Is token 

Authenticated?

token

False

Verify 

SingACP(auth)

True

Update Token Table

False

False

Tables contain 

the same URIap?

Access 

Table

operation

Error
False

True

True

Success

 entry

entry

entry

Figure 3 Authorized request decision process.

If this procedure is successful then any subsequent autho-

rized request may include only the token. Moreover, the

same token can be used multiple times, even for invoking

different operations protected by the same URIap.

3.4 Use case

Let us now illustrate our scheme through a use case.

Enterprise A has outsourced sales records storage and

analysis to Cloud provider CPA. The operations imple-

mented in CPA are: update sales records, calculate statis-

tics, and view statistics. Enterprise A has the following

access control policies:

• Policy 1: All sales department employees can update

sales records
• Policy 2: Only the sales department director can

calculate statistics
• Policy 3: All shareholders can view the statistics

Enterprise A implements the above access control poli-

cies in an ACP owned by itself. The public key of this

ACP is denoted by PubACP . For each policy the ACP gen-

erates a URI, i.e., entA.com/Policy1, entA.com/Policy2 and

entA.com/Policy3.CPA’s Access Table is updated as shown

in Table 2.

The sales department director issues an unauthorized

request for the calculate statistics operation. CPA gen-

erates a token, namely Token1, and responds by sending

the following message (entA.com/Policy2, Token1). CP’s

Token Table is then updated with the entry shown in

Table 3.

As a next step, the sales department director authen-

ticates himself to the ACP, which responds with

Table 2 CPA access table new entries

Operation URIap ACP public key

Update records entA.com/Policy1 PubACP

Calculate statistics entA.com/Policy2 PubACP

View statistics entA.com/Policy3 PubACP
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Table 3 CPA token table new entries

Token Authenticated Expires URIap

Token1 false timestamp1 entA.com/Policy2

the following, digitally signed, authorization message:

(Token1, timestamp2, entA.com/Policy2, PubCPA ). Then,

the sales department director issues the following autho-

rized request: (“calculate statistics”, Token1, timestamp2,

SignACP(auth)). CPA checks if Token1 has expired. Then,

it reconstructs the authorization message by retrieving

the URIap associated with the calculate statistics opera-

tion (i.e., entA.com/Policy2) from the Access Table and

verifies SignACP(auth) using PubACP (also found in the

Access Table). Finally, CPA checks if the URIap found in

the Access Table matches the URIap included in the entry

for Token1 in the Token Table. If all these steps are suc-

cessful,CPA executes the calculate statistics operation and

modifies the entry for Token1 in the Token Table as shown

in Table 4.

Since Token1 is now marked as authenticated, the sales

department director can use it in all subsequent requests,

until it expires. Moreover, as long as Token1 remains valid,

SignACP(auth) does not have to be included in subsequent

requests.

3.5 The “level” extension

In the above use case, it can be observed that if the sales

department director wishes to invoke the update records

operation, he has to re-authenticate himself, since this

operation is protected by a different URIap. The level

extension mitigates this shortcoming by adding a new

field to an Access Table: the consumer level. The con-

sumer level is a number that denotes the minimum level

that a consumer should have in order to invoke an opera-

tion. Using this extension, the Access Table of the Cloud

provider considered in the use case of Section 3.4 can be

modified as shown in Table 5.

With this extension, an ACP has to include the con-

sumer level in the authorizationmessages.Moreover, a CP

now takes part in the access control decision, since it has

to check if the level included in the authorization message

is greater or equal to the level included in the Access Table.

Finally, if the level extension is used, Token Tables should,

additionally, include the level that corresponds to a token.

Suppose that the level of the sales department director

in the previous use case is 200. Then, he would be able

to successfully invoke the update records operation, using

Token1, without re-authenticating himself.

Table 4 CPA token table modified entry

Token Authenticated Expires URIap

Token1 true timestamp2 entA.com/Policy2

Table 5 CPA access table using level extension

Operation URIap Level

Update records entA.com/Policy2 100

Calculate statistics entA.com/Policy2 200

View statistics entA.com/Policy3 100

The ACP public key column is not shown.

4 Implementation
As a proof of concept we implemented a secure file stor-

age service using a popular open source Cloud stack, the

OpenStack [22], as well as a Web application that allows

the incorporation of our solution in Google Drive [23].

The ACP and the consumer software used in both imple-

mentations are the same. Our implementation supports

the level extension. As a public-key encryption system we

use RSA. Public keys are encoded in JSON format using

the keyCzar [24] python library. The keyCzar library is

also used for generating digital signatures.

4.1 ACP and consumer software

The ACP of our proof of concept is implemented as a

PHP application hosted in an Apache web server. An

SQLite database is used for storing username-password

pairs, as well as username to URIap-level mappings. User-

names are unique and a username can bemapped to many

URIap-level pairs (e.g., Table 6). The consumer software

implements the authentication and authorization request,

by encoding the username, the password and the request

parameters in a JSON object and by POSTing this object

to a particular URL, using HTTPS. The response to this

request is again encoded in a JSON object. The consumer

software has been pre-configured with the public keys of

the CP and the ACP components.

Table 6 An instance of the user managements system

Username Password

fotiou 12345

machas 12345

polyzos 12345

xylomenos 12345

Username URIap Level

fotiou mmlab/Policy1 100

fotiou mmlab/Policy2 200

machas mmlab/Policy1 200

machas mmlab/Policy3 300

polyzos mmlab/Policy3 100

polyzos mmlab/Policy4 200

xylomenos mmlab/Policy3 100

xylomenos mmlab/Policy4 200



Fotiou et al. Journal of Internet Services and Applications  (2015) 6:11 Page 8 of 15

4.2 OpenStack-based implementation

For our OpenStack-based CP (Figure 4), we leveraged the

functionality of the OpenStack component Swift, which

is used for building object storage systems. A Swift-

based object storage system is composed of two networks:

the internal (private) network that consists of storage

nodes, and the external (public) network that consists of

a proxy server and (optionally) an authentication server.

The proxy server accepts HTTP(S) requests and processes

them using a Web Server Gateway Interface. The param-

eters used in each request are encoded in HTTP headers.

Each request is pipelined through a number of add-ons,

each of which may transform it, forward it, or respond on

behalf of the system to the user.

Objects stored in a Swift-based system are organized

in a three level hierarchy. The topmost level of this hier-

archy is the accounts level, followed by the containers

level (second level) and the objects level (third level). The

accounts level contains user accounts. Each user account

is associated with many containers from the containers

level. A container is used for organizing objects, there-

fore a container is associated with many objects from the

objects level. An object may be a file or a folder (that

contains other objects). Every object within a container is

identified by a container-unique name. Each request for

an operation over an object contains a URI that denotes

the account, the container and the name of the object

in question, i.e., it is of the form “https://CPHostName/

accountname/containername/objectname”.

We implemented our system as a Swift add-on added

in the pipeline of the add-ons that process incoming

requests. This add-on replaces Keystone; the default

OpenStack component that handles user authentication.

Our implementation allows file storage and retrieval, as

well as the following operations over the stored files: orga-

nizing files in containers, listing the files of a container,

copying a file, moving a file and deleting a file. Token

and Access Tables are implemented as SQLite tables. An

owner hard codes in the Access Table records of the form:

[path,URIap,level,PubACP]. A path may be account-wide,

container-wide, or object-wide.

Initially, the consumer software sends an unauthorized

GET/POST request over HTTPS. The desired operation

is specified in a HTTP header and the URL of the request

denotes the object (or the container, or the account) that

will be used as input to the operation. When an unautho-

rized request is pipelined through our add-on, the add-on

checks if a URIap exists in the Access Table for the URL

specified in the request: if such a URIap exists, the add-

on generates a new token, using the token generation

mechanism provided by Swift, and creates a response (as

described in Section 3.3); each part of the response is

encoded in a HTTP header. The add-on then creates a

new entry in the Token Table. The initial expiration time

of a token is set equal to the current time plus 10 sec.

Upon receiving the response, the consumer software ini-

tiates the authentication and the authorization process

described in Section 4.1. As a next step, the consumer

software sends an authorized request, encoding all request

parameters in HTTP headers. The add-on executes the

authorized request decision algorithm and produces the

appropriate output.

Proxy 

Server

Account

Container 1 Container 2

Object 1 Object 2

Add-on

Token 

gen.

SQLite

Access 

Table

Token 

Table

Storage Node

HTTPS Request

CP part of our 

implementation

External network

Internal network

Figure 4 OpenStack-based implementation.

https://CP HostName/account name/container name/object name
https://CP HostName/account name/container name/object name
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4.3 Google drive-based web application

Google Drive is a popular Cloud based storage service.

Google Drive provides a rich API that can be used for

building applications that interact with the service over

HTTPS. In our implementation we used this API and built

a Web application that extends (part of ) the Google Drive

API, thus providing support for our protocol (Figure 5).

Our application is built using the Google App Engine [25]

and the Python language. Access Tables and Token Tables

have been implemented using the Google App Engine

Datastore. Currently, our application supports operations

for uploading and downloading files. Each operation can

be invoked by making an HTTPS call to the operation-

specific URL. All call parameters are encoded in HTTP

headers.

Our application has been configured with a Google

Drive account which is kept secret. Instead of interacting

with the “drive” directly, the consumer software interacts

with the application, which acts as a middleware, ensuring

that only an authorized consumer can perform the imple-

mented operations. The consumer learns no information

about the Google Drive account.

The owner hard codes in the web application a URIap
that controls who can invoke the upload file operation. A

consumer initially performs an unauthorized request for

uploading a file (the file is not included in this request).

The web application generates a token using the UUID

Python function, it responds to the consumer by encod-

ing the token in an HTTP header and updates the Token

Table. The consumer software initiates the authentication

and the authorization process described in Section 4.1.

Then, it issues an authorized request, by encoding the

request parameters in HTTP headers and the file as raw

POST data. The web application executes the authorized

request decision algorithm and if the consumer is allowed

to upload the file, it stores it in the Google Drive. When

uploading files, consumers are able to specify aURIap that

controls who can invoke the download file operation for

that specific file.

5 Evaluation
5.1 Security evaluation

It can be easily observed that our system enhances con-

sumer privacy. The only information that a CP learns

about a consumer is his trust relationship with a particu-

lar ACP; if the level extension is used, the CP also learns

his level. Of course, the latter can be encoded in a way

that reveals no meaningful information. Any other sensi-

tive information is stored in a (trusted) ACP. Moreover,

regardless of the lifetime of a token, a consumer may drop

it and request a new one in order to avoid CP profiling.

Finally, an ACP gains no information about the operations

a consumer invokes and the data he accesses: the only

information that an ACP learns is the public key of the CP

with which the consumer interacts.

Another security feature of our system is that access

control policies can be easily modified. Access control

policies are stored in a single point (i.e., the ACP) and all

CPs have pointers to policies. Therefore, the modification

of an access control policy does not involve communi-

cation with any CP. When an access control policy is

modified, all new consumers will be authorized using the

new policy, whereas all already authorized consumers will

be re-authorized with the new policy when their token

expires.

We now proceed to the security analysis of our sys-

tem using the threat model proposed by Wang at al.

[26], adapted to our system. In our analysis we consider

Secret account

Object 1 Object 2

Web App

Datastore

Access 

Table

Token 

Table

HTTPS Request

Google App 

Engine

Google Drive

Google Drive API

Figure 5 Google drive-based web application.
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three different attack scenarios. In all scenarios we assume

that messages are exchanged over a secure channel and

communication endpoints cannot lie about their iden-

tity. We do not consider the case in which a mali-

cious entity acts as an ACP and steals the credentials

of a consumer, since this attack is out of the scope of

our system.

5.1.1 Malicious entity acting as a consumer

In this attack scenario a malicious entity, ConM, tries to

perform an operation protected by an access control pol-

icy URIleg stored in ACPA. ConM can only be authorized

for the access control policy URImal, also stored in ACPA.

ConM ’s goal is to obtain an authorization message of the

form (Token, Level, Lifetime,URIleg,PubCP). By following

our protocol ConM will receive an authorization mes-

sage of the form (Token, Level, Lifetime,URImal,PubCP). If

ConM includes the signature of this message in his authen-

ticated request, the authorized request decision algorithm

will result in an error, since the CP will generate a dif-

ferent authorization message for which this signature is

not valid (Figure 6). The only way for ConM to obtain

a valid signature is to include URIleg in the authentica-

tion and authorization request, i.e., ConM should send to

ACPA an authentication and authorization request of the

following form: (ID,PubCP,URIleg ,Token). However, since

ConM does not abide by URIleg this message will result in

an error.

5.1.2 Malicious entity acting as a CP

In this attack scenario the attacker’s goal is to perform an

operation in CPA, protected by an access control policy

URIA stored in ACPA. The attacker is able to pretend to

be a Cloud provider, CPmal, as well as to lure a consumer

ConL that can be authorized for URIA, to perform this

operation. Therefore, this is a man-in-the-middle type of

attack.

The attacker initially sends an unauthorized request

to CPA and receives TokenA and URIA. In order

for this attack to be successful the attacker has to

obtain an authorization message of the form (TokenA,

Level, Lifetime,URIA,PubCPA). ConL is lured to send an

unauthorized request toCPmal (i.e., to the attacker), which

responds with a message of the form: (URIA,TokenA).

Subsequently, ConL sends an authentication and

authorization request to ACPA of the following form:

(ID,PubCPmal
,URIA,TokenA), and receives the following

authorization message (TokenA, Level, Lifetime,URIA,

PubCPmal
). If the attacker sends an authorized request

using the signature of the previous message the autho-

rized request decision algorithm will result in an error,

since CPA will generate an authorization message that

includes PubCPA and not PubCPmal
(Figure 7).

5.1.3 Malicious entity co-locatedwith a consumer

This attack scenario is applicable when a CP maintains a

user management system and associates operations over

ConM

Cloud Provider ACPA

[…]

URIleg, Token 

Identification Data, PubCP, URImal,Token 

Token, Lifetime, PubCP,  URImal, SignA(Token, Lifetime, PubCP,  URImal) 

Generated authorization message: 

(Token, Lifetime, PubCP, URIleg)

Signature verification 

failed

Operation, Token, Lifetime, 

SignA(Token, Lifetime, PubCP,  URImal)

Figure 6 Malicious entity acting as a consumer.
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ConL

CPmal CPA

[…]

URIA, TokenA 

Operation

URIA, TokenA 

[…]

Operation, TokenA , Lifetime, 

SignACP(TokenA, Lifetime, PubCPmal, URIA)

Operation,  TokenA , Lifetime, 

SignACP(TokenA, Lifetime, PubCPmal, URIA)

Generated authorization message: 

(TokenA, Lifetime, PubCPA, URIA) 

Signature verification 

failed

Figure 7 Malicious entity acting as a CP.

protected data with particular users (e.g., for charging rea-

sons). In tis scenario a CP alsomaintains in its Token Table

the identifier of the (CP) user for whom the token has

been generated. The goal of an attacker in this scenario is

to make a CP believe that a consumer ConL wants to per-

form a protected operation. In this scenario the attacker

is a valid CP user and he is eligible to perform the same

operations asConL. Moreover, the attacker is able to inject

messages on behalf of ConL.

In this attack scenario, the attacker requests to perform

an operation OPA and proceeds through all steps until he

receives the authorization message. At this point, instead

of sending an authorized request on behalf of himself, he

sends it on behalf of ConL. It can be easily observed that

this attack is trivially mitigated since the CP also main-

tains the identifiers of the users that correspond to each

token, therefore this message will be rejected (Figure 8). It

should be noted, however, that this is possible due to our

design choice to have the CP generating the tokens, which

is not always the case in other similar systems. This attack,

for example, was successfully exploited byWang at al. [26]

against three popular websites that were using Facebook

Connect and Twitter OAuth for associating their user

accounts with their corresponding Facebook and Twitter

profiles.

5.2 Overhead

In our implementation, HTTP methods are used

for invoking the desired operation. As a public-key

encryption system we use RSA. The size of an RSA pub-

lic key is 2048 bits, whereas the size of a JSON encoded

public key is 400 bytes. Tokens are encoded in 32 byte

hex-strings, digital signatures in 512 byte hex-strings and

token lifetimes in 8 byte hex-strings. Finally, a single byte

is used for representing access levels. When a consumer

wants to invoke an operation in a CP, protected by a

URIap, a number of messages has to be exchanged. If an

ACP has already generated for the consumer an autho-

rization message for URIap and the corresponding token

has not expired, then a single message from the consumer

to the CP has to be sent. In any other case five messages

have to be exchanged: three between the consumer and

the CP, and two between the consumer and the ACP.

It can therefore be observed that an ACP and a con-

sumer have a strong motive to use long-lasting tokensb:

the longer the duration of a token, the less the communi-

cation overhead for an ACP and a consumer. On the other

hand, long-lasting tokens increase the state that a CP has

to maintain in its Token Table. In order to illustrate this

tradeoff, we simulate the following scenario: we consider a

CP that hosts files of 100 different enterprises. Each enter-

prise has defined a single protected operation. Moreover,

each enterprise has 100 employees who invoke the opera-

tion stored in the CP following a Poisson process with rate

0.1/min. We simulate a usage period of 8 hours and every

5 min we measure the average network load of each enter-

prise (caused by the messages exchanged with the ACP),

as well as the size of the CP’s Token Table (the measured
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Attacker

Cloud Provider

[…]

URIap, TokenAttacker 

This Token has not been generated for 

this user 

Error

OPA, TokenAttacker, Lifetime, 

SignACP(TokenAttacker, Lifetime, PubCP,  URIap)

ConL

OPA

Packet Injection

Figure 8 Malicious entity co-located with a consumer.

size is the average value of all the sizes the Token Table had

within the 5 min measurement period). We consider two

types of tokens: a token with short lifetime (20 min) and a

token with long lifetime (2 hours). Figure 9 illustrates the

average Token Table size of the CP throughout the sim-

ulation period, whereas Figure 10 illustrates the average

number of messages transmitted inside each enterprise’s

network, throughout the simulation period.

5.3 Comparison with existing systems

We now compare our solution with two popular related

systems: Google Drive and Amazon S3.

5.3.1 Google drive

The Google Drive Cloud-based storage service, enables

users to access, share, and organize their files in the Cloud.

The Google Drive API provides a limited set of policies,
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Figure 10 Number of messages exchanged between a consumer and an ACP as a function of token lifetime, using 5 minute sampling periods.

During the lifetime of a token, no messages are exchanged.

namely, “full access”, “read only access”, “metadata only

access”, and “specific file access”. These policies are not

applied per stored item, instead they are granted in the

form of “permissions” to applications that want to access

a specific drive. Before using a “drive”, an application

requests from the drive owner one of the aforementioned

permission types; the drive owner authenticates himself

using a Google account and grants permissions using

OAuth2.0. In most cases, the user that executes the appli-

cation that requests permissions and the owner of the

drive are the same entity. Permissions are granted in the

form of a token that never expires: in order for a drive

owner to remove permissions for a specific application,

she has to revoke the token manually. Google Drive does

not support integration with enterprise specific authenti-

cation and authorization systemsc.

In order for an application to perform an operation the

following messages have to be exchanged (here we con-

sider that the user executing the application is the drive

owner, referred to as the consumer):

1. Consumer → Google Auth: Request permission

2. Consumer → Google Auth: Authenticate

3. Consumer → Google Auth: Grant permission

4. Google Auth → Consumer: Token

5. Consumer → Google Drive: Operation, Token

Compared to our system the same number of messages is

required. Nevertheless, messages 1 to 4 are usually sent

once, since tokens never expire. It should be also noted

that the entity that performs the authorization is the drive

owner herself (the consumer), therefore authorization is a

manual process.

5.3.2 Amazon S3

Amazon Simple Storage Service, or S3 for short, is a well-

known Cloud-based file storage service. S3 provides Web

services that allow users to store and organize their files

in the Cloud. Files are organized in “buckets”. A user may

setAccess Control Lists (ACLs) that define the permissions

that a user or a group of users have over a specific bucket,

or over a specific file. ACLs are encoded in XML and the

permissions that can be granted are “read", “write", “read

ACL”, “modify ACL”, “full control”. For more fine grained

access control, S3 provides an “access control policy lan-

guage”, that allows users to create bucket-specific policies.

These policies can control the access to a bucket, and its

objects, based on user identities, source IP addresses, time

and date, and some other parameters.

S3 provides an API that allows users (consumers) to be

authenticated using their own (enterprise specific) iden-

tity provider. In order for an operation to be performed

the following messages have to be exchanged:

1. Consumer → Identity Provider: Authenticate

2. Identity Provider → Amazon Token Service:

Request Token

3. Amazon Token Service → Identity Provider: Token

4. Identity Provider → Consumer: Token

5. Consumer → Amazon S3: Operation, Token

It can be seen that the same number of messages is

required, as in our system. Nevertheless, in the S3 sys-

tem the authorization is performed by Amazon and not

by the identity provider, therefore access control policies

have to be stored in an Amazon server. This, combined

with the fact that policies are defined using Amazon’s spe-

cific policy definition language, creates a “lock-in” risk.
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Moreover, all the users who are identified by their own

identity provider are considered to have the same role (i.e.,

“federated users”), limiting the flexibility of the access con-

trol policies. Finally, a secret has to be shared between the

identity provider of the user and Amazon’s token service,

in order for steps 2 and 3 to take place successfully.

6 Discussion
So far we have explored the possibilities that our solu-

tion offers in a “traditional” usage model: an enterprise

that uses Cloud computing for outsourcing data storage

and computations. However, the introduction of a new

role, that of the ACP, and the decoupling of the data stor-

age and access control assessment functions creates many

new business opportunities.

One area that can benefit from our solution is that of

B2B applications. Suppose that enterprise A wants to offer

access to some of its (Cloud-based) services to a depart-

ment of enterprise B. Enterprise B can expose a URIap
that authenticates and authorizes the users of that par-

ticular department. Enterprise A can use this URIap in

order to protect the shared services. With this, enterprise

A can perform access control without learning anything

about the internal user management system of enterprise

B. Enterprise A may also offer services for the customers

of enterprise B using a similar approach.

Our solution also creates a new business opportunity.

We envision that a new market can arise due to our solu-

tion, that of the access control providers. In addition to the

enterprise specific ACPs there can be independent ACPs

that offer security services to end-users. Existing security

companies can utilize their expertise to offer cutting edge

access control services without investing in the Cloud

market. Moreover, existing social networks may leverage

their services and act as ACPs. To this end, future work

for our scheme includes support for ACP federations and

support for multiple URIACP definitions per single data

item.

7 Conclusions
In this paper we proposed a solution to a thorny problem

that prevents Cloud technology adoption: that of access

control. The proposed solution enables data owners to

outsource data storage and computation, without losing

governance of their assets. In our solution access control

is provided as a service by a new entity, the Access Con-

trol Provider (ACP). Access control as a service relieves

Cloud providers from the burden of implementing com-

plex security solutions and enables enterprises to deploy

their own specific access control mechanisms.We demon-

strated the feasibility of our scheme through proof of

concept implementations. In particular, we implemented

our system as an add-on for the open source Cloud stack

OpenStack and we developed a Web application that

allows the incorporation of our system in Google Drive.

We show that our scheme is secure and has significant

privacy properties. The proposed system adds minimal

overhead, does not require any particular Cloud imple-

mentation or ACP structure and, therefore, it constitutes

a realistic solution to the problem. Finally, we believe that

the proposed solution can open the floor for new exciting

applications and business opportunities.

Endnotes
aSAML is a generic XML language used for security

assessments between different entities.
bProvided that this does not jeopardize the security of

the scheme.
cGoogle provides a SAML based SSO system that can

be used to integrate enterprise specific authentication

systems, but only in Web applications.
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