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Abstract. We initiate the study of Access Control Encryption (ACE), a novel cryptographic primitive
that allows fine-grained access control, by giving different rights to different users not only in terms of
which messages they are allowed to receive, but also which messages they are allowed to send.
Classical examples of security policies for information flow are the well known Bell-Lapadula [BL73] or
Biba [Bib75] model: in a nutshell, the Bell-Lapadula model assigns roles to every user in the system
(e.g., public, secret and top-secret). A users’ role specifies which messages the user is allowed to receive
(i.e., the no read-up rule, meaning that users with public clearance should not be able to read messages
marked as secret or top-secret) but also which messages the user is allowed to send (i.e., the no write-
down rule, meaning that a malicious user with top-secret clearance should not be able to write messages
marked as secret or public). To the best of our knowledge, no existing cryptographic primitive allows for
even this simple form of access control, since no existing cryptographic primitive enforces any restriction
on what kind of messages one should be able to encrypt. Our contributions are:

– Introducing and formally defining access control encryption (ACE);
– A construction of ACE with complexity linear in the number of the roles based on classic number

theoretic assumptions (DDH, Paillier);
– A construction of ACE with complexity polylogarithmic in the number of roles based on recent

results on cryptographic obfuscation;

1 Introduction

Traditionally, cryptography has been about providing secure communication over insecure channels. We want
to protect honest parties from external adversaries: only the party who has the decryption key can access the
message. More recently, more complicated situations have been considered, where we do not want to trust
everybody with the same information: depending on who you are and which keys you have, you can access
different parts of the information sent (this can be done using, e.g., functional encryption [BSW11]).

However, practitioners who build secure systems in real life are often interested in achieving different and
stronger properties: one wants to control the information flow in the system, and this is not just about what
you can receive, but also about what you can send. As an example, one may think of the first security policy
model ever proposed, the one by Bell and Lapadula [BL73]. Slightly simplified, this model classifies users
of a system in a number of levels, from “public” in the bottom to “top-secret” on top. Then two rules are
defined: 1) “no read-up” – a user is not allowed to receive data from higher levels and 2) “no write-down” –
a user is not allowed to send data to lower levels. The idea is of course to ensure confidentiality: data can
flow from the bottom towards the top, but not in the other direction. Clearly, both rules are necessary, in
particular we need no write-down, since a party on top-secret level may try to send information she should
not, either by mistake or because her machine has been infected by a virus.

In this paper we study the question of whether cryptography can help in enforcing such security policies.
A first thing to realize is that this problem cannot be solved without some assumptions about physical, i.e.,
non-cryptographic security: if the communication lines cannot be controlled, we cannot prevent a malicious
user from sending information to the wrong place. We therefore must introduce a party that controls the

⋆ This project was supported by: the Danish National Research Foundation and The National Science Foundation
of China (grant 61361136003) for the Sino-Danish Center for the Theory of Interactive Computation.

⋆⋆ Full version of TCC 2016-B paper [DHO16]



communication, which we will call the sanitizer San. We assume that all outgoing communication must pass
through this party. San can then be instructed to do some specific processing on the messages it gets.

Of course, with this assumption the problem can be solved: San is told what the security policy is and
simply blocks all messages that should not be sent according to the policy. This is actually a (simplified)
model of how existing systems work, where San is implemented by the operating system and various physical
security measures.

However, such a solution is problematic for several reasons: users must securely identify themselves to
San so that he can take the correct decisions, this also means that when new users join the system San must
be informed about this, directly or indirectly. A side effect of this is that San necessarily knows who sends
to whom, and must of course know the security policy. This means that a company cannot outsource the
function of San to another party without disclosing information on internal activities of the company.

Therefore, a better version of our basic question is the following: can we use cryptography to simplify the
job of San as much as is possible, and also ensure that he learns minimal information?

To make the goal more precise, note that it is clear that San must process each message that is sent
i.e., we cannot allow a message violating the policy to pass through unchanged. But we can hope that the
processing to be done does not depend on the security policy, and also not on the identities of the sender
and therefore of the allowed receivers. This way we get rid of the need for users to identify themselves to
San. It is also clear that San must at least learn when a message was sent and its length, but we can hope
to ensure he learns nothing more. This way, one can outsource the function of running San to a party that
is only trusted to execute correctly.

Our goal in this paper is therefore to come up with a cryptographic notion and a construction that
reduces the sanitizer’s job to the minimum we just described. To the best of our knowledge, this problem
has not been studied before in the cryptographic literature, and it is easy to see that existing constructions
only solve “half the problem”: we can easily control which users you can receive from by selecting the key
material we give out (assuming that the sender is honest). This is exactly what attribute based [GPSW06] or
functional encryption [BSW11] can do. But any such scheme of course allows a malicious sender to encrypt
what he wants for any receiver he wants.

Our Contribution. In this paper we propose a solution based on a new notion called Access Control En-
cryption (ACE). In a nutshell ACE works as follows: an ACE scheme has a key generation algorithm that
produces a set of sender keys, a set of receiver keys and a sanitizer key. An honest sender S encrypts message
m under his sender key and sends it for processing by San using the sanitizer key. San does not need to
know the security policy, nor who sends a message or where it is going (so a sender does not have to identify
himself): San simply executes a specific randomised algorithm on the incoming ciphertext and passes the
result on to a broadcast medium, e.g., a disk from where all receivers can read. So, as desired, San only
knows when a message was sent and its length.1 An honest receiver R who is allowed to receive from S is
able to recover m using his key and the output from San. On the other hand, consider a corrupt sender S
who is not allowed to send to R. ACE ensures that no matter what S sends, what R receives (after being
processed by San) looks like a random encryption of a random message. In fact we achieve security against
collusions: considering a subset S of senders and a subset R of receivers, if none of these senders are allowed
to send to any of the receivers, then S cannot transfer any information to R, even if players in each set
work together. We propose two constructions of ACE: one based on standard number theoretic assumptions
(DDH, Pailler) which achieves complexity linear in the number of roles, and one based on recent results in
cryptographic obfuscation, which achieves complexity polylogarithmic in the number of roles.

Example. A company is working on a top-secret military project for the government. To protect the secrets
the company sets up an access policy that determines which employees are allowed to communicate (e.g.,
a researcher with top-secret clearance should not be allowed to send classified information to the intern,

1 Note that the sanitizer has to send the ciphertext to all receivers – both those who are allowed to decrypt and
those who are not. A sanitizer who could decide whether a particular receiver is allowed to receive a particular
ciphertext would trivially be able to distinguish between different senders with different writing rights.
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who is making the coffee and only has public clearance). To implement the access policy, the company
sets up a special server that sanitizes every message sent on the internal network before publishing it on
a bulletin board or broadcasting it. Using ACE this can be done without requiring users to log into the
sanitizer. Furthermore, if corrupted parities (either inside or outside the company) want to intercept the
communication they will get no information from the sanitizer server, since it does not know the senders
identities and the messages sent over the network.

In the following sections, we describe ACE in more detail and take a closer look at our technical contri-
butions.

1.1 Access Control Encryption: The Problem it Solves

Senders and Receivers. We have n (types of) senders S1, . . . , Sn and n (types of) receivers R1, . . . , Rn.
2

There is some predicate P : [n] × [n] → {0, 1}, where P (i, j) = 1 means that Si is allowed to send to Rj ,
while P (i, j) = 0 means that Si is not allowed to send to Rj .

Network Model. We assume that senders are connected to all receivers via a public channel i.e., a sender
cannot send a message only to a specific receiver and any receiver can see all traffic from all senders (also
from those senders they are not allowed to communicate with).

Requirements. Informally we want the following properties3

1. Correctness: When an honest sender Si sends a message m, all receivers Rj with P (i, j) = 1 learn m;
2. No-Read Rule: At the same time all receivers Rj with P (i, j) = 0 learn no information about m;
3. No-Write Rule: No (corrupt) sender Si should be able to communicate any information to any (possibly

corrupt) receiver Rj if P (i, j) = 0

Note that the no-read rule on its own is a simple confidentiality requirement, which can be enforced
using standard encryption schemes. On the other hand standard cryptographic tools do not seem to help in
satisfying the no-write rule. In particular the no-write rule is very different from the standard authenticity
requirement and e.g., signature schemes cannot help here: had we asked for a different property such as “a
corrupt sender Si should not be allowed to communicate with an honest receiver Rj if P (i, j) = 0” then the
problem could be solved by having Rj verify the identity of the sender (using a signature scheme) and ignore
messages from any sender i with P (i, j) = 0. Instead, we are trying to block communication even between
corrupt senders and corrupt receivers.

The problem as currently stated is impossible to solve, since a corrupt sender can broadcast m in the clear
to all receivers (the corrupt sender might not care that other receivers also see the message). As mentioned
above, we therefore enhance the model by adding a special party, which we call the sanitizer San. The
sanitizer receives messages from senders, performs some computation on them, and then forwards them to
all receivers. In other words, we allow the public channel to perform some computation before delivering the
messages to the receivers. Hence, the output of the sanitizer is visible to all receivers (i.e., the sanitizer cannot
give different outputs to different receivers). We therefore add the following requirement to our no-read rule:

2b. The sanitizer should not learn anything about the communication it routes. In particular, the sanitizer
should not learn any information about the message m which is being transmitted nor the identity of
the sender i;

In Section 2 we formalize properties 2 and 2b as a single one (i.e., no set of corrupt receivers, even colluding
with the sanitizer, should be able to break the no-read rule). When considering property 3, we assume the
sanitizer not to collude with the corrupt senders and receivers: after all, since the sanitizer controls the

2 The number of senders equals the number of receivers only for the sake of exposition.
3 The security model, formalized in Definitions 2 and 3, is more general than this.
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communication channel, there is no way of preventing a corrupt sanitizer from forwarding messages from
corrupt senders to the corrupt receivers.4

We stress that previous work is not sufficient to achieve property 3: Even encryption schemes with fine-
grained decryption capabilities (such as predicate- and attribute based- encryption [GPSW06,KSW13]) do
not offer security guarantees against colluding senders and receivers.

1.2 Technical Overview

Linear ACE. The main idea behind our construction of ACE with linear complexity (described in Section 3)
is the following: we start with an ACE for a single identity i.e., where n = 1 and P (1, 1) = 1. First we
need to make sure that even a corrupt sender with encryption rights (i.e., i = 1) cannot communicate with
a corrupt receiver with no decrypting right (i.e., with a special identity j = 0). To prevent this, since the
receiver cannot decrypt the ciphertext, it is enough to use a randomizable public key encryption and let the
sanitizer refresh the ciphertext. This ensures that the outgoing ciphertext is distributed exactly as a fresh
encryption.

The more challenging task is to ensure that a corrupt sender with no rights (i.e., with a special identity
i = 0) cannot transfer any information to a corrupt receiver with decrypting rights (i.e., j = 1), since
in this case the receiver knows the decryption key. Thus, we cannot use the security of the underlying
encryption scheme. We solve the problem using any encryption scheme which is homomorphic both in the
message and in the randomness (such as ElGamal or Pailler). The main idea is to let the encryption key
ek as well as the randomizer key rk be some secret value α, and an encryption of a message m being a
tuple (c0, c1) = (E(ek), E(m)). On input such a tuple the sanitizer picks a random s and outputs c′, a
fresh encryption of (ek − rk) · s+m (which can be computed thanks to the homomorphic properties of E):
note that sanitization does not interfere with honestly generated encryptions (since ek = rk = α), while
the sanitized version of a ciphertext produced by anyone who does not know α is indistinguishable from a
random encryption of a random value.

We then turn this into a scheme for any predicate P : [n] × [n] → {0, 1} by generating n copies of the
single identity ACE scheme. Each receiver j is given the decryption key for one of the schemes, and each
sender i is given the encryption key for all instances j such that P (i, j) = 1. The resulting scheme has
linear complexity in n, the number of the roles in the system, which makes our scheme impractical for large
predicates.

Polylogarithmic ACE. At first it might seem easy to construct an ACE scheme with compact ciphertexts
using standard tools (such as non-interactive zero-knowledge proofs). In Section 4 we discuss why this is not
the case before presenting our construction of an ACE with complexity polylogarithmic in n. To construct
the scheme we first introduce the notion of a sanitizable functional encryption (sFE) scheme which is a
functional encryption (FE) scheme enhanced with a sanitization algorithm. Informally we require that given
any two ciphertexts c0, c1 that decrypt to the same message and a sanitized ciphertext c′, no one (even
with access to the master secret key), should be able to tell whether c′ is a sanitized version of c0 or c1.

5

We are able to construct such a scheme by modifying the FE based on indistinguishability obfuscation of
Garg et al. [GGH+13]: in their scheme ciphertexts consist of two encryptions and a simulation statistically-
sound NIZK proof that they contain the same message. We instantiate their construction with a sanitizable

4 Note that it is possible to reduce the trust on the sanitizer in different ways: in a black-box way, one could imagine
several parties emulating the work of the sanitizer using MPC. In a more concrete way, it is possible to have a chain
of sanitizers, where the senders send their encryptions to sanitizer 1, the receivers receive ciphertexts from sanitizer
n, and sanitizer i + 1 further sanitizes the output of sanitizer i. We note that all definitions and constructions in
this paper can be easily generalized to this scenario but, to keep the presentation as simple as possible, we do not
discuss this solution further and stick to the case of a single sanitizer.

5 We note that this is a relaxation of re-randomizability for FE, in the sense that we do not require sanitized
ciphertexts to be indistinguishable from fresh encryptions, but only independent of the randomness used in the
original encryption. However, to the best of our knowledge, no re-randomizable FE scheme for all circuits exist.
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encryption scheme6, and we instruct the sanitizer to sanitize the two encryptions, drop the original proof
and append a proof of a proof instead (that is, a proof of the fact that the sanitizer saw a proof who
would make the original verifier accept). This preserves the functionality of the original FE scheme while
making the sanitized ciphertext independent of the randomness used by the sender. We formally define sFE
in Section 4.1 and present a construction in Section 4.2.

Finally, armed with such a sFE scheme, we construct a polylog ACE scheme in Section 4.3 in the following
way: ciphertexts are generated by encrypting tuples of the form (m, i, y) with y = Feki

(m) for a PRF F
(where eki is the the encryption key of the sender Si), using the sFE scheme. Decryption keys are sFE secret
keys for the function that outputs m only if P (i, j) = 1 (and ignores y). The sanitizer key is a sFE secret
key which outputs 1 only if y is a valid MAC on m for the identity i (note that this can be checked by a
compact circuit by e.g., generating all the keys eki pseudorandomly using another PRF). This key allows
the sanitizer to check if an encryption contains a valid MAC or not, but without learning anything about
the message nor the identity. Now the sanitizer drops invalid encryptions (or replaces them with random
encryptions of random values for a special, undecryptable identity i = 0) and forwards valid encryptions
(after having refreshed them).

Open Questions. We identify two major opens questions: the first one is to construct practically interesting
ACE from noisy, post-quantum assumptions such as LWE – the challenge here is that it always seems possible
for a malicious sender to encrypt with just enough noise that any further manipulation by the sanitizer makes
the decryption fail. This can be addressed using “bootstrapping” techniques, but this is not likely to lead to
schemes with efficiency comparable to the ones based on DDH or Pailler described above. The second open
question is to design sublinear ACE scheme with practical efficiency even for limited classes of interesting
predicates such as e.g., P (i, j) = 1⇔ i ≥ j.

1.3 Related Work

One of the main challenges in our setting is to prevent corrupt senders to communicate to corrupt receivers us-
ing subliminal channels (e.g., by producing the encryptions with maliciously generated randomness). In some
sense we are trying to prevent steganography [HLA02]. Recent work on cryptographic firewalls [MS15,DMS15]
also deals with this problem, but in the context of preventing malicious software implementations to leak
information via steganographic techniques. Raykova et al. [RZB12] presented solutions to the problem of
access control on outsourced data, with focus on hiding the access patterns from the cloud (this is not a
concern in our application since all receivers receive all ciphertexts) and in preventing malicious writers from
updating files they are not allowed to update. However they only guarantee that malicious writers are caught
if they do so, while we want to prevent any communication between corrupt senders and receivers. Backes and
Pfitzmann introduced the notion of probabilistic non-interference which allows to relate cryptography to the
notion of information flow for both transitive [BP03] and intransitive policies [BP04]. Halevi et al. [HKN05]
address the problem of enforcing confinement in the T10 OSD protocol, in the presence of a fully trusted
manager (which has a role similar to the sanitizer in our model). Fehr and Fischlin [FF15] study the case
of sanitizable signatures in the context of an intermediate party that sanitizes messages and signatures send
over the channel. The special party learns as little as possible about the messages and signatures. However,
they do not prevent corrupt senders from sending information to corrupt receivers. Finally, the problem of
hiding policies and credentials in the context of attribute based encryption has been studied by Frikken et
al. [FAL06], Kapadia et al. [KTS07], Müller and Katzenbeisser [MK11], and Ferrara et al. [FFLW15]. How-
ever, they do not consider the case of preventing corrupt sender from communicating with corrupt receivers
(e.g. by sending the message unencrypted over the channel).

2 Defining ACE

ACE Notation. An access control encryption (ACE) scheme is defined by the following algorithms:

6 Similar to a re-randomizable encryption scheme, where we do not require sanitized ciphertexts to look indistin-
guishable from fresh encryptions.
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Setup: The Setup algorithm on input the security parameter κ and a policy P : [n]× [n]→ {0, 1} outputs
a master secret key msk and public parameters pp, which include the message spaceM and ciphertext
spaces C, C′.7

Key Generation: The Gen algorithm on input the master secret key msk, an identity i ∈ {0, . . . , n+ 1},8

and a type t ∈ {sen, rec, san} outputs a key k. We use the following notation for the three kind of keys
in the system:
– eki ← Gen(msk, i, sen) and call it an encryption key for i ∈ [n]
– dkj ← Gen(msk, j, rec) and call it a decryption key for j ∈ [n]
– ek0 = dk0 = pp;
– rk ← Gen(msk, n+ 1, san) and call it the sanitizer key ;

Encrypt: The Enc algorithm on input an encryption key eki and a message m outputs a ciphertext c.
Sanitizer: San transforms an incoming ciphertext c ∈ C into a sanitized ciphertext c′ ∈ C′ using the sanitizer

key rk;
Decryption: Dec recovers a message m′ ∈M∪ {⊥} from a ciphertext c′ ∈ C′ using a decryption key dkj .

ACE Requirements. We formalize Properties 1-3 from the introduction in the following way:

Definition 1 (Correctness). For all m ∈M, i, j ∈ [n] such that P (i, j) = 1:

Pr [Dec (dkj , San (rk,Enc (eki,m))) 6= m] ≤ negl (κ)

with (pp,msk) ← Setup(1κ, P ), eki ← Gen(msk, i, sen), dkj ← Gen(msk, j, rec), and rk ← Gen(msk, n +
1, san), and the probabilities are taken over the random coins of all algorithms.

Definition 2 (No-Read Rule). Consider the following game between a challenger C and a stateful ad-
versary A:

No-Read Rule

Game Definition Oracle Definition

1. (pp,msk)← Setup(1κ, P );
2. (m0,m1, i0, i1)← AOG(·),OE(·)(pp);
3. b← {0, 1};
4. c← Enc(Gen(msk, ib, sen),mb);
5. b′ ← AOG(·),OE(·)(c);

OG(j, t):
1. Output k ← Gen(msk, j, t);

OE(i,m):
1. eki ← Gen(msk, i, sen);
2. Output c← Enc(eki,m);

We say that A wins the No-Read game if b = b′, |m0| = |m1|, i0, i1 ∈ {0, . . . , n} and one of the following
holds:

Payload Privacy: For all queries q to OG with q = (j, rec) it holds that

P (i0, j) = P (i1, j) = 0

Sender Anonymity: For all queries q to OG with q = (j, rec) it holds that

P (i0, j) = P (i1, j) and m0 = m1

7 We use the convention that all other algorithms take pp as input even if not specified. Formally, one can think of
the pp as being part of msk and all other keys ek, dk, sk.

8 To make notation more compact we define two special identities: i = 0 representing a sender or receiver with no
rights such that P (0, j) = 0 = P (i, 0) for all i, j ∈ [n]; i = n+ 1 to be the sanitizer identity, which cannot receive
from anyone but can send to all i.e., P (n+ 1, j) = 1 ∀j ∈ [n] and P (i, n+ 1) = 0 ∀i ∈ [n]
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We say an ACE scheme satisfies the No-Read rule if for all PPT A

advA = 2 ·

∣

∣

∣

∣

Pr[A wins the No-Read game]−
1

2

∣

∣

∣

∣

≤ negl(κ)

Definition 2 captures the requirement that only intended receivers should be able to learn anything about
the message (payload privacy) and that no one (even intended receivers) should learn anything about the
identity of the sender (sender anonymity). Note that the ciphertext c sent by the challenger to the adversary
has not been sanitized and that the adversary is allowed to query for the sanitizer key rk. This implies
that even the sanitizer (even with help of any number of senders and unintended receivers) should not
learn anything. Note additionally that the adversary is allowed to query for the encryption keys eki0 , eki1
corresponding to the challenge identities i0, i1, which implies that the ability to encrypt to a particular
identity does not automatically grant the right to decrypt ciphertexts created with that identity (e.g., a user
might be able to write top-secret documents but not to read them). Note that if ib = 0 for some b ∈ {0, 1},
then the definition implies that it is possible to create “good looking” ciphertexts even without having access
to any of the senders’ keys. This is explicitly used in our solution with linear complexity. Furthermore note
that if there exist multiple keys for a single identity (e.g., the output of Gen(msk, i, sen) is randomized), then
our definition does not guarantee that the adversary can ask the oracle OG for the encryption key used to
generate the challenge ciphertext. The definition can be easily amended to grant the adversary this power
but (since in all our constructions eki is a deterministic function of msk and i) we prefer to present the
simpler definition. Finally, the encryption oracle OE models the situation that the adversary is allowed to
see encrypted messages under identities for which he does not have the encryption key.

Definition 3 (No-Write Rule). Consider the following game between a challenger C and a stateful
adversary A:

No-Write Rule

Game Definition Oracle Definition

1. (pp,msk)← Setup(1κ, P );
2. (c, i′)← AOE(·),OS(·)(pp);
3. eki′ ← Gen(msk, i′, sen);
4. rk ← Gen(msk, n+ 1, san);
5. r ←M;
6. b← {0, 1},

– If b = 0, c′ ← San(rk,Enc(eki′ , r));
– If b = 1, c′ ← San(rk, c);

7. b′ ← AOE(·),OR(·)(c′);

OS(j, t):
1. Output k ← Gen(msk, j, t);

OR(j, t):
1. Output k ← Gen(msk, j, t);

OE(i,m):
1. eki ← Gen(msk, i, sen);
2. c← Enc(eki,m);
3. Output c′ ← San(rk, c);

Let QS (resp. Q) be the set of all queries q = (j, t) that A issues to OS (resp. both OS and OR). Let IS be
the set of all i ∈ [n] such that (i, sen) ∈ QS and let J be the set of all j ∈ [n] such that (j, rec) ∈ Q. Then
we say that A wins the No-Write game if b′ = b and all of the following hold:

1. (n+ 1, san) 6∈ Q;
2. i′ ∈ IS ∪ {0};
3. ∀i ∈ IS , j ∈ J , P (i, j) = 0;

We say an ACE scheme satisfies the No-Write rule if for all PPT A

advA = 2 ·

∣

∣

∣

∣

Pr[A wins the No-Write game]−
1

2

∣

∣

∣

∣

≤ negl(κ)
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Definition 3 captures the property that any set of (corrupt) senders {Si}i∈I cannot transfer any informa-
tion to any set of (corrupt) receivers {Rj}j∈J unless at least one of the senders in I is allowed communication
to at least one of the receivers in J (Condition 3)9. This is modelled by saying that in the eyes of the receivers,
the sanitized version of a ciphertext coming from this set of senders looks like the sanitized version of a fresh
encryption of a random value produced by one of these senders (Condition 2). Note that if the adversary
does not ask for any encryption key (i.e., IS = ∅), then the only valid choice for i′ is 0: this implies that
(as described for the no-read rule) there must be a way of constructing “good looking” ciphertexts using
the public parameters only10 and this property is used crucially in the construction of our linear scheme.
Furthermore, we require that the adversary does not corrupt the sanitizer (Condition 1) which is, as dis-
cussed in the introduction, an unavoidable condition. Finally, the encryption oracle OE again models the
situation that the adversary is allowed to see encrypted messages under identities for which he do not have
the encryption key.

3 Linear ACE from Standard Assumptions

The roadmap of this section is the following: we construct an ACE scheme for a single identity (i.e., n = 1
and P (1, 1) = 1) from standard number theoretic assumptions, and then we construct an ACE scheme for
any predicate P : [n]× [n]→ {0, 1} using a repetition scheme. The complexity of the final scheme (in terms
of public-key and ciphertext size) is n times the complexity of the single-identity scheme.

3.1 ACE for a Single Identity

We propose two constructions of ACE for a single identity (or 1-ACE for short). The first is based on the
DDH assumption and is presented in this section, while the second is based on the security of Pailler’s
cryptosystem and is deferred to Appendix C.1. Both schemes share the same basic idea: the encryption key
ek is some secret value α, and an encryption of a message m is a pair of encryptions (c0, c1) = (E(α), E(m)).
The sanitizer key is also the value α, and a sanitized ciphertext is computed as c′ = c1 · (c0 · E(−α))s

which (thanks to the homomorphic properties of both ElGamal and Pailler) is an encryption of a uniformly
random value unless c0 is an encryption of α, in which case it is an encryption of the original message m.
The decryption key is simply the decryption key for the original encryption scheme, which allows to retrieve
m from c′. Note that even knowing the decryption key is not enough to construct ciphertexts which “resist”
the sanitization, since the receiver never learns the value α.

1-ACE from DDH: Our first instantiation is based on the ElGamal public-key encryption scheme [Gam85].
The construction looks similar to other double-strand versions of ElGamal encryption which have been used
before in the literature to achieve different goals (e.g., by Golle et al. [GJJS04] in the context of universal
re-encryption and by Prabhakaran and Rosulek [PR07] in the context of rerandomizable CCA security).

Construction 1. Let EGACE = (Setup,Gen,Enc, San,Dec) be a 1-ACE scheme defined by the following
algorithms:

Setup: Let (G, q, g) be the description of a cyclic group of prime order q generated by g. Let (α, x)← Zq×Zq

be uniform random elements, and compute h = gx. Output the public parameter pp = (G, q, g, h) and
the master secret key msk = (α, x). The message space isM = G and the ciphertext spaces are C = G4

and C′ = G×G.
Key Generation: Given the master secret key msk, the encryption, decryption and sanitizer key are com-

puted as follows:
– ek = α;
– dk = −x;

9 Note that the adversary is allowed to ask for any senders’ key in the post-challenge queries.
10 Recall that we defined ek0 = pp.

8



– rk = −α;
Encryption: Given the message m and an encryption key ek, sample random r1, r2 ∈ Zq and output:

(c0, c1, c2, c3) = (gr1 , gekhr1 , gr2 ,mhr2)

(and encryptions for the identity 0 are random tuples from G4).
Sanitize: Given a ciphertext c = (c0, c1, c2, c3) ∈ C and a sanitizer key rk, sample uniform random s1, s2 ∈

Zq and output:

(c′0, c
′
1) = (c2c

s1
0 gs2 , c3(g

rkc1)
s1hs2)

Decryption: Given a ciphertext c′ = (c′0, c
′
1) ∈ C

′ and a decryption key dk, output:

m′ = c′1(c
′
0)

dk

Lemma 1. Construction 1 is a correct 1-ACE scheme that satisfies the No-Read Rule and the the No-Write
Rule assuming that the DDH assumption holds in G.

Proof. Correctness: Let c = (c0, c1, c2, c3) be an honestly generated ciphertext, and let c′ = (c′0, c
′
1) be a

sanitized version of c. We check that (c′0, c
′
1) is still an encryption of the original message m:

c′1(c
′
0)

dk = c3(g
rkc1)

s1hs2(c2c
s1
0 gs2)dk

= mhr2(g−αgαhr1)s1hs2(gr2gr1s1+s2)−x

= mhr2+r1s1+s2g−x(r2+r1s1+s2) = m

Thus, the sanitization of a valid ciphertext produces a new valid ciphertext under the same identity and of
the same message.

No-Read Rule: There are three possible cases, depending on which identities the adversary queries during
the game: the case (i0, i1) = (0, 0) is trivial as both Enc(ek0,mb) for b ∈ {0, 1} are random ciphertexts;
the case (i0, i1) = (1, 1) is trivial if the adversary asks for the decryption key dk, since in this case it must
be that m0 = m1. The case where the adversary does not ask for the decryption key and i0 6= i1 implies
the case where the adversary does not ask for the decryption key and (i0, i1) = (1, 1) using standard hybrid
arguments (i.e., if Enc(ek,m) is indistinguishable from a random ciphertext c← C for all m, then Enc(ek,m0)
is indistinguishable from Enc(ek,m1) for all m0,m1). So we are only left to prove that honest encryptions are
indistinguishable from a random element in C = G4, which follows in a straightforward way from the DDH
assumption. In particular, since (g, h, gr2 , hr2) is indistinguishable from (g, h, gr2 , hr3) for random r2, r3 we
can replace c3 with a uniformly random element (independent of m). Notice that neither α (the encryption
and sanitizer key) nor encryptions from oracle OE will help the adversary distinguish. Thus, we can conclude
that the adversary’s advantage is negligible, since he cannot distinguish in all three cases.

No-Write Rule: We only need to consider two cases, depending on which keys the adversary asks for before
producing the challenge ciphertext c and identity i′: 1) the adversary asks for ek before issuing his challenge
(c, i′) with i′ ∈ {0, 1} (and receives no more keys during the distinguishing phase) and 2) the adversary
asks for dk before issuing his challenge (c, 0) and then asks for ek during the distinguishing phase. Case 1)
follows directly from the DDH assumption: without access to the decryption key the output of the sanitizer
is indistinguishable from a random ciphertext thanks to the choice of the random s2, in particular since
(g, h, gs2 , hs2) is indistinguishable from (g, h, gs2 , hs3) for random s2, s3 we can replace (c′0, c

′
1) with uniformly

random elements in G. Case 2) instead has to hold unconditionally, since the adversary has the decryption
key. We argue that the distribution of San(rk, (c0, c1, c2, c3)) is independent of its input. In particular, given
any (adversarially chosen) (c0, c1, c2, c3) ∈ G4 we can write:

(c0, c1, c2, c3) = (gδ0 , gδ1 , gδ2 , gδ3)

9



Then the output c′ ← San(rk, c) is

(c′0, c
′
1) = (c2c

s1
0 gs2 , c3(g

rkc1)
s1hs2)

= (gδ2+s1δ0+s2 , gδ3+s1(δ1−α)+s2x)

Which is distributed exactly as a uniformly random ciphertext (gγ0 , gγ1) with (γ0, γ1) ∈ Zq ×Zq since for all
(γ0, γ1) there exists (s0, s1) such that:

γ0 = δ2 + s1δ0 + s2 and γ1 = δ3 + s1(δ1 − α) + s2x

This is guaranteed unless the two equations are linearly dependent i.e., unless α = (δ1−xδ0) which happens
only with negligible probability thanks to the principle of deferred decisions. The adversary is allowed to
see sanitized ciphertext from the encryption oracle. However, this does not help him distinguish, since the
output of the San algorithm is distributed exactly as a uniform ciphertext. Thus, we can conclude that the
adversary’s advantage is negligible, since he cannot distinguish in both cases.

3.2 Construction of an ACE Scheme for Multiple Identities

In this section we present a construction of an ACE scheme for multiple identities, which is based on the
1-ACE scheme in a black-box manner. In a nutshell, the idea is the following: we run n copies of the 1-ACE
scheme and we give to each receiver j the decryption key dkj for the j-th copy of the scheme. An encryption
key for identity i is given by the set of encryption keys ekj of the 1-ACE scheme such that P (i, j) = 1. To
encrypt, a sender encrypts the same message m under all its encryption keys ekj and puts random ciphertexts
in the positions for which he does not know an encryption key. The sanitizer key contains all the sanitizer
keys for the 1-ACE scheme: this allows the sanitizer to sanitize each component independently, in such a
way that for all the positions for which the sender knows the encryption key, the message “survives” the
sanitization, whereas in the other positions the output is uniformly random.

Example. We conclude this informal introduction of our repetition scheme by giving a concrete example of
an ACE scheme for the Bell-LaPadula access control policy with three levels of access: Level 1: top-secret,
level 2: secret, level 3: public. The predicate of this access control is defined as P (i, j) = 1 ⇔ i ≥ j. This
predicate ensures the property of no write down and no read up as discussed in the introduction. Table 1
shows the structure of the keys and the ciphertext for the different levels of access.

i eki dki c

1 {ek1} dk1 ( Enc(ek1,m), c′2, c′3 )
2 {ek1, ek2} dk2 ( Enc(ek1,m), Enc(ek2,m), c′′3 )
3 {ek1, ek2, ek3} dk3 ( Enc(ek1,m), Enc(ek2,m), Enc(ek3,m) )

Table 1. Access Control Encryption Scheme for Bell-LaPadula access control policy. c′2, c
′
3, c

′′
3 are random ciphertexts

from C.

Construction 2. Let 1ACE = (Setup,Gen,Enc, San,Dec) be a 1-ACE scheme. Then we can construct an
ACE scheme ACE = (Setup,Gen,Enc, San,Dec) defined by the following algorithms:

Setup: Let n be the number of senders/receivers specified by the policy P . Then run n copies of the 1ACE

setup algorithm

(pp1ACEi ,msk1ACEi )← 1ACE.Setup(1κ) for i = 1, . . . , n

10



For each of the 1ACE master secret keys run the 1ACE key generation algorithm on each of the three
modes. For i ∈ [n] do the following

ek1ACEi ← 1ACE.Gen(msk1ACEi , sen)

dk1ACEi ← 1ACE.Gen(msk1ACEi , rec)

rk1ACEi ← 1ACE.Gen(msk1ACEi , san)

Output the public parameter and the master secret key11

pp = {pp1ACEi }i∈[n], msk := {ek1ACEi , dk1ACEi , rk1ACEi }i∈[n]

Key Generation: On input an identity i ∈ {0, . . . , n+1}, a mode {sen, rec, san} and the master secret key
msk, output a key depending on the mode

– eki := {ek
1ACE
j }j∈S , where S ⊆ [n] is the subset s.t. j ∈ S iff P (i, j) = 1;

– dki := dk1ACEi ;
– rk := {rk1ACEj }j∈[n];

Encrypt: On input an encryption key eki and a message m encrypt the message under each of the 1ACE

encryption keys in eki and sample uniform random ciphertext for each public key not in the encryption
key. Thus, for j = 1, . . . , n do the following

– If ek1ACEj ∈ eki then compute c1ACEj ← 1ACE.Enc(ek1ACEj ,m).

– If ek1ACEj /∈ eki then sample c1ACEj ←$ C
1ACE
j .12

Output the ciphertext c :=
(

c1ACE1 , . . . , c1ACEn

)

.
Sanitizer: On input a ciphertext c and a sanitizer key rk, sanitize each of the n 1ACE ciphertexts as follows

c′i
1ACE

← 1ACE.San(rk1ACEi , c1ACEi ) for i = 1, . . . , n

Output the sanitized ciphertext c′ := (c′1
1ACE

, . . . , c′n
1ACE

).
Decryption: On input a ciphertext c and a decryption key dki decrypt the i’th 1ACE ciphertext

m′ ← 1ACE.Dec(dk1ACEi , c1ACEi )

We can prove that the scheme presented above satisfies correctness as well as the no-read and the no-write
rule, by reducing the properties of the repetition scheme to properties of the scheme with a single identity
using hybrid arguments. The formal proofs are deferred to Appendix C.2.

4 Polylogarithmic ACE from iO

In this section, we present our construction of ACE with polylogarithmic complexity in the number of roles
n.

At first it might seem that it is easy to construct an ACE scheme with short ciphertexts by using NIZK
and re-randomizable encryption: the sender would send to the sanitizer a ciphertext and a NIZK proving that
the ciphertext is a well-formed encryption of some message using a public key that the sender is allowed to
send to (for instance, each sender could have a signature on their identity to be able to prove this statement).
Now the sanitizer drops the NIZK and passes on the re-randomized ciphertext. However, the problem is that
the sanitizer would need to know the public key of the intended receiver to be able to re-randomize (and we
do not want to reveal who the receiver is).

11 There exists some encoding function that takes a message m from the message space of the ACE scheme and
encodes it into a message of each of the 1-ACE message spaces. The ciphertext spaces of the ACE scheme are the
crossproduct of all the 1-ACE ciphertext spaces, thus C = C1ACE1 × · · · × C1ACEn and C′ = C′1

1ACE
× · · · × C′n

1ACE
.

12 Here c1ACEj ←$ C
1ACE

j is a shorthand for c1ACEj ← 1ACE.Enc(pp1ACEj ,⊥).
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As described in the introduction, we build our ACE scheme on top of a FE scheme which is sanitizable,
which roughly means that given a ciphertext it is possible to produce a new encryption of the same message
which is independent of the randomness used in the original encryption (this is a relaxation of the well-known
re-randomizability property, in the sense that we do not require sanitized ciphertexts to look indistinguishable
from fresh encryptions e.g., they can be syntactically different). We construct such an FE scheme by modifying
the FE scheme of Garg et al. [GGH+13], and therefore our construction relies on the assumption that
indistinguishability obfuscation exists. We define and construct sFE in Section 4.1 and then construct ACE
based on sFE (and a regular PRF) in Section 4.3.

4.1 Sanitizable Functional Encryption Scheme – Definition

A sanitizable functional encryption (sFE) scheme is defined by the following algorithms:

Setup: The Setup algorithm on input the security parameter κ outputs a master secret key msk and public
parameters pp, which include the message spaceM and ciphertext spaces C, C′.

Key Generation: The Gen algorithm on input the master secret key msk and a function f , outputs a
corresponding secret key SKf .

Encrypt: The Enc algorithm on input the public parameters pp and a message m, outputs a ciphertext
c ∈ C

Sanitizer: The San algorithm on input the public parameters pp and a ciphertext c ∈ C, transforms the
incoming ciphertext into a sanitized ciphertext c′ ∈ C′

Decryption: The Dec algorithm on input a secret key SKf and a sanitized ciphertext c′ ∈ C′ that encrypts
message m, outputs f(m).

For the sake of exposition we also define a master decryption algorithm that on input c ← Enc(pp,m),
returns m ← MDec(msk, c).13 We formally define correctness and IND-CPA security for an sFE scheme
(which are essentially the same as for regular FE), and then we define the new sanitizable property which,
as described above, is a relaxed notion of the re-randomization property.

Definition 4 (Correctness for sFE). Given a function family F . For all f ∈ F and all messages m ∈M:

Pr [Dec(Gen(msk, f), San(pp,Enc(pp,m))) 6= f(m)] ≤ negl(κ)

where (pp,msk)← Setup(1κ) and the probabilities are taken over the random coins of all algorithms.

Definition 5 (IND-CPA Security for sFE). Consider the following game between a challenger C and
a stateful adversary A:

IND-CPA Security

Game Definition Oracle Definition

1. (pp,msk)← Setup(1κ);
3. (m0,m1)← AO(·)(pp);
4. b← {0, 1};
5. c∗ ← Enc(pp,mb)
6. b′ ← AO(·)(c∗);

O(fi):
1. Output SKfi ← Gen(msk, fi);

13 Formally MDec is a shortcut for Dec(Gen(msk, fid), San(pp, c)), where fid is the identity function.
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We say that A wins the IND-CPA game if b = b′, |m0| = |m1|, and that fi(m0) = fi(m1) for all oracle
queries fi. We say a sFE scheme satisfies the IND-CPA security property if for all PPT A

advA = 2 ·

∣

∣

∣

∣

Pr[A wins the IND-CPA game]−
1

2

∣

∣

∣

∣

≤ negl(κ)

Definition 6 (Sanitization for sFE). Consider the following game between a challenger C and a stateful
adversary A:

Sanitization

Game Definition

1. (pp,msk)← Setup(1κ);
2. c← A(pp,msk);
3. b← {0, 1},

– If b = 0, c∗ ← San(pp, c);
– If b = 1, c∗ ← San(pp,Enc(pp,MDec(msk, c)));

4. b′ ← A(c∗);

We say that A wins the sanitizer game if b = b′. We say a sFE scheme is sanitizable if for all PPT A

advA = 2 ·

∣

∣

∣

∣

Pr[A wins the sanitizer game]−
1

2

∣

∣

∣

∣

≤ negl(κ)

Note that in Definition 6 the adversary has access to the master secret key.

4.2 Sanitizable Functional Encryption Scheme – Construction

We now present a construction of a sFE scheme based on iO. The construction is based on the functional
encryption construction by Garg et. al [GGH+13]. In their scheme a ciphertext contains two encryptions of
the same message and a NIZK of this statement, thus an adversary can leak information via the randomness
in the encryptions or the randomness in the NIZK. In a nutshell we make their construct sanitizable by:

1. Replacing the PKE scheme with a sanitizable PKE (as formalized in Definition 7).
2. Letting the sanitizer drop the original NIZK, and append a proof of a proof instead (i.e., a proof that

the sanitizer knows a proof that would make the original verifier accept). Thanks to the ZK property the
new NIZK does not contain any information about the randomness used to generate the original NIZK.

3. Changing the decryption keys (obfuscated programs) to check the new proof instead.

Building Blocks. We formalize here the definition of sanitization for a PKE scheme. Any re-randomizable
scheme (such as Paillier and ElGamal) satisfies perfect PKE sanitization, but it might be possible that more
schemes fit the definition as well.

Definition 7 (Perfect PKE Sanitization). LetM be the message space and R be the space from which
the randomness for the encryption and sanitization is taken. Then for every message m ∈ M and for all
r, s, r′ ∈ R there exists s′ ∈ R such that

San(pk,Enc(pk,m; r); s) = San(pk,Enc(pk,m; r′); s′)

Our constructions also uses (by now standard) tools such as pseudo-random functions (PRF), indistin-
guishability obfuscation (iO) and statistical simulation-sound non-interactive zero-knowledge (SSS-NIZK),
which are defined for completeness in Appendix A.
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Constructing sFE. We are now ready to present our construction of sFE.

Construction 3. Let sPKE = (Setup,Enc, San,Dec) be a perfect sanitizable public key encryption scheme.
Let NIZK = (Setup,Prove,Verify) be a statistical simulation-sound NIZK. Let iO be an indistinguishability
obfuscator. We construct a sanitizable functional encryption scheme sFE = (Setup,Gen,Enc, San,Dec) as
follows:

Setup: On input the security parameter κ the setup algorithm compute the following
1. (pk1, sk1)← sPKE.Setup(1κ);
2. (pk2, sk2)← sPKE.Setup(1κ);
3. crsE ← NIZK.Setup(1κ, RE);
4. crsS ← NIZK.Setup(1κ, RS);
5. Output pp = (crsE , crsS , pk1, pk2) and msk = sk1;
The relations RE and RS are defined as follows: Let xE = (c1, c2) be a statement and wE = (m, r1, r2)
a witness, then RE is defined as

RE = {(xE , wE) | c1 = sPKE.Enc(pk1,m; r1) ∧ c2 = sPKE.Enc(pk2,m; r2)}

Let xS = (c′1, c
′
2) be a statement and wS = (c1, c2, s1, s2, πE) a witness, then RS is defined as

RS =

{

(xS , wS)

∣

∣

∣

∣

c′1 = sPKE.San(pk1, c1; s1) ∧ c′2 = sPKE.Enc(pk2, c2; s2)
∧NIZK.Verify(crsE , (c1, c2), πE) = 1

}

Key Generation: On input the master secret keymsk and a function f output the secret key SKf = iO(P )
as the obfuscation of the following program

Program P

Input: c′1, c
′
2, πS ;

Const: crsS , f, sk1;

1. If NIZK.Verify(crsS , (c
′
1, c

′
2), πS) = 1;

output f(sPKE.Dec(sk1, c
′
1));

2. else output fail;

Encrypt: On input the public parameters pp and a messagem compute two PKE encryptions of the message

c1 ← sPKE.Enc(pk1,m; r1)

c2 ← sPKE.Enc(pk2,m; r2)

with randomness (r1, r2). Then create a proof πE that (xE , wE) ∈ RE with xE = (c1, c2) and witness
wE = (m, r1, r2)

πE ← NIZK.Prove(crsE , xE , wE ; tE)

using randomness tE . Output the triple c = (c1, c2, πE) as the ciphertext.
Sanitizer: On input the public parameter pp and a ciphertext c = (c1, c2, πE) ∈ C compute the following

1. If NIZK.Verify(crsE , xE , πE) = 1 then
c′1 ← sPKE.San(pk1, c1; s1)
c′2 ← sPKE.San(pk2, c2; s2)
π2 ← NIZK.Prove(crsS , xS , wS ; tS)
Output c′ = (c′1, c

′
2, π2)

2. Else
Output c′ ← sFE.San(pp, sFE.Enc(pp,⊥))

with randomness (s1, s2) and tS in the PKE and NIZK respectively. The generated NIZK is a proof that
(xS , wS) ∈ RS with xS = (c′1, c

′
2) and wS = (c1, c2, s1, s2, πE).

Decryption: On input a secret key SKf and a ciphertext c′ = (c′1, c
′
2, πS) ∈ C

′, run the obfuscated program
SKf (c

′
1, c

′
2, πS) and output the answer.
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Lemma 2. Construction 3 is a correct functional encryption scheme.

Proof. Correctness follows from the correctness of the iO, PKE, and SSS-NIZK schemes, and from inspection
of the algorithms.

Lemma 3. For any adversary A that breaks the IND-CPA security property of Construction 3, there exists
an adversary B for the computational zero-knowledge property of the NIZK scheme, an adversary C for the
IND-CPA security of the PKE scheme, and an adversary D for iO such that the advantage of adversary A
is

advsFE,A ≤ 4|M|
(

advNIZK,B + advsPKE,C + q · adviO,C(1− 2psss)
)

where q is the number of secret key queries adversary A makes during the game, and psss is the negligible
soundness error of the SSS-NIZK scheme.

Proof. This proof follows closely the selective IND-CPA security proof of the FE construction presented by
Garg et. al. [GGH+13]. See Appendix D.1 for the full proof.

Lemma 4. For any adversary A that breaks the sanitizer property of Construction 3, there exists an
adversary B for the computational zero-knowledge property of the NIZK scheme such that the advantage of
adversary A is

advsFE,A ≤ 2|M|advNIZK,B

Proof. This lemma is proven via a series of indistinguishable hybrid games between the challenger and the
adversary. For the proof to go through we notice that the challenger needs to simulate the NIZK proof.
At a first look it might seem that the reduction needs to guess the entire ciphertext before setting up the
system parameter, but in fact we show that it is enough to guess the message beforehand! Thus, we can use
a complexity leveraging technique to get the above advantage. See Appendix D.2 for the full proof.

4.3 Polylog ACE scheme

In this section, we present a construction of an ACE scheme for multiple identities based on sanitizable
functional encryption. The idea of the construction is the following: an encryption of a message m is a
sFE encryption of the message together with the senders identity i and a MAC of the message based on
the identity. Crucially, the encryption keys for all identities are generated in a pseudorandom way from a
master key, thus it is possible to check MACs for all identities using a compact circuit. The sanitizer key is a
sFE secret key for a special function that checks that the MAC is correct for the claimed identity. Then the
sanitization consists of sanitizing the sFE ciphertext, and then using the sanitizer key to check the MAC. The
decryption key for identity j is a sFE secret key for a function that checks that identity i in the ciphertext
and identity j are allowed to communicate (and ignores the MAC). The function then outputs the message
iff the check goes through.

Construction 4. Let sFE = (Setup,Gen,Enc, San,Dec) be a sanitizable functional encryption scheme. Let
F1, F2 be pseudorandom functions. Then we can construct an ACE scheme ACE = (Setup,Gen,Enc, San,Dec)
defined by the following algorithms:

Setup: Let K ← {0, 1}κ be a key for the pseudorandom function F1. Run (ppsFE,msksFE)← sFE.Setup(1κ).
Output the public parameter pp = ppsFE and the master secret key msk = (msksFE,K)

Key Generation: Given the master secret key msk and an identity i, the encryption, decryption and
sanitizer key are computed as follows:
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– eki ← F1(K, i)
– dki ← sFE.Gen(msksFE, fi)
– rk ← sFE.Gen(msksFE, frk)

where the functions fi and frk are defined as follows

Decryption function Sanitizer function

fi(m, j, t):
1. If P (j, i) = 1: output m;
2. Else output ⊥;

frk(m, j, t):
1. ekj = F1(K, j);
2. If t = F2(ekj ,m): output 1;
3. Else output 0;

Encryption: On input a message m and an encryption key eki, compute t = F2(eki,m) and output

c = sFE.Enc(ppsFE, (m, i, t))

Sanitizer: Given a ciphertext c and the sanitizer key rk = SKrk check the MAC and output a sanitized
FE ciphertext
1. c′ = sFE.San(ppsFE, c)
2. If sFE.Dec(SKrk, c

′) = 1: output c′

3. Else output San(rk,Enc(ek0,⊥))
Decryption: Given a ciphertext c′ and a decryption key dkj = SKj output

m′ = sFE.Dec(SKj , c
′)

Lemma 5. Construction 4 is a correct ACE scheme

Proof. Let P (i, j) = 1 for some i, j. Let c′ be a honest sanitization of a honest generated encryption of
message m under identity i:

c′ = San(rk,Enc(eki,m)) = sFE.San(ppsFE, sFE.Enc(ppsFE, (m, i, F2(eki,m))))

Given the decryption key dkj = SKj ← sFE.Gen(msk, fj). Then the correctness property of the sFE

scheme gives

Pr [Dec(dkj , c
′) = m] = Pr [sFE.Dec(SKj , c

′) = m] ≤ negl(κ)

Theorem 1. For any adversary A that breaks the No-Read Rule of Construction 4, there exists an adversary
B for the IND-CPA security of the sanitizable functional encryption scheme, such that the advantage of A
is

advACE,A ≤ advsFE,B

Proof. Assume that any adversary wins the IND-CPA security game of the sanitizable functional encryption
(sFE) scheme with advantage at most ǫ. Assume for contradiction that there is an adversary A that wins
the ACE no-read game with advantage greater than ǫ, then we can construct an adversary B that wins the
IND-CPA security game for the sFE scheme with advantage greater than ǫ.

B starts by generating K ← {0, 1}κ for some pseudorandom function F1. Then B receives ppsFE from
the challenger and forwards it as the ACE public parameter to the adversary A. Adversary A then performs
some oracle queries to OG and OE to which B replies as follows:
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– B receives (j, sen), then he sends ekj ← F1(K, j) to A.
– B receives (j, rec), then he makes an oracle query O(fj) to the challenger and gets back SKj . B sends

dkj = SKj to A.
– B receives (j, san), then he makes an oracle query O(frk) to the challenger and gets back SKrk. B sends

rk = SKrk to A.
– B receives (i,m), then he computes eki ← F1(K, i) and sends to A

c← sFE.Enc(ppsFE, (m, i, F2(eki,m)))

After the oracle queries B receives messages m0,m1 and identities i0, i1 from adversary A. Then B computes
ekil ← F1(K, il) for l ∈ {0, 1} and sends msFE

0 and msFE
1 to the challenger, where msFE

l = (ml, il, F2(ekil ,ml))
for l ∈ {0, 1}. Then the sFE challenger sends a ciphertext c′, which B forwards to A as the ACE ciphertext.
This is followed by a new round of oracle queries.

If the sFE challenger is in case b = 0, then c′ is generated as an sFE encryption of message msFE
0 , and

we are in the case b = 0 in the no-read game. Similar, if the sFE challenger is in case b = 1, then we are
in the case b = 1 in the no-read game. Note that our adversary respects the rules of the IND-CPA game,
since frk(m

sFE
0 ) = frk(m

sFE
1 ) = 1 and fj(m

sFE
0 ) = fj(m

sFE
1 ) for all j such that SKj was queried. This follows

directly from the payload privacy (the function outputs ⊥) and sender anonymity (msFE
0 = msFE

1 ) properties
of the no-read rule. Thus, we can conclude that if A wins the no-read game with non-negligible probability,
then B wins the IND-CPA security game for the sFE scheme.

Theorem 2. For any adversary A that breaks the No-Write Rule of Construction 4, there exists an adver-
sary B for the PRF security, an adversary C for the sanitizer property of the sFE scheme, and an adversary
D for the IND-CPA security of the sFE scheme, such that the advantage of A is

advACE,A ≤ 3 · advPRF,B + advsFE,C + advsFE,D + 2−κ

Proof. This theorem is proven by presenting a series of hybrid games.

Hybrid 0. The no-write game for b = 1

Hybrid 1. As Hybrid 0, except that when the challenger receives a oracle request (i, sen) he saves the identity:
IS = IS ∪ i, and the encryption key eki ← F1(K, i). When the challenger receives the challenge (c, i′) he uses
the sFE master decryption to get

(m∗, i∗, t∗)← sFE.MDec(msksFE, c)

If i∗ /∈ IS , then the challenger generates eki∗ honestly. Next, he checks that t∗ = F2(eki∗ ,m
∗). If the check goes

through he computes the challenge response as c∗ ← sFE.San(ppsFE, c), otherwise c∗ ← San(rk,Enc(ek0,⊥)).

Hybrid 2. As Hybrid 1, except that the encryption keys are chosen uniformly at random: eki ←$ {0, 1}
κ for

all i, (note that eki∗ is also chosen at random).

Hybrid 3. As Hybrid 2, except that after receiving and master decrypting the challenge, the challenger check
whether i∗ ∈ IS . If this is the case the challenger checks the MAC t∗ as above, otherwise he compute the
response as c∗ ← San(rk,Enc(ek0,⊥)).

Hybrid 4. As Hybrid 3, except that if the checks i∗ ∈ IS and t∗ = F2(eki∗ ,m
∗) go through, then the

challenger computes the response as

c∗ ← sFE.San(ppsFE, sFE.Enc(ppsFE, (m∗, i∗, t∗)))
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Hybrid 5. As Hybrid 4, except that the challenge response is computed as

c∗ = San(rk,Enc(eki′ , r))

where r ←$M and rk ← Gen(msk, n+ 1, san).

Hybrid 6. As Hybrid 5, except that the encryption keys are generated honestly: eki ← F1(K, i) for all i.
Observe, this is the no-write game for b = 0.

Now we show that each sequential pair of the hybrids are indistinguishable.

Claim 1. Hybrid 0 and Hybrid 1 are identical.

Proof. This follows directly from the definition of the sanitization and sanitizer key rk.

Claim 2. For any adversary A that can distinguish Hybrid 1 and Hybrid 2, there exists an adversary B for
the security of PRF F1 such that the advantage of A is advA ≤ advPRF,B .

Proof. Assume that any adversary can break the PRF security with advantage ǫ, and assume for contradiction
that we can distinguish the hybrids with advantage greater than ǫ. Then we can construct an adversary B
that breaks the PRF security with advantage greater than ǫ.

B starts by creating the public parameters honestly and sends it to the adversary. All the adversary
oracle queries are answered as follows: whenever B receives (i, sen) from the adversary, he sends i to the
PRF challenger, receives back yi, set eki := yi, and sends eki to the adversary. When B receives the challenge
(i,m) he ask the challenger for the encryption key (as before), and encrypts m. The rest of adversary’s queries
are answered honestly by using the algorithms of the construction. When B receives (c, i′) from the adversary,
he master decrypts the ciphertext to get (m∗, i∗, t∗). If i∗ /∈ IS , then B creates eki∗ by sending i∗ to the
challenger. B concludes the game by forwarding the adversary’s guess b′ to the challenger.

Observe that the if yi ← F1(K, i) then we are in Hybrid 1, and if yi is uniform random, then we are in
Hybrid 2. Thus, if adversary A can distinguish between the hybrids, then B can break the constraint PRF
property.

Claim 3. For any adversary A that can distinguish Hybrid 2 and Hybrid 3, there exists an adversary B′

for the security of PRF F2 such that the advantage of A is advA ≤ advPRF,B
′

+ 2−κ.

Proof. Assume that any adversary can break the PRF security with advantage ǫ − 2−κ, and assume for
contradiction that we can distinguish the hybrids with advantage greater than ǫ. Then we can construct an
adversary B′ that breaks the PRF security with advantage greater than ǫ− 2−κ.

B′ starts by creating the public parameters and sending them to the adversary. The adversary’s oracle
queries are answered honestly by using the algorithms of the construction. When C receives the challenge
(c, i′) he master decrypts the ciphertext to get (m∗, i∗, t∗). Then he sends m∗ to the challenger and receives
back t′. If t′ = t∗ then B′ guess that the challenger is using the pseudorandom function F2, otherwise B′

guess that the challenger is using a random function.

We evaluate now the advantage of B′ in the PRF game: Observe, if t′ is generated using F2, then B′

outputs “PRF” with probability exactly ǫ. In the case when t′ is generated using a random function, then it
does not matter how t∗ was created, and the probability that t′ = t∗ is 2−κ. Thus, the advantage of adversary
B′ is greater than ǫ− 2κ.

Claim 4. For any adversary A that can distinguish Hybrid 3 and Hybrid 4, there exists an adversary C for
the sanitizer property of the sFE scheme such that the advantage of A is advA ≤ advsFE,C .
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Proof. Assume that any adversary wins the sanitizer game for the sFE scheme with advantage ǫ, and assume
for contradiction that we can distinguish the hybrids with advantage greater than ǫ. Then we can construct
an adversary C that wins the sanitizer game with advantage greater than ǫ.

C starts by receiving the sFE system parameters from the challenger, and he forwards the public param-
eters as the ACE public parameters to the adversary. The adversary’s oracle queries are answered honestly
by using the algorithms of the construction, since C receives the sFE master secret key from the challenger.
When C receives the challenge (c, i′) he master decrypts the ciphertext to get (m∗, i∗, t∗). Then he checks
that i∗ ∈ IS and t∗ = F2(eki∗ ,m

∗). If the check goes through he sends c to the challenger and receives back
a sFE sanitized ciphertext c′. Thus, the challenge response is c∗ = c′. C concludes the game by forwarding
the adversary’s guess b′ to the challenger.

Observe, if c′ = sFE.San(ppsFE, c), then we are in Hybrid 3. On the other hand, we are in Hybrid 4 if

c′ = sFE.San(ppsFE, sFE.Enc(ppsFE, sFE.MDec(msksFE, c)))

Thus, if adversary A can distinguish between the hybrids, then C can break the sFE sanitizer property.

Claim 5. For any adversary A that can distinguish Hybrid 4 and Hybrid 5, there exists an adversary D for
the IND-CPA security of the sFE scheme such that the advantage of A is advA ≤ advsFE,D.

Proof. Assume that any adversary wins the IND-CPA game for the sFE scheme with advantage ǫ, and
assume for contradiction that we can distinguish the hybrids with advantage greater than ǫ. Then we can
construct an adversary D that wins the IND-CPA game with advantage greater than ǫ.

D start by receiving the sFE public parameters from the challenger and forwards it to the challenger.
The adversary’s oracle queries are answered by sending secret key queries to the challenger, and otherwise
using the algorithms of the construction (see the proof of Theorem 1 for more details). When D receives
the challenge (c, i′) he master decrypts the ciphertext to get (m∗, i∗, t∗). Then he checks that i∗ ∈ IS and
t∗ = F2(eki∗ ,m

∗). If the check goes through he set m0 = (m∗, i∗, t∗), otherwise he sets m0 = (⊥, 0,⊥). Then
he creates m1 = (r, i′, F2(eki′ , r)), sends m0 and m1 to the challenger, and receives back an sFE encryption
c′. Next, D creates the response c∗ = sFE.San(ppsFE, c′). D concludes the game by forwarding the adversary’s
guess b′ to the challenger.

If c′ is an encryption of the message m0, then we are in Hybrid 4, and if it is an encryption of m1, then
we are in Hybrid 5. Thus, if adversary A can distinguish between the hybrids, then D can break the sFE
IND-CPA security.

Claim 6. For any adversary A that can distinguish Hybrid 5 and Hybrid 6, there exists an adversary B for
the security of PRF F1 such that the advantage of A is advA ≤ advPRF,B .

The proof follow the same structure as the proof for Claim 2.

From these claims we can conclude that for any adversary A that can distinguish Hybrid 0 and Hybrid
6, there exists an adversary B for the PRF security, an adversary C for the sanitizer property of the sFE
scheme, and an adversary D for the IND-CPA security of the sFE scheme, such that the advantage of A is

advACE,A ≤ 3 · advPRF,B + advsFE,C + advsFE,D + 2−κ
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A Standard Building Blocks

A.1 Pseudorandom Function

Definition 8 (PRF). We say F : {0, 1}κ×{0, 1}∗ → {0, 1}κ is a pseudorandom function if for all PPT A

advA = 2 · |Pr[AOb(·)(1κ) = b]− 1/2| < negl(κ)

with O0 a uniform random function and O1 = FK .

A.2 Statistical Simulation-Sound Non-Interactive Zero-Knowledge Proofs

The content of this subsection is taken almost verbatim from [GGH+13]. Let L be a language and R a
relation such that x ∈ L if and only if there exists a witness w such that (x,w) ∈ R. A non-interactive proof
system [BFM88] for a relation R is defined by the following PPT algorithms

Setup: The Setup algorithm takes as input the security parameter κ and outputs common reference string
crs.

Prove: The Prove algorithm takes as input the common reference string crs, a statement x, and a witness
w, and outputs a proof π.

Verify: The Verify algorithm takes as input the common reference string crs, a statement x, and a proof π.
It outputs 1 if it accepts the proof, and 0 otherwise.

The non-interactive proof system must be complete, meaning that if R(x,w) = 1 and crs ← Setup(1κ)
then

Verify(crs, x,Prove(crs, x, w)) = 1

Furthermore, the proof system must be statistical sound, meaning that no (unbounded) adversary can
convince a honest verifier of a false statement. Moreover, we define the following additional properties of a
non-interactive proof system.

Definition 9 (Computational Zero-Knowledge). A non-interactive proof NIZK = (Setup,Prove,Verify)
is computational zero-knowledge if there exists a polynomial time simulator Sim = (Sim1, Sim2) such that
for all non-uniform polynomial time adversaries A we have for all x ∈ L that

Pr [crs← Setup(1κ);π ← Prove(crs, x, w) : A(crs, x, π) = 1]
≈

Pr [(crs, τ)← Sim1(1
κ, x);π ← Sim2(crs, τ, x) : A(crs, x, π) = 1]

where crs is the common reference string, x is the statement, w is the witness, π is the proof, and τ is the
trapdoor.

Thus, the definition states that the proof do not reveal any information about the witness to any bounded
adversary. In the definition this is formalized by the existence of two simulators, where Sim1 returns a
simulated common reference string together with a trapdoor that enables Sim2 to simulate proofs without
access to the witness.

Definition 10 (Statistical Simulation-Soundness). A non-interactive proof NIZK = (Setup,Prove,Verify)
is statistical simulation-sound (SSS) if for all statements x and all (unbounded) adversaries A we have that

Pr

[

(crs, τ)← Sim1(1
κ, x);π ← Sim2(crs, τ, x) :

∃(x′, π′) : x′ 6= x : Verify(crs, x′, π′) = 1 : x′ /∈ L

]

≤ psss
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where psss = negl(κ) is negligible in the security parameter.

Thus, the definition states that it is not possible to convince a honest verifier of a false statement even
if the adversary is given a simulated proof.

Remark 1. If a proof system is statistical simulation-sound then it is also statistical sound. Thus, we can
upper bound the negligible probability of statistical soundness by the negligible probability of the statistical
simulation-soundness.

A.3 Indistinguishability Obfuscation

We use an indistinguishability obfuscator like the one proposed in [GGH+13] such that C̄ ← iO(C) which
takes any polynomial size circuit C and outputs an obfuscated version C̄ that satisfies the following prop-
erty.

Definition 11 (Indistinguishability Obfuscation). We say iO is an indistinguishability obfuscator for
a circuit class C if for all C0, C1 ∈ C such that ∀x : C0(x) = C1(x) and |C0| = |C1| it holds that:

1. ∀C ∈ C, ∀x ∈ {0, 1}n, iO(C)(x) = C(x);
2. |iO(C)| = poly(λ|C|)
3. for all PPT A:

advA = 2 · |Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| < negl(λ)

B Equivalent Definition of the No-Write Rule

In this section we provide an alternative definition of the No-Write rule and we prove that this is equivalent
to the No-Write rule of Definition 3 (Section 2). The alternative definition is used in the proof of Theorem 4.
In Definition 3 the challenger chooses, encrypts and sanitizes a random message if b = 0. In the following
definition, we will let the adversary choose the message to be encrypted and sanitized in case b = 0. Thus,
we replace the randomly chosen message with an adversarial chosen message.

Definition 12 (Alternative No-Write Rule). Consider the following game between a challenger C and
a stateful adversary A:

No-Write Rule

Game Definition Oracle Definition

1. (pp,msk)← Setup(1κ, P );
2. (c, i′,m)← AOE(·),OS(·)(pp);
3. eki′ ← Gen(msk, i′, sen);
4. rk ← Gen(msk, n+ 1, san);
5. b← {0, 1},

– If b = 0, c′ ← San(rk,Enc(eki′ ,m));
– If b = 1, c′ ← San(rk, c);

6. b′ ← AOE(·),OR(·)(c′);

OS(j, t):
1. Output k ← Gen(msk, j, t);

OR(j, t):
1. Output k ← Gen(msk, j, t);

OE(i,m):
1. eki ← Gen(msk, i, sen);
2. c← Enc(eki,m);
3. Output c′ ← San(rk, c);

Let QS (resp. Q) be the set of all queries q = (j, t) that A issues to OS (resp. both OS and OR). Let IS be
the set of all i ∈ [n] such that (i, sen) ∈ QS and let J be the set of all j ∈ [n] such that (j, rec) ∈ Q. Then
we say that A wins the No-Write game if b′ = b and all of the following hold:

1. (n+ 1, san) 6∈ Q;
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2. i′ ∈ IS ∪ {0};
3. ∀i ∈ IS , j ∈ J , P (i, j) = 0;

We say an ACE scheme satisfies the No-Write rule if for all PPT A

advA = 2 ·

∣

∣

∣

∣

Pr[A wins the No-Write game]−
1

2

∣

∣

∣

∣

≤ negl(κ)

Lemma 6. Let ACE be a correct ACE scheme that satisfies the No-Read Rule. Then ACE satisfies the
alternative No-Write Rule from Def. 12 iff it satisfies the No-Write Rule from Def. 3.

Proof. The lemma is proven by splitting the bi-implication in two cases:

Def. 12 implies Def. 3. Assume that ACE satisfies the alternative no-write rule, and assume for contra-
diction that there is an adversary A that wins the ACE no-write game (from Def. 3), then we can construct
an adversary B that wins the alternative ACE no-write game.

Adversary B receives the public parameters from the challenger (from Def. 12) and forwards them to
the adversary A. Then A performs some oracle queries, which adversary B forwards to the challenger.
After the oracle queries B receives the challenge (c, i′) from adversary A. Next, B picks a message r ←M
and sends (c, i′, r) to the challenger. The challenger respond with a sanitized ciphertext c′, where c′ =
San(rk,Enc(eki′ , r)) if b = 0, and c′ = San(rk, c) if b = 1. Adversary B forward c′ to A. This is followed by a
new round of oracle queries. Note that c′ corresponds to the challenge of the no-write game of Def. 3. Thus,
we can conclude that if A wins the ACE no-write game (from Def. 3), then B wins the alternative ACE
no-write game (from Def. 12).

No-Read Rule and Def. 3 implies Def. 12. This is proven by presenting a series of hybrid games.

Hybrid 0. The alternative no-write game (Def. 12) for b = 0.

Hybrid 1. As Hybrid 0, except the challenger ignores the message m send by the adversary and draws its
own message r to encrypt.

Hybrid 2. As Hybrid 1, except b = 1.

Hybrid 3. The alternative no-write game (Def. 12) for b = 1.

Claim 1. Assume that the ACE scheme ACE satisfies the no-read rule, then Hybrid 0 and Hybrid 1 are
indistinguishable.

Proof. Assume for contradiction that there is an adversary A that can distinguish between the hybrids, then
we can construct an adversary B that wins the no-read game from Def. 2.

Adversary B forwards the public parameter from the challenger (of the no-read game) to adversary A,
and forwards the oracle queries made by A to the challenger. Note that A plays the alternative no-write
game, where the allowed oracle queries are a strict subset of the allowed oracle queries in the no-read game.
Next, A sends the challenge (c, i′,m) to B, who draws a random message r ←M and sends (m, r, i′, i′) to
the challenger. The challenger draws a random bit b∗ and responds with c∗ ← Enc(eki′ ,m) if b∗ = 0, and
c∗ ← Enc(eki′ , r) if b

∗ = 1. Adversary B queries the challenger for the sanitizer key rk, sanitizes the challenge
ciphertext c′ = San(rk, c∗) and sends c′ to adversary A, who performs a new set of oracle queries. Note, if
b∗ = 0 then we are in Hybrid 0 and if b∗ = 1 then we are in Hybrid 1, which means that if adversary A can
distinguish between the hybrids, then adversary B breaks the no-read rule. Thus, Hybrid 0 and Hybrid 1
are indistinguishable.

24



Claim 2. Assume that the ACE scheme ACE satisfies the no-write rule from Def. 3, then Hybrid 1 and
Hybrid 2 are indistinguishable.

Proof. Assume for contradiction that there is an adversary A that can distinguish between the hybrids, then
we can construct an adversary B that wins the no-write game (from Def. 3).

Adversary B forwards the public parameter from the challenger (from Def. 3) to adversary A, and
forwards the oracle queries made by A to the challenger. Next, B receives the challenge (c, i′,m) from
adversary A and forward (c, i′) to the challenger. The challenger draws a random bit b∗ and responds with
c′ = San(rk,Enc(eki′ , r)) for random r ←M if b∗ = 0, and c′ = San(rk, c) if b∗ = 1. Adversary B forwards
c′ to A, which is followed by a new round of oracle queries. Note, if b∗ = 0 then we are in hybrid 1, and if
b∗ = 1 then we are in hybrid 2, which means that if adversary A can distinguish between the hybrids, then
adversary B breaks the no-read rule. Thus, Hybrid 1 and Hybrid 2 are indistinguishable.

Claim 3. Hybrid 2 and Hybrid 3 are identical.

Proof. In both hybrids the adversary sends the challenge (c, i′,m) and the challenger will in both cases
respond with c′ = San(rk, c).

Thus, we can conclude that the alternative definition of the no-write rule presented in Def. 12 is equivalent
to the no-write rule presented in Def. 3 in Section 2.

C Linear ACE

C.1 ACE for a Single Identity from Pailler

Our second instantiation of 1-ACE is based on Pailler’s cryptosystem [Pai99,DJ01]. The scheme uses the
same high level idea as the DDH-based instantiation.

Construction 5. Let PACE = (Setup,Gen,Enc, San,Dec) be a 1-ACE scheme defined by the following algo-
rithms:

Setup and Key Generation: The public parameters pp contain the modulus N and the master secret key
msk is the factorization of N . The encryption key for the only identity in the system is ek = α for a
random α ← ZN and the sanitizer key is rk = −α. Finally the decryption key dk is the master secret
key msk. Furthermore, the message space isM = ZN and the ciphertext spaces are C = Z

∗
N2 ×Z

∗
N2 and

C′ = Z
∗
N2 .

Encryption: To encrypt a message m ∈M with identity 1 first sample

(r0, r1)← Z
∗
N × Z

∗
N

and then output:

(c0, c1) = ((1 + ekN)rN0 , (1 +mN)rN1 )

(and encryptions for the identity 0 are random (c0, c1)← C.)
Sanitizer: On input (c0, c1) ∈ C and the randomization key rk sample (β, s) ∈ ZN × Z

∗
N and then output

c′ = c1 · (c0 · (1 + rkN))β · sN

Decryption: On input c′ ∈ C′ and the decryption key run the decryption of Pailler cryptosystem to get
m′ ∈M from c′.
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Lemma 7. Construction 5 is a correct 1-ACE scheme satisfying the No-Read and the No-Write Rule
assuming the Pailler’s assumption holds.

Proof. Correctness: Correctness follows from inspection: thanks to the homomorphic properties of Pailler
m′ = m+ (α− α)β = m.

No-Read Rule: Exactly as in Lemma 1 we only need to prove that honest encryptions are indistinguishable
from a random element in (ZN2 ×ZN2), which follows in a straightfoward way from the Pailler assumption:
both c0 and c1 are fresh Pailler encryptions using independent random values r0, r1, and the assumption
says that rN with r ← Z

∗
N is indistinguishable from a random element in ZN2 .

No-Write Rule: As in Lemma 1 there are only two cases, depending on which keys the adversary asks for
before producing the challenge ciphertext c and identity i′: 1) the adversary asks for ek before issuing his
challenge (c, i′) with i′ ∈ {0, 1} (and receives no more keys during the distinguishing phase) and 2) the
adversary asks for dk before issuing his challenge (c, 0) and then asks for ek during the distinguishing phase.
Case 1) follows directly from the security of Pailler cryptosystem: without access to the decryption key the
output of the sanitizer is indistinguishable from a random ciphertext thanks to the choice of the random s.
In case 2) instead the adversary has the decryption key, and we therefore need to argue that the distribution
of San(rk, (c0, c1)) is independent of its input unconditionally. Given any (c0, c1) ∈ C we can write:

(c0, c1) = ((1 + δ0N)tN0 , (1 + δ1N)tN1 )

Then the output c′ ← San(rk, (c0, c1)) is

c′ = c1 · (c0 · (1 + rkN))β · sN

= (1 + (δ1 + β(δ0 − α))N)(t1t
β
0 s)

N

Which is distributed exactly as a uniformly random ciphertext (1 + γN)uN with (γ, u) ∈ ZN ×Z
∗
N since for

all (γ, u) there exists (β, s) such that

γ = δ1 + β(δ0 − α) and u = t1t
β
0 s

Which is guaranteed unless δ0 = α which happens only with negligible probability thanks to the principle
of deferred decisions.

C.2 The Repetition Scheme - Proofs

Lemma 8. Assume that 1ACE is a correct 1-ACE scheme. Then the ACE scheme ACE from Construction 2
enjoys correctness.

Proof. Given any i, j ∈ [n] such that P (i, j) = 1. Let c =
(

c1ACE1 , . . . , c1ACEn

)

be an honest encryption of m

under encryption key eki, and let c′ := (c′1
1ACE

, . . . , c′n
1ACE

) be a honest sanitized version of c. Thus, the

ciphertext c1ACEj is a honest created 1-ACE encryption (since ek1ACEj ∈ eki), and c′j
1ACE

is a sanitized version

of c1ACEj . Observe, given the decryption key dkj = dk1ACEj , the decryption algorithm ACE.Dec decrypts the
j’th 1ACE ciphertext. This means that

Pr [ACE.Dec(dkj , c
′) 6= m] = Pr

[

1ACE.Dec(dk1ACEj , c′j
1ACE

) 6= m
]

< negl(κ)

The last inequality comes from the correctness of the 1-ACE scheme. Thus, we can conclude that ACE

enjoys correctness.
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Theorem 3. Assume that 1ACE is a 1-ACE scheme that satisfies the No-Read Rule, and let ACE be the
ACE scheme from Construction 2 using 1ACE as the underlying 1-ACE scheme. Then ACE satisfies the
No-Read Rule.

Proof. Let QG be the set of all queries q = (j, t) that the adversary issues to the oracle OG, and let J be
the set of all j ∈ [n] such that q = (j, rec) ∈ QG.

The no-read rule is shown by presenting a series of hybrid games such that no adversary can distinguish
between two successive hybrid games with non-negligible probability. In the hybrid games we replace the en-
cryption algorithm with the algorithm: Enc∗k(eki0 , eki1 ,m0,m1), which starts by encrypting the two messages
m0 and m1 under the keys eki0 and eki1 to get

c0 = (c01, . . . , c
0
n)← Enc(eki0 ,m0)

c1 = (c11, . . . , c
1
n)← Enc(eki1 ,m1)

Next, the algorithm outputs the following ciphertext (c11, . . . , c
1
k, c

0
k+1, . . . , c

0
n), where the first k positions are

the first k 1-ACE ciphertexts from c1, and the last n−k positions are the last n−k 1-ACE ciphertexts from
c0.

Game 0. The no-read game with b = 0;

Hybrid k for k = 0, . . . , n. Like Game 0 but the encryption algorithm is replaced by the Enc∗k algorithm;

Game 1. The no-read game with b = 1;

Payload Privacy. The conditions for the payload privacy property states that for all j ∈ J it holds that
P (i0, j) = P (i1, j) = 0. This means that for all j ∈ J we have that ek1ACEj /∈ ekis for s ∈ {0, 1}.

Game 0 ≈ Hybrid 0. In Game 0 the ciphertext is generated by running c← Enc(eki0 ,m0), while in Hybrid
0 the ciphertext is generated by running

c′ = (c01, . . . , c
0
n)← Enc∗0(eki0 , eki1 ,m0,m1)

From the description of the algorithm Enc∗0 we can conclude that c′ is an encryption of m0 generated by the
Enc algorithm using key eki0 . Thus, the two ciphertexts are identically distributed, which means that Game
0 and Hybrid 0 are identical and therefore indistinguishable to any adversary.

Hybrid k − 1 ≈ Hybrid k. The only difference between the two hybrids is the following: in Hybrid k − 1 the
k’th 1-ACE ciphertext is the k’th ciphertext from Enc(eki0 ,m0), while in Hybrid k the k’th 1-ACE ciphertext
is the k’th ciphertext from Enc(eki1 ,m1).

Observe that in Enc(ekis ,ms) for s ∈ {0, 1} the k’th ciphertext is a 1-ACE encryption of message ms

under key ek1ACEk if ek1ACEk ∈ ekis , otherwise the ciphertext is taken uniformly random from the 1-ACE
ciphertext space C1ACEk . Thus, we look at four cases

1. c0k ← C
1ACE

k and c1k ← C
1ACE

k

2. c0k ← C
1ACE

k and c1k ← 1ACE.Enc(ek1ACEk ,m1)
3. c0k ← 1ACE.Enc(ek1ACEk ,m0) and c1k ← C

1ACE

k

4. c0k ← 1ACE.Enc(ek1ACEk ,m0) and c1k ← 1ACE.Enc(ek1ACEk ,m1)

Notice, from the condition of the the payload privacy we have that the adversary is only allowed to ask
for the decryption key dkk if ek1ACEk /∈ ekis for s ∈ {0, 1}. Thus, if the adversary gets dkk, then we are in
Case 1.

In Case 1 the two ciphertexts are clearly indistinguishable, since they are chosen uniformly random from
the same ciphertext space.
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In Case 2 and 3, the adversary does not have the decryption key dkk. If the adversary A is able to
distinguish between Hybrid k − 1 and Hybrid k, then we can construct a new adversary B that breaks the
no-read rule of the 1-ACE scheme. Intuitively this is done as follow: when B receives the challenge from
adversary A he forwards the messages together with identities 1 and 0, and receives back a 1-ACE ciphertext
c′ from the 1-ACE challenger. Then B creates the challenge ciphertext as in Hybrid k, replaces the k’th
1-ACE ciphertext by c′, and sends the ciphertext to the adversary. B will answer adversary A’s queries as
follows

– A queries (i, sen) where P (i, k) = 1, then B queries the challenger for encryption key ek1ACEk , and
construct the rest of the encryption key eki honestly.

– A queries (n+ 1, san), then B queries the challenger for the sanitizer key rk1ACEk , and construct the rest
of the sanitizer key rk honestly.

– A queries (i,m) where P (i, k) = b for b ∈ {0, 1}, then B sends the query (b,m) to the challenger, receives
back a ciphertext c1ACEk , and construct the rest of the response honestly.

– For all other queries B will answer using the algorithms of the scheme.

Notice, A will never query (k, rec) since then we would not be in case 2 or 3. Thus, B never has to query the
challenger for dk1ACEk . If A wins the no-read game with non-negligible probability, then so does adversary
B. This contradicts our assumption that the 1-ACE scheme satisfies the no-read rule. Thus, adversary A
cannot distinguish between the two hybrids.

In Case 4, the adversary does not have the decryption key dkk. To argue that the two ciphertexts are
indistinguishable, we use an intermediate step. Following the same arguments as above, we argue that c0k is
indistinguishable from a random ciphertext c∗, and then we argue that c1k is indistinguishable from c∗. Thus,
the two ciphertexts are indistinguishable.

Hybrid n ≈ Game 1. In Game 1 the ciphertext is generated by running c← Enc(eki1 ,m1), while in Hybrid
n the ciphertext is generated by running

c′ = (c11, . . . , c
1
n)← Enc∗n(eki0 , eki1 ,m0,m1)

From the description of the algorithm Enc∗n we can conclude that c′ is actually an encryption of m1 generated
by the Enc algorithm using key eki1 . Thus, the two ciphertexts are identically distributed, which means that
Game 1 and Hybrid n are identical and therefore indistinguishable to any adversary.

Sender Anonymity. The conditions for the sender anonymity property states that for all j ∈ J it holds
that P (i0, j) = P (i1, j) and m0 = m1. This means that for all j ∈ J we have that ek1ACEj is either in both
encryption keys ekis for s ∈ {0, 1}, or not in any of the two.

Game 0 ≈ Hybrid 0. The same arguments as in the payload privacy case.

Hybrid k − 1 ≈ Hybrid k. The only difference between the two hybrids is the following: in Hybrid k − 1 the
k’th 1-ACE ciphertext is the k’th ciphertext from Enc(eki0 ,m0), while in Hybrid k the k’th 1-ACE ciphertext
is the k’th ciphertext from Enc(eki1 ,m1). Again, we look at four cases depending on whether ek1ACEk ∈ ekis
for some s ∈ {0, 1}

1. c0k ← C
1ACE

k and c1k ← C
1ACE

k

2. c0k ← C
1ACE

k and c1k ← 1ACE.Enc(ek1ACEk ,m1)
3. c0k ← 1ACE.Enc(ek1ACEk ,m0) and c1k ← C

1ACE

k

4. c0k ← 1ACE.Enc(ek1ACEk ,m0) and c1k ← 1ACE.Enc(ek1ACEk ,m1)

Notice, from the condition of the sender anonymity property, we have that the adversary can ask for the
decryption key dkk, iff P (i0, k) = P (i1, k) for all k ∈ J . Thus, if the adversary queries dkk then we are in
Case 1 or 4.
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In Case 1, the two ciphertexts are indistinguishable, since they are chosen uniformly random from the
same ciphertext space.

In Case 2 and 3, the adversary does not have the decryption key dkk. Thus, if the adversary can distinguish
between the two hybrids, then he breaks the no-read rule of the 1-ACE scheme (see Case 2 and 3 for payload
privacy).

In Case 4, we have P (i0, k) = P (i1, k) = 1, and the adversary is allowed to get the corresponding
decryption key dkk. If the adversary queries dkk, then the condition states that m0 = m1. Thus, the two
1-ACE ciphertexts are encryptions of the same message under the same 1-ACE encryption key. Thus, the
adversary cannot distinguish between the hybrids. If the adversary does not ask for the decryption key dkk,
then we are in the same situation as in Case 4 for payload privacy.

Hybrid n ≈ Game 1. The same arguments as in the payload privacy case.

Theorem 4. Assume 1ACE is a 1-ACE scheme that satisfies the No-Write Rule, and let ACE be the ACE
scheme from Construction 2 using 1ACE as the underlying 1-ACE scheme. Then ACE satisfies the No-Write
Rule.

Proof. This theorem is shown by presenting a series of hybrid games such that no adversary can distinguish
between two successive hybrids with non-negligible probability.

In the hybrid games we replace the encryption/sanitization algorithm with a special challenge ciphertext
generation algorithm: Challengek, which takes the encryption key eki′ , the sanitizer key rk, a random element
r from the message space, and the ciphertext c generated by the adversary. The algorithm then encrypts
and sanitizes message r to get

(c01, . . . , c
0
n)← ACE.San(rk,ACE.Enc(eki′ , r))

and sanitizes the ciphertext c to get

(c11, . . . , c
1
n)← ACE.San(rk, c)

Finally, the algorithm outputs the following ciphertext (c11, . . . , c
1
k, c

0
k+1, . . . , c

0
n), where the first k positions

are sanitized encryptions of a random message, and the last n − k are sanitizations of the adversary’s
ciphertext.

Game 0. The no-write game with b = 0

Hybrid k for k = 0, . . . , n. Like Game 0 but replace the encryption algorithm with the special challenge
ciphertext generation algorithm Challengek.

Game 1. The no-write game with b = 1

Game 0 ≈ Hybrid 0. In Hybrid 0 the ciphertext c′ is generated by running Challenge0. From the description
of this algorithm we can conclude that this is a ciphertext generated by ACE.San(rk,ACE.Enc(eki′ , r)). Thus,
Game 0 and Hybrid 0 both generates the ciphertext c′ as a sanitized ACE encryption of a random message.
Thus, Game 0 and Hybrid 0 are identical and therefore indistinguishable to any adversary.

Game k−1 ≈ Hybrid k. The difference between the two hybrids is the following: in Hybrid k−1 the k’th 1-
ACE ciphertext is the k’th ciphertext from ACE.San(rk,ACE.Enc(eki′ , r)), while in Hybrid k the k’th 1-ACE
ciphertext is the k’th ciphertext from ACE.San(rk, c). This give rise to the following two cases depending on
whether ek1ACEk ∈ eki′

1. c0k ← 1ACE.San(rk1ACEk , 1ACE.Enc(ek1ACEk , r))
and c1k ← 1ACE.San(rk1ACEk , c1ACEk )
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2. c0k ← C
′
k
1ACE

and c1k ← 1ACE.San(rk1ACEk , c1ACEk )

Notice, from the condition stated by the no-write rule we have that for all i ∈ IS , j ∈ J it holds that
P (i, j) = 0. This means that for all the encryption keys the adversary gets before the challenge and for
all the decryption keys he gets during the game it must hold that the decryption keys cannot be used to
decrypt anything encrypted using the encryption keys. Specially, this means that if the adversary gets dkk
then ek1ACEk /∈ eki′ (i.e. Case 2).

In Case 1, the adversary does not get the decryption key dkk. However, he has queried the encryption
key eki′ , which contains ek1ACEk . If the adversary A is able to distinguish between Hybrid k − 1 and Hybrid
k, then he is able to distinguish between the case where the k’th 1-ACE ciphertext is created as a sanitized
encryption of message r or the sanitization of his ciphertext. This means that we can construct an adversary
B that wins the alternative No-Write game (Def. 12, equivalent to Def. 3 by Lemma 6) for the 1-ACE scheme
with non-negligible probability. (Note that here it is necessary to use the alternative No-Write game since the
reduction must encrypt the same random value r in all positions.) Intuitively, this is done by letting B create
the ciphertext c′ as in Hybrid k, forward the challenge (c, i′, r), and replacing the k’th 1-ACE ciphertext by
the one he receives from the challenger. Finally, he sends the new ciphertext to the adversary A.

If A wins the game with non-negligible probability, then so does the adversary B. This gives us a
contradiction with the assumption that the 1-ACE scheme satisfies the no-write rule. Thus, we can conclude
that A cannot distinguish between the two hybrids. Furthermore, notice that the adversary A can query
encryption keys eki, where ek

1ACE

k ∈ eki. In this case the adversary B queries his challenger for the encryption
key ek1ACEk . This never conflicts the no-write game for the 1-ACE scheme, since the adversary A never queries
the decryption key dkk.

In Case 2, the adversary can freely query the decryption and encryption keys as long as he respect the
conditions of the no-write game: 1) He can query dkk iff ek1ACEk /∈ eki for all i ∈ IS , 2) He can query any
encryption key after the challenge. If the adversary A can distinguish between the two hybrids, we can create
an adversary B that wins the alternative no-write game (Def. 12) for the 1-ACE scheme. Intuitively, this is
done by letting B create the ciphertext c′ as in Hybrid k, forward the challenge together with message r,
and replacing the k’th 1-ACE ciphertext by the one he receives from the challenger. Notice that if adversary
A queries the decryption key dkk, then he cannot query any encryption key eki for i ∈ IS , which contains
ek1ACEk . Thus, adversary B can query to get the decryption key dk1ACEk but does not query for the encryption

key ek1ACEk until after the challenge. This means that the 1-ACE ciphertext c′k
1ACE

send by the challenger
is either a random 1-ACE ciphertext or a sanitization of c1ACEk . If A wins the game with non-negligible
probability, then so does the adversary B. This gives us a contradiction with the assumption that the 1-ACE
scheme satisfies the no-write rule. Thus, we can conclude that A cannot distinguish between the two hybrids.

If the adversary does not query the decryption key dkk, then he can either query an encryption key
eki, where ek1ACEk ∈ eki before the challenge (i.e. Case 1), or after the challenge (equivalent to Case 2).
Furthermore, notice that in both cases all encryption queries (i,m) are answered by sending the message to
the challenger to get the k’th 1-ACE sanitized ciphertext for the response.

Hybrid n ≈ Game 1. In Hybrid n the ciphertext c′ is generated by running Challengen. From the description
of this algorithm we can conclude that this is actually a ciphertext generated by ACE.San(rk, c). Thus, Game
1 and Hybrid n both generates the ciphertext c′ as a sanitized version of the ciphertext c. Thus, Game 1
and Hybrid n are identical and therefore indistinguishable to any adversary.

D Sanitizable Functional Encryption Scheme - Proofs

D.1 Proof of Lemma 3

In this appendix we show the full adaptive proof of the IND-CPA security for Construction 3. The proof
follows closely the selective IND-CPA security proof of the functional encryption scheme presented by Garg
et. al. [GGH+13]. The main differences between the proof are the following: we enhance their proof by
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making it adaptive and quantifying the advantage of the adversary. Furthermore, we make a small change
in the proof of the valid iO instance, which make the proof work for our sanitizable version of the functional
encryption scheme.

Game 0. The IND-CPA security game where b = 0;

Game 1. The IND-CPA security game where b = 1;

Before proving that Game 0 and Game 1 are indistinguishable, we prove that the following sequence of
hybrids are indistinguishable.

Hybrid 0. The challenger choose uniformly random two messages m′
0,m

′
1 ∈M. Then he proceeds as in Game

0 with the exception that when he receives m0 and m1 from the adversary, then he checks that m0 = m′
0 and

m1 = m′
1. If this is not the case, then the challenger aborts the game, otherwise he continues as in Game 0.

Hybrid 1. The same as Hybrid 0, except that after choosing the messages m′
0 and m′

1, the challenger
encrypts message m′

0 twice: c∗i = sPKE.Enc(pki,m
′
0; ri) for i = 1, 2. Then the challenger simulates the

common reference string crsE and NIZK proof π∗
E as follows

(crsE , τ)← NIZK.Sim1(1
κ, xE), π∗

E ← NIZK.Sim2(crsE , τ, xE)

where xE = (c∗1, c
∗
2) is the statement we want to prove (see definition of RE in Construction 3). Note: the

challenger still checks that m0 = m′
0 and m1 = m′

1.

Hybrid 2. The same as Hybrid 1, except that we change the message of the second PKE ciphertext. Thus,
the ciphertexts are computed as follows

c∗1 = sPKE.Enc(pk1,m
′
0; r1), c∗2 = sPKE.Enc(pk2,m

′
1; r2)

Note: crsE and π∗
E are still simulated.

Hybrid 3,i for i = 0, . . . , q. The same as Hybrid 2, except that in the first j ≤ i secret key queries the secret
key is generated as an obfuscation of program P2, while in the last j > i secret key queries the secret key is
generated as an obfuscation of program P1. Observe, Hybrid 2 and Hybrid 3,0 are identical.

Program P1 Program P2

Input: c1, c2, πS ;
Const: crsS , f, sk1;

1. If NIZK.Verify(crsS , (c1, c2), πS) = 1;

output f(sPKE.Dec(sk1, c1));

2. else output fail;

Input: c1, c2, πS ;
Const: crsS , f, sk2;

1. If NIZK.Verify(crsS , (c1, c2), πS) = 1;

output f(sPKE.Dec(sk2, c1));

2. else output fail;

Hybrid 4. The same as Hybrid 3, q, except that we change the message of the first PKE ciphertext. Thus,
the ciphertexts are computed as follows

c∗i = sPKE.Enc(pki,m
′
1; ri) for i = 1, 2

Hybrid 5,i for i = 0, . . . , q. The same as Hybrid 4, except that in the first j ≤ i secret key queries the secret
key is generated as an obfuscation of program P1, while in the last j > i secret key queries the secret key is
generated as an obfuscation of program P2. Observe, Hybrid 4 and Hybrid 5,0 is identical.
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Hybrid 6. The same as Hybrid 5, q, except that crsE and π∗
E is generated honestly, and the PKE ciphertexts

are generated as in Hybrid 5, q, but after we see the challenge, and have checked that m0 = m′
0 and m1 = m′

1.

We now show that each sequential pair of the hybrids are indistinguishable.

Claim 1. For any adversary A that can distinguish Hybrid 0 and Hybrid 1, there exists an adversary B for
the computational zero-knowledge property of the SSS-NIZK scheme such that the advantage of A is

advA ≤ advNIZK,B

Proof. Assume that any adversary breaks the computational zero-knowledge property with advantage at
most ǫ. Assume for contradiction that there exists an adversary A that distinguishes the hybrids with
advantage greater than ǫ, then we can construct a poly-time adversary B that breaks the computational
zero-knowledge property with advantage greater than ǫ.

B begins by choosing m′
0,m

′
1 ∈ M uniformly random. Then he computes the PKE public and secret

keys honestly, and runs one copy of the NIZK setup algorithm: crsS ← NIZK.Setup(1κ). Next, B encrypts
message m′

0 under both public keys: c∗i ← sPKE.Enc(pki,m
′
0; ri) for i = 1, 2, and sends xE = (c∗1, c

∗
2) and

wE = (m′
0, r1, r2) to the zero-knowledge challenger. In return B receives (crs′, π′), and he uses crsE = crs′

and π∗
E = π′. Thus, B lets the public parameters pp = (crsE , crsS , pk1, pk2), and the challenge response

c∗ = (c∗1, c
∗
2, π

∗
E). The rest of the game follow the structure of the sFE IND-CPA game, and concludes with

B forwarding A’s response b′ to the challenger.
Observe, if the challenger generates crs′ and π′ honestly, then we are in Hybrid 0, and if the challenger

simulates the proof, then we are in Hybrid 1. Thus, if adversary A can distinguish the hybrids with advantage
greater than ǫ, then adversary B can break the computational zero-knowledge property of the SSS-NIZK
scheme with advantage greater than ǫ. Thus, we reach a contradiction.

Claim 2. For any adversary A that can distinguish Hybrid 1 and Hybrid 2, there exists an adversary C for
the IND-CPA security game of the sanitizable PKE scheme such that the advantage of A is

advA ≤ advsPKE,C

Proof. Assume that any adversary wins the IND-CPA security game with advantage at most ǫ. Assume for
contradiction that there exists an adversary A that distinguishes the hybrids with advantage greater than
ǫ, then we can construct a poly-time adversary C that breaks the PKE IND-CPA security with advantage
greater than ǫ.

C begins by choosing m′
0,m

′
1 ∈ M uniformly random. Then he computes (pk1, sk1) ← sPKE.Setup(1κ)

and c∗1 ← sPKE.Enc(pk1,m
′
0; r1), and he runs one copy of the NIZK setup algorithm: crsS ← NIZK.Setup(1κ).

He then receives a second public key pk′ from the challenger, and sets pk2 = pk′. Next, he sends m′
0,m

′
1

to the challenger at receives back c′, and sets c∗2 = c′. Then C uses the SSS-NIZK simulator to generate
crsE and π∗

E for the statement xE = (c∗1, c
∗
2). Then, C sets the public parameters pp = (crsE , crsS , pk1, pk2),

and the challenge response c∗ = (c∗1, c
∗
2, π

∗
E). The rest of the game follow the structure of the sFE IND-CPA

game, and concludes with C forwarding A’s response b′ to the challenger.
Observe, if the challenger encrypts m′

0 then we are in Hybrid 1, and if the challenger encrypts m′
1 then

we are in Hybrid 2. Thus, if adversary A can distinguish the hybrids with advantage greater than ǫ, then
adversary C can break the IND-CPA security of the PKE scheme with advantage greater than ǫ. Thus, we
reach a contradiction.

Claim 3. For any adversary A that can distinguish Hybrid 3, i and Hybrid 3, i+1, there exists an adversary
D for iO such that the advantage of A is

advA ≤ adviO,C(1− 2psss)

where psss is the negligible probability of the statistical simulation-soundness for the SSS-NIZK scheme.
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Proof. Assume that any adversary wins the iO indistinguishable game with advantage at most ǫ. Assume for
contradiction that there exists an adversary A that distinguishes the hybrids with advantage greater than
ǫ, then we can construct a poly-time adversary D that breaks the iO property with advantage greater than
ǫ · (1− 2psss).

D begins by choosing m′
0,m

′
1 ∈ M uniformly random. Then he runs two copies of the PKE setup

algorithm and encrypts: c∗1 ← sPKE.Enc(pk1,m
′
0; r1) and c∗2 ← sPKE.Enc(pk2,m

′
1; r2). Next, he runs the

SSS-NIZK setup algorithm to get crsS , and uses the SSS-NIZK simulators to get crsE and π∗
E for statement

xE = (c∗1, c
∗
2). Then, D sets the public parameters pp = (crsE , crsS , pk1, pk2), and the challenge response

c∗ = (c∗1, c
∗
2, π

∗
E). Next, the game follows the structure of the sFE IND-CPA game, except the secret key

queries are generated as follows

– For j ≤ i the j’th secret key is generated as the obfuscation of program P2

– For j > i+ 1 the j’th secret key is generated as the obfuscation of program P1

– For j = i+1 the j’th secret key is generated as follows: D sends P1 and P2 to the challenger, and receives
back an obfuscated program P ′, which D sends to A as the i+ 1’th secret key.

D concludes the game by forwarding A’s response b′ to the challenger.

Assume that the two programs P1 and P2 are a valid iO instance, then we observe: if the challenger
obfuscates program P1, then we are in Hybrid 3, i, and if the challenger obfuscates program P2, then we
are in Hybrid 3, i+ 1. Thus, if adversary A can distinguish the hybrids with advantage greater than ǫ, then
adversary D can break the iO property with advantage greater than ǫ.

If the two program are not a valid iO instance, then D does not follow the rules of the iO game, and
cannot win the game. Let p be the probability that the two programs are a valid iO instance. Then the
adversary D can break the iO property with advantage greater than ǫp.

Next, we prove that P1 and P2 are a valid instance with probability p ≥ 1− 2psss. To prove this we look
at the possible inputs to the program. Let c′ = (c′1, c

′
2, πS) denote the sanitization of c = (c1, c2, πE).

1. c is a correct encryption of some message (i.e., c1 and c2 are encryption of the same message, and πE

is a proof of that), and c′ is a correct sanitization of ciphertext c (i.e., c′i is a PKE sanitization of ci for
i = 1, 2, and πS is a proof of that and a proof that πE is a correct proof).

2. c1 and c2 are PKE encryptions of different messages, but the proof πE verifies, and c′ is a correct
sanitization of ciphertext c.

3. c is an incorrect ciphertext such that the proof πE does not verify, and c′ is a correct sanitization of c.
4. c′ is an incorrect sanitized ciphertext such that the proof πS does not verify.

Case 1: the proof πS passes the verification, and both programs decrypt to the same message and compute
the same function.

Case 2: the statistical simulation-soundness of the SSS-NIZK used in the encryption gives us that with
probability negligible close to one, this only happens if c1 = c∗1 and c2 = c∗2 (i.e. the ciphertext for which the
proof was simulated). Since the simulated proof can be verified, we can construct a correct proof πS that
also verifies. Thus, program P1 decrypts c1 to m′

0 and outputs fi+1(m
′
0), while P2 decrypts c2 to m′

1 and
outputs fi+1(m

′
1). Thus, the two program have the same output, since fi+1(m

′
0) = fi+1(m

′
1). This means

that the two programs have different output on the same input with negligible probability psss.
Case 3: the statistical soundness property of the SSS-NIZK used in the sanitization gives us that this is

impossible with probability negligible close to one. Since the proof πE does not verify, we cannot construct
a proof πS that verifies. Thus, the two programs have different output on the same input with negligible
probability psss.

Case 4: The verification of the proof πS does not pass in both programs. Thus, both programs outputs fail.

This means, that the combined probability that the two programs have different output on the same
input can be upper bounded by 2psss. Thus, the probability that the two programs are a valid iO instance
is p ≥ 1− 2psss.
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Claim 4. For any adversary A that can distinguish Hybrid 3, q and Hybrid 4, there exists an adversary C
for the IND-CPA security game of the sanitizable PKE scheme such that the advantage of A is

advA ≤ advsPKE,C

The proof of the claim follow the same structure at the proof of Claim 2.

Claim 5. For any adversary A that can distinguish Hybrid 5, i and Hybrid 5, i+1, there exists an adversary
D for iO such that the advantage of A is

advA ≤ adviO,C(1− 2psss)

where psss is the negligible probability of the statistical simulation-soundness for the SSS-NIZK scheme.

The proof of the claim follow the same structure at the proof of Claim 3.

Claim 6. For any adversary A that can distinguish Hybrid 5, q and Hybrid 6, there exists an adversary B
for the computational zero-knowledge property of the SSS-NIZK scheme such that the advantage of A is

advA ≤ advNIZK,B

The proof of the claim follow the same structure at the proof of Claim 1.

From these claims we can conclude that for any adversary A that can distinguish Hybrid 0 and Hybrid
6, there exists an adversary B for the computational zero-knowledge property of the SSS-NIZK scheme, an
adversary C for the IND-CPA security game of the sanitizable PKE scheme, and an adversary D for iO such
that the advantage of A is

advA ≤ 2 · advNIZK,B + 2 · advsPKE,C + 2q · adviO,C(1− 2psss)

where q is the number of the secret key queries the adversary makes during the game.
We conclude the proof of Lemma 3 by proving that for any adversary E that can distinguish Game 0 and

Game 1, there exists an adversary A that can distinguish Hybrid 0 and Hybrid 6 such that the advantage of
E is

advsFE,E ≤ 2|M| · advA

Assume that any adversary E can distinguish Game 0 and Game 1 with advantage ǫ. We start by changing
the game such that the challenger guesses the two messages in the beginning of the games, and aborts if
the guesses is wrong. Thus, the advantage of the adversary is now ǫ/2|M|. Observe, the two new games are
identical to Hybrid 0 and Hybrid 6. Thus, we get the inequality which concludes the proof.

D.2 Proof of Lemma 4

In this appendix we show that Construction 3 fulfils the sanitizable property from Definition 6. Lets define
the following games

Game 0. The sanitization game where b = 0;

Game 1. The sanitization game where b = 1;

Before proving that Game 0 and Game 1 are indistinguishable, we prove that the following sequence of
hybrids are indistinguishable.

Hybrid 0. The challenger chooses a uniformly random message m ∈ M. Then he proceeds as in Game 0
with the exception that when he receives c from the adversary, he first checks that MDec(msk, c) = m. If
this is not the case, then the challenger aborts the game, otherwise he continues as in Game 0.
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Hybrid 1. The same as Hybrid 0, except that the challenger encrypts the message m twice and sanitizes the
two encryptions

ci ← sPKE.Enc(pki,m; ri) for i = 1, 2

c∗i ← sPKE.San(pki, ci; si) for i = 1, 2

When the challenger receives the challenge c he checks that MDec(msk, c) = m, constructs the proof πS

honestly, and sends the respond: (c∗1, c
∗
2, π

∗
S).

Hybrid 2. The same as Hybrid 1, except that after choosing the messages m, the challenger generates the
PKE keys (pki, ski)← sPKE.Setup(1κ) and generates crsE ← NIZK.Setup(1κ). Next, the challenger encrypts
the message m twice and sanitizes the two encryptions

ci ← sPKE.Enc(pki,m; ri) for i = 1, 2

c∗i ← sPKE.San(pki, ci; si) for i = 1, 2

Then the challenger simulates the common reference string crsS and NIZK proof π∗
S as follows

(crsS , τ)← NIZK.Sim1(1
κ, xS), π∗

S ← NIZK.Sim2(crsS , τ, xS)

where xS = (c∗1, c
∗
2) is the statement we want to prove (see definition of RS in Construction 3). Thus, the

public parameters are pp = (crsE , crsS , pk1, pk2), the master secret key is msk = sk1, and the challenger
response is (c∗1, c

∗
2, π

∗
S). When receiving the challenge c from the adversary, the challenger still checks that

MDec(msk, c) = m.

Hybrid 3. The same as Hybrid 2, except that after choosing the messages m we generate the system parame-
ters honestly and send them to the adversary. Next and before seeing the challenge, the challenger generates
two PKE encryptions of the message m and sanitizes them as in Hybrid 1 to get c∗1 and c∗2. Then he generates
the proofs πE and π∗

S honestly. Thus, the challenge response is c∗ = (c∗1, c
∗
2, π

∗
S). After receiving the challenge

c, the challenger still checks that MDec(msk, c) = m before sending c∗.

Hybrid 4. The challenger chooses a uniformly random message m ∈ M. Then he proceeds as in Game 1
with the exception that when he receives c from the adversary, then he checks that MDec(msk, c) = m.

We now show that each sequential pair of the hybrids are indistinguishable.

Claim 1. Hybrid 0 and Hybrid 1 are identical.

Proof. Let e1 and e2 be the PKE encryptions from the challenge c. The perfect sanitization property of the
PKE scheme (see Definition 7) states that given c∗1, c

∗
2, e1, and e2 there exists some randomness s′1 and s′2

such that

c∗i = sPKE.San(pki, ei; s
′
i) for i = 1, 2

Thus, we can conclude that two hybrids are identical (note that this randomness only need to exist for the
argument to go through, not to be efficiently computable).

Claim 2. For any adversary A that can distinguish Hybrid 1 and Hybrid 2, there exists an adversary B for
the computational zero-knowledge property of the SSS-NIZK scheme such that the advantage of A is

advsFE,A ≤ advNIZK,B
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Proof. Assume that any adversary breaks the computational zero-knowledge property with advantage at most
ǫ. Assume for contradiction that there exists an adversary A that distinguishes the hybrids with advantage
greater than ǫ, then we can construct an adversary B that breaks the computational zero-knowledge property
with advantage greater than ǫ.

B begins by choosing m ∈ M uniformly at random. Then he computes the PKE keys pk1, pk2 and
sk1 honestly and generates crsE ← NIZK.Setup(1κ). Next, he generates an honest sFE encryption of m:
(c1, c2, πE) ← Enc(pp,m), and sanitizes the PKE ciphertexts: c∗i ← sPKE.San(pki, ci; si) for i = 1, 2. Then
it sends the statement xS = (c∗1, c

∗
2) and the witness wS = (c1, c2, s1, s2, πE) to the challenger, and receives

back a common reference string crs′ and a proof π′. B then sets crsS = crs′ and π∗
S = π′. Thus, the public

parameters are pp = (crsS , crsE , pk1, pk2), the master secret key is msk = sk1, and the challenger response is
c∗ = (c∗1, c

∗
2, π

∗
S). B sends pp and msk to adversary A, receives a challenge c, checks that MDec(msk, c) = m,

and if so respond with c∗.
If the challenger generates crs′ and π′ honestly, then we are in Hybrid 1, and if the challenger simulates

the proof, then we are in Hybrid 2. Thus, if adversary A can distinguish between the hybrids with advantage
greater than ǫ, then adversary B can break the computational zero-knowledge property with advantage
greater than ǫ.

Claim 3. For any adversary A that can distinguish Hybrid 2 and Hybrid 3, there exists an adversary B for
the computational zero-knowledge property of the SSS-NIZK scheme such that the advantage of A is

advsFE,A ≤ advNIZK,B

The proof of this claim follows the same structure as the proof of Claim 2.

Claim 4. Hybrid 3 and Hybrid 4 are identical.

Proof. In both hybrids, we check that the received challenge c is an encryption of the message m, we guessed
in the beginning of the game. In Hybrid 3, we create an honest encryption and sanitization of the message
m before seeing the challenge c. In Hybrid 4, we decrypt the challenge c to get the message m (same as the
one we guessed), then we create an honest encryption and sanitization of the message. Thus, the two hybrids
are identical.

From these claims we can conclude that for any adversary A that can distinguish Hybrid 0 and Hybrid
4, there exists an adversary B for the computational zero-knowledge property of the SSS-NIZK scheme such
that the advantage of A is at most 2 · advNIZK,B .

We conclude the proof by proving that for any adversary A that can distinguish Game 0 and Game 1,
there exists an adversary B that can distinguish Hybrid 0 and Hybrid 4 such that the advantage of A is

advsFE,A ≤ 2|M| · advNIZK,B

Assume that any adversary A can distinguish Game 0 and Game 1 with advantage ǫ. We start by changing
the game such that the challenger guesses the message in the beginning of the games, and aborts if the guesses
is wrong. Thus, the advantage of the adversary is now ǫ/|M|. Observe, the two new games are identical to
Hybrid 0 and Hybrid 4. Thus, we get the above inequality.
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