
Access Control for Binary Integrity Protection using Ethereum
Oliver Stengele

Andreas Baumeister
oliver.stengele@kit.edu

andreas.baumeister@partner.kit.edu
Karlsruhe Institute of Technology

Institute of Telematics
Karlsruhe, Germany

Pascal Birnstill
pascal.birnstill@iosb.fraunhofer.de

Fraunhofer IOSB
Karlsruhe, Germany

Hannes Hartenstein
hannes.hartenstein@kit.edu

Karlsruhe Institute of Technology
Institute of Telematics
Karlsruhe, Germany

ABSTRACT
The integrity of executable binaries is essential to the security of
any device that runs them. At best, a manipulated binary can leave
the system in question open to attack, and at worst, it can comprom-
ise the entire system by itself. In recent years, supply-chain attacks
have demonstrated that binaries can even be compromised unbe-
knownst to their creators. This, in turn, leads to the dissemination
of supposedly valid binaries that need to be revoked later.

In this paper, we present and evaluate a concept for publishing
and revoking integrity protecting information for binaries, based on
the Ethereum Blockchain and its underlying peer-to-peer network.
Smart Contracts are used to enforce access control over the public-
ation and revocation of integrity preserving information, whereas
the peer-to-peer network serves as a fast, global communication
service to keep user clients informed. The Ethereum Blockchain
serves as a tamper-evident, publicly-verifiable log of published and
revoked binaries. Our implementation incurs costs comparable to
registration fees for centralised software distribution platforms but
allows publication and revocation of individual binaries within
minutes. The proposed concept can be integrated incrementally
into existing software distribution platforms, such as package re-
positories or various app stores.

KEYWORDS
Blockchain, binary integrity protection, revocation

ACM Reference Format:
Oliver Stengele, Andreas Baumeister, Pascal Birnstill, and Hannes Harten-
stein. 2019. Access Control for Binary Integrity Protection using Ethereum.
In The 24th ACM Symposium on Access Control Models and Technologies
(SACMAT ’19), June 3–6, 2019, Toronto, ON, Canada. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3322431.3325108

1 INTRODUCTION
One of the tenets of the current IT infrastructure is the execution
of binaries authored by ‘trustworthy strangers’. Not only does this
practice carry with it the implicit assumption that the author did

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6753-0/19/06. . . $15.00
https://doi.org/10.1145/3322431.3325108

not include malicious functionality in the binaries, but also that
the binary was not altered between creation and installation or
execution. Binary integrity protection aims to prevent the latter.
It consists of three key aspects: First, there is the distribution of
an executable binary itself, which we will not examine in great
detail in this paper. Second, there is the distribution of information
that allows anyone to verify the integrity of a particular binary.
And third, the recipient of both, binary and integrity protecting
information, must be able to determine their authorship and decide
whether or not these sources are trustworthy. It is this last aspect
that introduces an access control problem.

Today, any given piece of software has an identity that tran-
scends individual binaries. It can exist in multiple versions and
on different platforms or devices but still be considered ‘one soft-
ware’. Access control in the context of binary integrity protection
revolves around the ability to attach newly created binaries to an
established software identity and thereby attesting that they are
indeed a new incarnation of said software. In order for this attest-
ation to be useful, each binary must be both uniquely identified
and integrity protected. To ensure authenticity and integrity, two
mechanisms have established themselves for integrity protection:
signatures and hashes.

Signed binaries require a public key infrastructure (PKI) to check
the validity of underlying certificates, but offer ideal availability,
since the signatures are bundled together with the binaries whose
integrity they protect. However, this tight coupling between binary
and signature becomes an issue when it comes to revocation. Re-
voking a certificate can affect multiple binaries and may not even
be reliable [5]. Alternatively, hashes are generally stored at a server
and queried during the verification of a binary. If the server in ques-
tion is offline or overwhelmed, the verification cannot be completed.
Contrary to signatures, centrally stored hashes allow for very pre-
cise revocation. Thus, the two general concepts present different
trade-offs between availability and granularity of revocations.

In this paper, we build on the observation that Blockchains
provide the elements required for binary integrity protection in
general since they themselves have to ensure the integrity of their
state information. Two recent papers [2, 9] have started to explore
the design space of Blockchain-based binary integrity protection
and ‘binary transparency’. Our contribution in this paper is twofold:

• First, we present a concept for binary integrity protection
based on the Ethereum Blockchain [4] to achieve both, high
availability and revocation precision.

• Second, based on this use case, we demonstrate the applica-
tion of Smart Contracts as a tamper-evident, auditable, and

https://doi.org/10.1145/3322431.3325108
https://doi.org/10.1145/3322431.3325108

always invoked access control mechanism. We show that
deploying the implementation of the developed Smart Con-
tracts in Ethereum incur costs below $ 10 for setup and below
$ 1 for publication and revocation of integrity protecting in-
formation.

The paper is structured as follows: in Section 2, we introduce the
use case of binary integrity protection and highlight the relevance
of access control. We give an introduction to Blockchains in general
and Ethereum as a Smart Contract platform in particular, and list
related work. We introduce a system model in Section 3 and present
our concept in Section 4. Section 5 contains an evaluation of the
presented concept alongside a discussion of the previously listed
related work. We conclude the paper in Section 6.

2 BACKGROUND AND RELATEDWORK
In this section, we give a thorough introduction to underlying
concepts as well as features and properties of Blockchains and
Ethereum followed by a brief introduction of related work.

2.1 Blockchain and Ethereum Fundamentals
Binary integrity protection as well as Blockchains build on cryp-
tographic hash functions and digital signatures. Cryptographic
hash functions are a way to generate a fixed-sized output given
an arbitrary large input with three key properties: the function is
deterministic, so any given input always leads to the same output; it
is infeasible to find two inputs that produce the same output; given
an input, it is infeasible to find a second, different input to produce
the same output as the first. So, given the output of a cryptographic
hash function, hash for short, and a piece of data whose integrity
is in question, one can execute the same hash function on the data
and compare the result to the given hash. Only if they are equal is
the integrity of the data ensured. In this way, a hash fulfills both
the function of a unique identifier and an integrity check.

Digital signatures combine cryptographic hash functions with
asymmetric cryptography. Given an asymmetric key pair with a
secret key sk, which is kept private, and a public key pk, a signature
is generated by signing a hash with the secret key of the signer. Any
recipient of a signature can both compute the same hash function
and verify the signature using the public key, compare the results
and be convinced of both the integrity and authenticity of the
signed data if they match. In the context of Ethereum, identities
correspond to public keys and transactions are only valid if they
are signed with the corresponding secret key.

We intend to use a Blockchain to represent and manage software
identities and binary hashes. The concept of a public, permission-
less1 Blockchain was introduced in 2008 by Satoshi Nakamoto as
the underlying data structure of the decentralised cryptocurrency
Bitcoin [8]. As a whole, a Blockchain stores and manages state. In
the case of Bitcoin, this state relates to outputs of previous transac-
tions and the requirements to spend them. Ethereum [4] abstracts
this notion further and allows the definition of arbitrary state ma-
chines called Smart Contracts [10]. Both in Bitcoin and Ethereum,
changes to the Blockchain state are executed as transactions which

1‘Public’ meaning that anyone can read the contents of the Blockchain and ‘per-
missionless’ meaning that anyone can participate in maintaining and updating the
Blockchain

are bundled into blocks and attached to the established chain, hence
the name. Most importantly, every new block references a previous
block via a cryptographic hash, thus uniquely identifying it and
further securing the integrity of the entire previous chain. For the
sake of clarity, we will focus on Ethereum for the remainder of this
section, but many of the concepts also apply to other Blockchains.

Concensus. Considering that Ethereum is an open system where
participants can join and leave at any time, extending the Block-
chain while maintaining consensus becomes yet another interesting
access control problem. Whichever participant is granted the ability
to create the next block is expected to execute all transactions cor-
rectly, thus ensuring the validity of the resulting state, and to not
abuse his temporary position of power to gain an unfair advantage
over other participants. To solve this, a process called mining is
employed. Essentially, all potential block authors, called miners,
compete against each other to construct the next valid block by
expending a limited resource2. While it takes time and effort to
find a block, checking the validity of a new block is fast and easy.
To compensate the lucky miner for his troubles and to incentivise
participation in the first place, each block comes with a reward in
newly created Ether, the eponymous cryptocurrency of Ethereum.
Additionally, all transactions contained in this new block pay trans-
action fees to the miner as a further incentive to include as many
pending transactions as possible in his block. This randomised write
access ensures consensus in the following way. If a miner produces
a block that other miners deem invalid, they will not mine on top
of it, it will become stale, and its author will miss out on both the
block reward and any transaction fees, since the longest chain is
defined as valid. During this process, miners use a peer-to-peer net-
work to gossip any new transaction or block they receive to their
peers in order to keep everyone updated. The bottom line of this
construction is the ability of anyone presented with a Blockchain to
validate it, starting from the so called genesis block, up to the most
current block and arrive at the same state as everyone else without
trusting anyone. In order to present a convincingly manipulated
chain, all blocks between the first altered one and the current block
would have to be mined again, due to the hash references linking
the blocks together. This feat is made ever more difficult by the size
of the peer-to-peer network maintaining the Blockchain. Thus, the
Ethereum Blockchain can serve as a highly available, decentralised,
and tamper-evident store of information.

Smart Contracts. Ethereum serves as a platform for decentralised
applications through the use of Smart Contracts, which were first
conceptualised by Nick Szabo [10]. Simply put, an Ethereum Smart
Contract is a state machine governed by a set of functions that can
be called and executed through transactions, either by other Smart
Contracts or by human actors. The governing code is stored on
the Blockchain in the form of bytecode for the Ethereum Virtual
Machine (EVM), a virtualised execution environment that anyone
can run. A public key-value database is stored alongside the code
on the Blockchain where data can be written to or read from during
transactions. This data can also be read from a local copy of the
contract through calls which do not need to be recorded on the

2Computational effort in Proof of Work; temporary control over Ether in Proof of
Stake

Blockchain and thus do not incur any fees. Control flow during
transactions can depend on both information stored within the
contract as well as provided information such as the public key
of the caller or the current block number. It is important to note
that the integrity of both the key-value database as well as the
contract code is protected by the Blockchain. Consequently, the
internal state of a Smart Contract can only be altered by its contract
code through transactions. As will become clear later, we ensure
that hashes can only be published or revoked, but not altered or
replaced, by not including any corresponding functionality in the
contract code. In a sense, Smart Contracts can be used as a tamper-
evident, auditable, and always invoked access control mechanism.
The combination of contract code and key-value database is given a
unique address during deployment which can be used to reference
or call it.

At this point, we will provide a brief distinction between ‘tamper-
evident’ and ‘tamper-proof’ within the context of Ethereum. While
anyone is able to change a local copy of the Ethereum state or the
underlying Blockchain, no diligent peer or attentive user should ac-
cept it as valid. In this way, the EthereumBlockchain and everything
built on top of it is tamper-evident but achieves practical tamper-
proofness through its decentralised architecture and through con-
stant verification by all involved parties. However, since this con-
struction can only provide probabilistic guarantees on its proper-
ties, we err on the side of caution and only rely on Ethereum being
tamper-evident. This also serves as a reminder to always verify
information obtained from a Blockchain.

Transaction Fees. Ethereum employs a peculiar mechanism called
Gas to determine transaction fees which also serves as a defense
against denial of service attacks. Every individual operation on
the EVM has a certain amount of Gas associated to it [11]. Simple
instructions like additions or comparisons are cheap whereas al-
locating permanent storage for contract code or variables is more
expensive. The sender of any transaction specifies a conversion
rate from Ether to Gas as well as a maximum amount of Gas that
can be used. When mining for a new block, miners select pending
transactions to include and execute them locally to determine both
the new state of the Blockchain as well as the Gas cost of each
transaction. If they succeed in mining a block, then they receive
an amount of Ether corresponding to the Gas consumed and the
exchange rate set by the sender of each transaction in addition to
the aforementioned block reward. If a transaction consumes more
Gas than its sender specified, then no state changes are applied but
the miner still collects transaction fees. Ethereum enforces a total
Gas limit per block which can be adjusted within certain parameters
by the miners of each new block. Consequently, there is an upper
limit to the complexity of transactions and since Smart Contracts
are deployed via transactions, this also imposes a limit to the size
of their bytecode.

2.2 Related Work
When it comes to binary integrity protection on Blockchains, two
prior works have to be noted: Contour [2] and Chainiac [9]. While
we introduce the core concepts of both works here, we will discuss
them thoroughly in Section 5.

Root
Software
Identity

Software
Developer

Intermediary
Software
Identity

PKI

Software
Maintainer

Binary

binds

binds

establishes

authorises

creates binding

authenticates

authenticates

establishes

creates binding

creates

Figure 1: The hierarchy of software identities down to in-
dividual binaries and the relationship and privileges of act-
ors over it. The authorisation of a Maintainer is achieved
through the creation of a binding between a Root and Inter-
mediary Software Identity by the corresponding Developer.

The main idea behind Contour is for the operator of a software
distribution platform (SDP) to store cryptographic hashes of bin-
aries in a Merkle tree [7] and publish the root hash on the Bitcoin
Blockchain. Together with every binary, a corresponding proof of
inclusion and a reference to the Bitcoin block is distributed, thus
allowing the user to check its integrity. Note, that the metadata ne-
cessary for this integrity check cannot itself be integrity-protected
as this would result in a circular dependency. A user must there-
fore also check the validity of the Merkle tree root hash it is being
pointed to.

In contrast to Contours light-weight construction, Chainiac fol-
lows a more comprehensive approach. In addition to ensuring
binary integrity, it also ensures source-to-binary correspondence
through decentralised reproducible builds and binary transparency
with an augmented Blockchain called ‘Skipchain’. While a Block-
chain like Ethereum only links blocks in one direction through
hashes, a Skipchain employs references in both directions and
across longer distances, similar to a skip list. Software releases
are interconnected on the Skipchain in this manner to facilitate
easier rollbacks and updates.

In this paper, we explore a different point in the design space
with focus on precise revocation, comprehensible access control,
and a light-weight architecture on top of Ethereum.

3 SYSTEM MODEL
In this section, we introduce a system model describing roles and
assets involved in protecting the integrity of binaries. However,
we first have to introduce terminology to better describe the afore-
mentioned access control problem. As mentioned at the beginning
of the previous section, statements of binary integrity are only
useful if they can be attributed to a software identity under the
control of a trustworthy developer. To model this access control
problem, we define a Root Software Identity (Root SI) as an abstract

Technical Entity

Actor

Software
Developer

Certificate
Authority

Software
Maintainer

Maintainer
System

Software
Distribution

Platform

User Client

Blockchain

Smart Contract

Auditor
SDP

Owner

User
Peer-to-Peer

Network

authenticates

provides
source code

controls

publishes binary

publishes
binary hashes,
revocation info

obtains binary
obtains
binary hashes,
revocation info

surveils controls

uses

runs

Network

Figure 2: The collaboration of actors and technical entities
relevant for the security model when using a Blockchain to
provide binary integrity protection.

representation of a particular software, independent of any specific
binary and an Intermediary Software Identity (Intermediary SI) as an
organisational construct between a Root SI and binaries. Software
Identities and binaries can be bound together as depicted in Fig-
ure 1 to form a verifiable access control hierarchy. By establishing
bindings between Root SIs and an Intermediary SIs, Developers
authorise Maintainers to produce and attest the integrity of bin-
aries of their software. When validating the integrity of binaries,
Clients can then traverse this hierarchy to confirm that it leads to
the expected Root SI, similar to how certificates are validated by
checking if they lead back to a trusted root CA.

3.1 Roles and Assets
In Figure 2, we show how binaries and hashes are created, stored,
and accessed in order to ensure their integrity using a Blockchain
and how actors and technical entities are involved. Generally speak-
ing, we intend our system for storing and managing binary hashes
to run in parallel to established distribution paths for binaries. We
define the following roles, which can all be assumed by individuals,
groups, or organisations:

• A Software Developer writes and updates the source code for
a given software, establishes and manages the Root Software
Identitity, and is allowed to delegate the creation of binaries.

• A SoftwareMaintainer builds executable binaries from source
code, computes their hashes, and distributes both via their
respective pathways. He creates and manages one or more
Intermediate Software Identitities which form a verifiable
link between a Root SI and any concrete binary.

• An SDP Operator runs a software distribution platform, re-
ceives binaries from Software Maintainers and offers them
for download to Users.

• Users verify the integrity of binaries and execute them.
• We also allow Auditors to hold Software Maintainers and
SDP Operators accountable by pointing out discrepancies
between the set of binaries available on an SDP and the
corresponding store of hashes.

It is important to note that the roles of Software Developer and
Maintainer are not mutually exclusive. Executable binaries can be
created by the same entity that provides the underlying source code.

In a similar way, multiple Software Maintainers can provide distinct
binaries based on the same source code, e.g. for different operating
systems or CPU architectures. This is represented by individual
Intermediary SIs corresponding to these organisational units which
are all bound to the same Root SI. Both Software Developers and
Maintainers are identified by at least one public key and authentic-
ate themselves through the use of the corresponding secret key. A
PKI can be used to certify the correspondence between public keys
and real-world identities.

In terms of assets, our system model includes the following:

• Binaries are the main subject whose integrity we intend to
protect.

• Binay Metadata is attached to each binary and contains in-
formation necessary to perform verification. Its integrity is
protected alongside the binary.

• Cryptographic Hashes, or hashes for short, are the means by
which we intend to achieve our goal. They are generated by
Software Maintainers alongside their corresponding binar-
ies. They must be authentic, integrity-protected, and highly
available.

• Revocation Statements are issued by Software Maintainers
to signify that a specific previously published binary is no
longer safe to use. These statements must be authentic and
they must propagate quickly and reliably to be effective.

3.2 Attacker and Trust Model
The ultimate goal of an attacker is to trick users into executing a
manipulated binary at least once. To that end, the attacker is able
to alter benign and authentic binaries and publish them on SDPs.
Additionally, the attacker is able to create and interact with Smart
Contracts like any other individual. The attacker can also comprom-
ise all but one key pair of Software Developers and Maintainers.

The attacker is limited in his capabilities when it comes to the
Blockchain. While he can participate in the consensus mechanism,
he is unable to manipulate it to his advantage or circumvent it
entirely, i.e. he is unable to exceed the majority of mining power of
the entire Ethereum network. Consequently, it is also impossible
for him to alter previous blocks or fabricate a convincing alternate
Blockchain to deceive Users. Additionally, it is not possible for the
attacker to inconspicuously prevent writing to or reading from the
Blockchain by any entity for an extended period of time.

For the sake of completeness, we explicitly state the inherent
trust relation between a Software Developer/Maintainer and any
User executing their binaries. Users trust the authors of binaries
to not intentionally compromise them and cause harm to their
systems. Developers extend a similar trust to Maintainers by au-
thorising them to publish binaries of their software. In addition to
this preexisting trust relation, we also require Users to trust authors
of binaries to issue revocation statements in a timely and reliable
fashion if a compromise is found.

In our system, Users, Developers, and Maintainers also enter
into a trust relation with the peer-to-peer network maintaining
the Ethereum Blockchain. Unlike the previous relation, peers are
not trusted individually, but as a group. In general, this means that
the majority of mining power is under the control of honest and
independent miners. It is worth noting at this point that an SDP

Software
Contract

Binary Hash
Storage
Contract

Identity
Management
Contract

Software
Developer

Software
Maintainer

Blockchain
Client

User
Client

Blockchain Layer

Application Layer

controls controls

represents represents

uses

registers1 *

uses
*

1uses
*

1

Figure 3: Visualisation of the layer architecture of the de-
signed concept. In addition to that, the connections between
different smart contract types of the concept are depicted.

owner is not trusted by either Software Developers/Maintainers or
by Users, as any misbehaviour would immediately be noticed.

4 CONCEPT
With the system model in place, we now present a concept to store
and manage binary integrity protecting information on the Eth-
ereum Blockchain. The general structure of our concept is shown in
Figure 3. We distinguish between the Blockchain layer, which will
be the main focus of this paper, and the application layer, which
we only cover briefly. We employ three kinds of Smart Contracts
that will be covered in more detail in the following sections.

Common to all contracts is the concept of a Root Owner address.
This is a special public key which can be used to recover control of
a particular contract in case any of the key pairs in active use are
lost or compromised. The private key of Root Owner identitites is
meant to be stored offline and should only be used in emergencies.
All contracts allow the present Root Owner to replace the stored
public key. This can be used for both precautionary key rotation as
well as for transfer of ownership.

4.1 Software Contract
The Software (SW) Contract (Figure 4) establishes a Root Software
Identity independent of any particular version or binary. It is cre-
ated and managed by a Software Developer and functions as a
registry for multiple Binary Hash Storage (BHS) Contracts, keyed
by their respective SDP ID. By adding references to BHS Contracts,
a Software Developer establishes a binding to the corresponding
Intermediary Software Identity and thereby authorises a Maintainer
to publish binaries of this software on a specific SDP. In addition,
this contract also contains the name of the software as human read-
able metadata. It is worth pointing out that the address of an SW
Contract will be used to establish a ‘trust on first use’ association
with the User. While the owner or name of a software may change
and BHS Contracts may be added or removed, the address of the
Software Contract remains fixed and globally unique.

Software Contract

address

root owner

software name

developer

SDP store

SDP ID

SDP ID

address

address

. . .

address

Root Owner
g

Identity
Management

address

address

SDP ID

Binary Hash
Storage

SDP ID

address

Binary Hash
Storage

Figure 4: Inner structure of an SW Contract and relation to
other objects.

Binary Hash Storage Contract

address

root owner

software

maintainer

SDP ID

publish counter

hash store

HashID

HashID

counterhash

counterhash

. . .

address

Root Owner
g

Software

address

Identity
Management

address

Figure 5: Inner structure of a BHS Contract and relation to
other objects.

The interface of Software Contracts is presented in Table 1. The
most important functions, registerBHSContract and
deregisterBHSContract, revolve around the establishment and
rescindment of bindings between Root and Intermediary Software
Identities. During validation of a binary, the call getBHSContract
will be used to check the validity of said binding.

4.2 Binary Hash Storage Contract
Similar to Software Contracts, Binary Hash Storage Contracts (Fig-
ure 5) establish an Intermediary Software Identity and function as
a registry for binary hash statements for all binaries of a particular
software on a specific SDP. This registry is indexed by HashID,
which is also included in the binary metadata in order to establish a
verifiable correspondence between binary and hash. This contract
is created andmanaged by a SoftwareMaintainer and legitimised by
a Developer through a reference in the corresponding SW Contract,
thereby binding the Intermediary SI to the corresponding Root SI.

Table 1: Interface of SW Contract. Simple calls to retrieve the values of attributes are omitted.

Name Arguments Functionality Allowed Caller

Transactions
changeRootOwner Root Owner (new) Replaces the stored Root Owner address. Root Owner (current)
setDeveloper IDMaddr Replaces the stored Developer address. Root Owner
setSoftwareName name Sets the variable software name. Developer
registerBHSContract BHSaddr Registers a BHS Contract by storing the submitted

BHSaddr . The SDP ID used as storage key is obtained
from the BHS Contract.

Developer

deregisterBHSContract SDP ID Deregisters the BHS Contract stored under SDP ID. Developer
updateSDP_ID SDP ID (old), SDP ID (new) Changes the storage key of a BHS Contract. corr. BHS Contract

Calls
getBHSContract SDP ID Returns the BHSaddr stored under SDP ID. Returns 0,

if no such entry exists.
All

Table 2: Interface of BHS Contract. Simple calls to retrieve the values of attributes are omitted.

Name Arguments Functionality Allowed Caller

Transactions
changeRootOwner Root Owner (new) Replaces the stored Root Owner address. Root Owner (current)
setMaintainer IDMaddr Replaces the stored Maintainer address. Root Owner
registerSoftwareContract - Completes the binding to an SW Contract. corr. SW Contract
setSDP_ID SDP ID Changes the stored SDP ID and calls the stored SW Contract

to update its corresponding storage key.
Maintainer

publishHash HashID, Hash Stores Hash under HashID. Maintainer
revokeHash HashID Revokes the Hash of HashID. Maintainer

Calls
getBinaryStatement HashID Returns the binary statement consisting of (Hash,Counter)

stored under HashID. Returns 0, if no entry exists.
All

Binary hashes and revocation statements are published by a Soft-
ware Maintainer via this contract. One particular implementation
detail that deserves explicit mention is the inclusion of a publish
counter. In Ethereum, variables are initialised to 0 and if a requested
variable does not exist, 0 is also returned. In order to distinguish
between a revoked hash, which we set to 0, and a hash that was
never issued, we increment the publish counter and attach its value
to every binary hash statement during publication. Consequently,
a statement with a zeroed hash and a non-zero counter is clearly
identifiable as revoked. Additionally, the counter serves as a relative
time stamp and can provide limited information on the freshness
of individual hashes.

The interface of BHS Contracts can be found in Table 2. Of par-
ticular note is the function registerSoftwareContract which is
restricted to an SW Contract specified by the Maintainer and is
called during the aforementioned legitimisation. The most promin-
ent functions in general are publishHash, revokeHash, and the call
getBinaryStatement which are used for publication, revocation,
and validation of hashes, respectively.

Identity Management Contract

address

root owner

identity store

address

address

Certificate ID

Certificate ID

. . .

Root Owner

address

g

�
Developer Group

address

g
Single Developer

address

� �
Certificate

Developer Group

g �
Certificate

Single Developer

Blockchain External Storage

Figure 6: Inner structure of an IDM Contract and relation to
other objects.

4.3 Identity Management Contract
Lastly, we employ Identity Management (IDM) Contracts (Figure 6)
to allow both Software Developers and Maintainers to manage their
own set of public keys for Blockchain transactions and optionally
store references to corresponding certificates. To accomplish this,

Table 3: Interface of IDM Contract. Simple calls to retrieve the values of attributes are omitted.

Name Arguments Functionality Allowed Caller

Transactions
changeRootOwner Root Owner (new), Cert. ID Replaces the stored Root Owner address. Root Owner (current)
resetIdentitySet - Resets identity store by removing all

stored identities.
Root Owner

addIdentity Identity Adds identity to identity store. prev. est. identity in identity store
removeIdentity Identity Removes identity from identity store. prev. est. identity in identity store
changeCertificateID Cert. ID (new) Replace the Cert. ID of the calling identity. prev. est. identity in identity store

Calls
checkIdentity Identity Returns true if identity is contained in

identity store, returns false otherwise.
All

getIdentityCertID Identity Returns the stored Cert. ID of identity. All

Software
Developer

Software
Maintainer

IDM Contract
Software Developer

SW
Contract

IDM Contract
Software Maintainer

BHS
Contract

1. create
SWContract()

2. create
BHSContract()

3. setSDP ID()3.1. checkIdentity()
4. registerBHSContract()

4.1. checkIdentity()

4.2. registerSoftwareContract()

Figure 7: Sequence diagram showing the initial setup of
Smart Contracts. Both IDMContracts were previously estab-
lished by their respective owners and provided as references
during the creation of the SW and BHS Contract.

each IDM Contract contains an identity store of authorised pub-
lic keys. Before any restricted action is executed on BHS or SW
Contracts, the inclusion of the actors public key in the respective
IDM Contract is checked through the call checkIdentity. Both
Software Developers and Maintainers create Identity Management
Contracts and store references to them in their respective other
contracts. It is important to point out that identity management
on Blockchains is an area of research in itself with many differ-
ent approaches [1, 3, 6] that could serve as replacements for IDM
Contracts.

The interface of IDMContracts is shown in Table 3. In addition to
the management functions addIdentity and removeIdentity, the
most relevant function is the previouslymentioned call checkIdentity
which is used whenever the authorisation of a particular actor is
determined.

4.4 Process Flow
In this section, we will examine the primary functions of the presen-
ted concept in more detail, starting with the setup.

Setup. An overview of the setup is depicted in Figure 7. A Software
Developer begins by creating an Identity Management Contract

and adding her public keys to it. Next, she creates a Software Con-
tract, thereby establishing a permanent Root Software Identity, and
adds a reference to her IDM Contract in order to grant herself the
necessary privileges. She can then transfer the Root Owner secret
keys to offline storage for safekeeping. Meanwhile, a SoftwareMain-
tainer creates a BHS Contract to establish an Intermediary SI with
a similarly referenced IDM Contract of his own creation. This BHS
Contract contains both a reference to the SW Contract he intends
to be bound to as well as an identifier of the Software Distribu-
tion Platform that he intends to upload binaries to. Once these
four contracts have been created, the last step is for the Software
Developer to authorise the Maintainer to create and distribute bin-
aries by adding a reference to the BHS Contract, thereby forming a
verifiable binding between the Root and Intermediary SI.

Publication. To publish a binary, a Software Maintainer chooses or
generates a unique and unused identifier and adds it to the binary
metadata alongwith the address of the corresponding BHS Contract.
Then, he computes a hash of the binary and metadata, and sends
it as part of a signed transaction to the BHS Contract via the Eth-
ereum peer-to-peer network. Before adding the hash, the Ethereum
network executes the contract code which ensures the availability
of the chosen identifier and the authorisation of the transaction
author. Once the hash has been added to the BHS Contract, the
Maintainer can publish the binary to the corresponding SDP. The
hash identifier constitutes a verifiable binding between the Inter-
mediary Software Identity, represented by the BHS Contract, and
the binary.

Validation. To validate a downloaded binary, the User first needs
access to a validated copy of the current Ethereum state, or at least
of the contracts corresponding to his binaries. He either maintains
and updates this state himself by passively joining the peer-to-peer
network or he must obtain it from peers. The User then inspects
the metadata included in the binary to find both the identifier and
the BHS Contract address which allows him to obtain a reference
to an SW Contract in addition to a hash which he compares to the
one he calculates himself, thereby verifying the binding between
binary and Intermediary SI. He then validates the binding between
the Intermediary and Root SI by checking for a corresponding
reference from the SW Contract back to the BHS Contract. If this is

Software
Maintainer

BHS Contract User Client

Listening for
events from BHS
specific contracts

revokeHash()

(Event) HashID revoked

Figure 8: Sequence diagram showing the revocation of a
HashID.

the first time the User validates a binary of this particular software,
he also stores the address of the SW Contract. Otherwise, the User
checks if the found SWContract is the same as his previously stored
one before accepting the binary as valid. This last step is worth
emphasising. Since an attacker can deploy his own contracts, we
need to establish a ‘trust on first use’ relation between Users and
SW Contracts to protect against counterfeit contracts. While the
Software Developer in control of the SW Contract may change, its
contract address remains constant and serves as a trust anchor for
future validations.

Revocation. Revoking a binary begins with the responsible Software
Maintainer issuing a transaction containing the respective identifier
to the Ethereum network (cf. Figure 8). It is worth noting that we
consider the way in which the Software Maintainer learns of a
reason for this revocation out of scope for this paper. In addition to
the necessary HashID, additional information like a URL could be
attached to the transaction, although we did not include this feature
in our implementation. A User passively listening to the peer-to-
peer network can check both the authenticity of the transaction and
the authorisation of its sender to immediately take action in case it
affects him. Similarly, the network peers execute the corresponding
contract code which zeroes the hash after performing checks similar
to those during publication. Clients that were offline during the
revocation should catch up to the current Ethereum state as soon as
possible to learn of any revocations to their used binaries in order
to react appropriately. Note that a Developer may also collectively
revoke all binaries of a particular Maintainer by deregistering the
corresponding BHS Contract from his SW Contract, thereby lifting
the binding between the Root and Intermediary Software Identity.

4.5 Alternative Approach
Creating one BHS Contract instance per software and SDP has the
advantage of keeping each binary hash statement, and thus the
cost of their publication, as small as possible in exchange for more
frequent one-time deployment costs for each contract instance. An
alternative approach would aim to reduce the number of contract
instances in exchange for larger hash statements. This trade-off
occurs because each hash must be associated with a particular soft-
ware and Maintainer. In the concept described above, this relation is
established through the interlinking of contract instances, whereas
the alternative approach would have to store the necessary ref-
erences alongside each hash. Depending on the implementation
of this alternative approach, it could also incur additional storage
costs to retain access control information about which Maintainer
is authorised to publish binaries of which software. Regardless, we
can only provide a glimpse into the available design space with

our implementation and a careful examination of the expected us-
age is necessary to strike the right balance between all available
trade-offs.

5 EVALUATION AND DISCUSSION
It is interesting to see how each component of the Ethereum eco-
system serves multiple purposes in achieving the goal of a decent-
ralised solution for binary integrity protection. In addition to being
a highly available, public, tamper-evident database storing integrity
protecting information, the Blockchain also functions as an immut-
able, auditable and always invoked access control mechanism via
Smart Contracts. Similarly, the high global availability and fast com-
munication speed of the underlying peer-to-peer network is not
only necessary for its primary function of maintaining and extend-
ing the Blockchain but also compliments our concept as a reliable
and machine-readable communication channel for time-sensitive
messages as in the case of revocations.

5.1 Design Choices
We chose to base our implementation on Ethereum due to its pre-
valence amongst Smart Contract-capable Blockchains. This in turn
allows us to determine realistic costs for an actual deployment. It is
worth noting that, while we use certain features of Ethereum (like
Events), the presented concept should be transferable to comparable
platforms with minor changes.

In a similar way, we opted for a permissionless, and therefore
‘trustless’, environment since it places more constraints on the
presented concept. Consequently, transferring the concept to a per-
missioned environment with semi-trusted participants is possible
by relaxing or removing certain aspects and safeguards.

5.2 Security
Looking closer at possible attacks, we can demonstrate how the
presented concept based on Ethereum helps to prevent Users from
executing unsafe binaries. To briefly restate attacker capabilities
defined in Section 3.2, he can compromise authentic binaries and
publish them, deploy his own Smart Contracts in order to pass off
manipulated binaries as authentic, and he can attempt to influence
a Users view of the Blockchain.

Simply altering a binary fails during the verification by the
User. Establishing their own set of Smart Contracts on the Eth-
ereum Blockchain, adding the hashes of compromised binaries to
them, and altering the metadata of manipulated binaries accord-
ingly would succeed if it was the first time a User downloads a
binary of this particular software. If the User had previously stored
the address of the trusted SW Contract, a mismatch would be de-
tected during validation and the binary would be rejected. Seeing
how these fraudulent Smart Contracts would have to be in plain
sight of the entire ecosystem, diligent observers might raise aware-
ness before any damage could be done. Additionally, this approach
puts an economic burden on the attacker for the deployment of
his contracts, as will become clear in the following Section. It is
important to note that a supply-chain attack would succeed, even
in the case of a previously established trust relation between Users
and SW Contracts. However, the proposed concept was not inten-
ded to prevent this kind of attack. Instead, the concept enabled the

responsible Software Maintainer to quickly revoke the binary in
question in order to both limit further damage and to help affected
Users recover.

Methods for manipulating a User’s view of the Blockchain gen-
erally fall into one of two categories. In Split-View attacks, the
attacker attempts to present the User with a convincing alternate
Blockchain, and in Freeze attacks, the attacker tries to prevent the
User from receiving updates. The Ethereum ecosystem includes
countermeasures for both of these attacks. On average, a new block
is added to the Ethereum Blockchain every 15 seconds. If an attacker
manages to prevent any new blocks from reaching a User in order
to execute a Freeze attack, it should raise suspicion within minutes.
Additionally, Ethereum’s highly distributed nature makes this kind
of attack very difficult to execute in practice. This also applies when
attempting to block a Maintainer from issuing a revocation. An
attacker trying to avoid suspicion by producing and presenting an
alternate Blockchain to the User in order to execute a Split-View
attack would have to match the mining power of the Ethereum
peer-to-peer network, which would require a prohibitively large
economic investment by the attacker.

5.3 Costs and Scalability
As explained in Section 2.1, deployment and execution of Smart
Contracts on Ethereum incur transaction fees that must be payed
to the miners who include the corresponding transaction in a new
block. The cost of deploying a Smart Contract mainly depends on
the storage space for the EVM bytecode, whereas the cost of execu-
tion depends on the individual operations that the EVMperforms. In
order to investigate the economic impact of the presented concept,
we implemented the necessary Smart Contracts in Solidity (version
0.4.18) and compiled them to EVM bytecode using the Remix IDE
with version 0.4.24 of its Solidity compiler. Using the Ganache test
framework, we deployed and executed the contracts on a locally
hosted Ethereum Blockchain to accurately determine the costs of
various operations. While Ether is the eponymous cryptocurrency
of Ethereum, transaction fees are calculated in Gas and the origin-
ator of any transaction sets the exchange rate of Ether to Gas as
well as a maximum amount of Gas to be expended. Using the daily
averages from the 1st of February, 20193, we base the cost estima-
tion on an exchange rate of USD$ 107.1 per Ether and a Gas price
of ETH13.23 × 10−9. In order to fully comprehend the reliability of
the following cost analysis, it is of vital importance to realise that
these exchange rates are influenced by both market forces as well
as network utilisation. A little more than a year ago, on the 13th of
January, 2018, the price of Ether spiked at USD$ 1 385.02 while the
Gas price was at ETH63.72 × 10−9 on that date.

In Table 4, we give a concise overview of the monetary costs
that the primary functions of our concept invoke. It is important
to note how often these functions are expected to be executed.
SW Contracts are deployed only once per software project and
BHS Contracts are deployed once for each Software Distribution
Platform on which binaries of a particular software are published.
Meanwhile, IDM Contracts are only deployed once per authorised
party, unless preexisting contracts can be used, and they can be
reused for more than one SW or BHS Contract.

3https://etherscan.io

Table 4: Cost of operations (exchange rates USD to Ether and
Ether to Gas as of 1st of Februrary, 2019)

Operation Cost (USD)

Deploying SW Contract $ 2.365
Deploying BHS Contract $ 2.314
Deploying IDM Contract $ 1.612
Publishing a Hash $ 0.112
Revoking a Hash $ 0.051

Let us take for example an individual assuming both the roles of
Maintainer and Developer of three distinct software projects, each
with monthly updates released to two different SDPs. The one-time
setup costs in this scenario would consist of deploying one IDM
Contract, three SW Contracts, and six BHS Contracts, so $ 13.335
in total. The annual costs for publishing six hashes per month
would be $ 8.064. Considering current fees for developer accounts
at Apple4 ($ 99 per year), Google5 (one-time $ 25), and Microsoft6
(one-time $ 19), the costs of our scheme are quite reasonable.

Next to the monetary aspects, there are also functional consid-
erations when it comes to the scalability of the presented concept.
Since reading from the Blockchain can be done on a local copy by
each User, this should not present a limiting factor. However, estab-
lishing contracts and executing transactions to publish and revoke
hashes raises more concerns in this regard. Ethereum imposes an
upper limit on the amount of Gas that can be expended within any
given block. Generally speaking, this limits our concept to about
100 hash publications per block in a best case scenario. Depending
on current network utilisation and transaction fees, the time from
submission of a transaction to its inclusion in the Blockchain can
range from minutes to hours. However, Users can receive transac-
tions containing newly published or revoked hashes through the
peer-to-peer network and validate them locally even before miners
include them in the Blockchain, thereby mitigating delays due to
network congestion. In this way, the network serves as an immedi-
ate, global notification service while the permanent record on the
Blockchain allows temporarily offline Users to catch up later. Fur-
thermore, the use case at hand is highly asymmetrical with every
hash being written once but read significantly more often, which
also aligns perfectly with the cost and performance characteristics
of Ethereum. With these limitations in mind, an incremental integ-
ration of the presented concept into existing software distribution
processes is not only possible, but preferable.

One point that has gone largely unexplored until now is the over-
head on the side of Users. A full history of the Ethereum Blockchain
and a copy of the entire current state takes up several gigabytes
of disk space. This is somewhat excessive, considering that Users
within the context of the proposed system would only care about
a limited portion of the Ethererum state, namely the part that in-
cludes contracts related to their installed software. In theory, Users
could obtain and maintain this partial state from the Ethereum

4https://developer.apple.com/programs/how-it-works/
5https://play.google.com/apps/publish/signup/
6https://docs.microsoft.com/en-us/windows/uwp/publish/
account-types-locations-and-fees

https://etherscan.io
https://developer.apple.com/programs/how-it-works/
https://play.google.com/apps/publish/signup/
https://docs.microsoft.com/en-us/windows/uwp/publish/account-types-locations-and-fees
https://docs.microsoft.com/en-us/windows/uwp/publish/account-types-locations-and-fees

peer-to-peer network in order to perform binary validation with
a minimal storage footprint. Alternatively, they could employ the
light client protocol to delegate this task to a number of full nodes.
In any case, Users would not be required to perform mining or any
other computationally intensive task in order to take part in the
proposed system.

5.4 Comparison to Related Work
Looking back at the two related works introduced in section 2,
we can clearly distinguish the presented concept and point out
trade-offs. While Contour [2] is superior in terms of transaction
costs and storage space requirements, it sacrifices transparency
and any way to revoke previously published hashes. Due to the
Merkle tree construction, it is possible for the SDP owner publishing
the root hash to the Bitcoin Blockchain to hide hashes within the
tree and present valid proofs of inclusion to selected users. An
outside observer would have to reconstruct the entire Merkle tree
from individual proofs of inclusion and compare it to the available
binaries to discover such a deception. Furthermore, Contour lacks
any way for a user to ascertain who is even authorised to publish
binaries of a given software or who generated the stored hashes in
the first place.

Chainiac [9] goes beyond securing binary integrity and also in-
cludes precautions to ensure code-to-binary correspondence and
a transparent update log. Similar to the presented concept, Chain-
iac also supports the rotation of public keys to combat or recover
from compromise but it remains unclear whether or not individual
binaries can also be revoked. Although great measures are taken
to prevent any external cause for such revocation, security critical
bugs, for instance, are still a possibility and due to the transient
nature of Skipchain cothorities it might not be possible to reliably
and persistently alter the release log to reflect revocations. This
comprehensive set of features comes at the cost of significant im-
plementation costs and the bootstrapping of an entirely new Block-
chain system, whereas the presented concept is easily deployed on
the established and growing Ethererum ecosystem.

In summary, the proposed concept is positioned between Con-
tour and Chainiac both in terms of features and complexity with
the distinctive feature of enabling timely and precise revocation of
previously published binaries.

6 CONCLUSION
In this paper, we presented a concept based on Smart Contracts
to provide integrity protection for software binaries that supports
timely, pinpoint accurate, and machine readable revocations to
protect users from executing untrustworthy binaries or give them
actionable notice in case they already executed said binaries. We
accomplish this without introducing an additional trusted party.
The costs of operations incurred by the proposed concept was
derived based on Ether to USD conversion rates and shown to be
comparable to registration fees of centralised software distribution
platforms. Additionally, we gain tamper-evident, auditable, and
always invoked access control in the form of Smart Contracts which
are enforced through the consensus mechanism of Ethereum.

The design, implementation, and evaluation of a user client ap-
plication to interact with the Ethereum Blockchain in order to

validate binaries is ongoing work in addition to general improve-
ments and refinements. Furthermore, the presented concept can
be used as a blueprint and applied to similar use cases. While the
concept at hand decentralises the storage of integrity protecting
information, its creation and revocation is still in the hands of sin-
gular authorities. Future work could look at decentralising these
aspects as well.

To conclude, we see Smart Contract enabled Blockchains, most
notably Ethereum, as a very well suited framework for provid-
ing binary integrity protection and possibly for other information
dissemination problems that require verifiable access control and
provenance as well.

ACKNOWLEDGMENTS
This work was supported by the German Federal Ministry of Educa-
tion and Research within the framework of the project KASTEL_ISE
in the Competence Centre for Applied Security Technology (KASTEL).

We would like to thank the anonymous reviewers for their feed-
back and comments.

REFERENCES
[1] Mustafa Al-Bassam. 2017. SCPKI: A Smart Contract-based PKI and Identity

System. In BCC ’17 Proceedings of the ACM Workshop on Blockchain, Crypto-
currencies and Contracts. ACM, Abu Dhabi (United Arab Emirates), 35–40.
https://doi.org/10.1145/3055518.3055530

[2] Mustafa Al-Bassam and Sarah Meiklejohn. 2018. Contour: A Practical System
for Binary Transparency. In DPM 2018, CBT 2018 - Data Privacy Management,
Cryptocurrencies and Blockchain Technology, Vol. LNCS 10436. Springer, Barcelona
(Spain), 373–389. https://doi.org/10.1007/978-3-030-00305-0_8

[3] Sarah Azouvi, Mustafa Al-Bassam, and Sarah Meiklejohn. 2017. Who Am I?
Secure Identity Registration on Distributed Ledgers. In DPM 2017, CBT 2017
- Data Privacy Management, Cryptocurrencies and Blockchain Technology, Joa-
quin Garcia-Alfaro, Guillermo Nacarro-Arribas, Hannes Hartenstein, and Jordi
Herrera-Joancomartí (Eds.), Vol. LNCS 10436. Springer, Oslo (Norway), 373–389.
https://doi.org/10.1007/978-3-319-67816-0_21

[4] V. Buterin and Ethereum Community. 2013. A Next-Generation Smart Contract
and Decentralized Application Platform. https://github.com/ethereum/wiki/
wiki/White-Paper

[5] Robert Duncan. 2013. How certificate revocation (doesn’t) work
in practice. https://news.netcraft.com/archives/2013/05/13/
how-certificate-revocation-doesnt-work-in-practice.html

[6] Sebastian Friebe, Martina Zitterbart, and Ingo Sobik. 2018. DecentID: Decent-
ralized and Privacy-Preserving Identity Storage System Using Smart Contracts.
(2018).

[7] Ralph C Merkle. 1987. A Digital Signature Based on a Conventional Encryption
Function. In Advances in Cryptology — CRYPTO ’87. Springer, Berlin, Heidelberg,
Berlin, Heidelberg, 369–378.

[8] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. ,
9 pages. https://bitcoin.org/bitcoin.pdf

[9] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Linus
Gasser, Ismail Khoffi, Justin Cappos, and Bryan Ford. 2017. CHAINIAC: Proactive
software-update transparency via collectively signed skipchains and verified
builds. In 26th USENIX Security Symposium (USENIX Security 17). USENIX, 1271–
1287.

[10] Nick Szabo. 1997. Formalizing and Securing Relationships on Public Networks.
First Monday 2, 9 (Sept. 1997).

[11] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper (2014).

https://doi.org/10.1145/3055518.3055530
https://doi.org/10.1007/978-3-030-00305-0_8
https://doi.org/10.1007/978-3-319-67816-0_21
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://news.netcraft.com/archives/2013/05/13/how-certificate-revocation-doesnt-work-in-practice.html
https://news.netcraft.com/archives/2013/05/13/how-certificate-revocation-doesnt-work-in-practice.html
https://bitcoin.org/bitcoin.pdf

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Blockchain and Ethereum Fundamentals
	2.2 Related Work

	3 System Model
	3.1 Roles and Assets
	3.2 Attacker and Trust Model

	4 Concept
	4.1 Software Contract
	4.2 Binary Hash Storage Contract
	4.3 Identity Management Contract
	4.4 Process Flow
	4.5 Alternative Approach

	5 Evaluation and Discussion
	5.1 Design Choices
	5.2 Security
	5.3 Costs and Scalability
	5.4 Comparison to Related Work

	6 Conclusion
	Acknowledgments
	References

