Check for
Updates

Access Control for Database Applications:
Beyond Policy Enforcement

Wen Zhang Aurojit Panda Scott Shenker
UC Berkeley NYU UC Berkeley & ICSI
Berkeley, CA, USA New York, NY, USA Berkeley, CA, USA
zhangwen@cs.berkeley.edu apanda@cs.nyu.edu shenker@icsi.berkeley.edu
ABSTRACT Applying the principle of least privilege requires enforc-

There have been many recent advances in enforcing fine-
grained access control for database-backed applications. How-
ever, operators face significant challenges both before and

after an enforcement mechanism has been deployed. We

identify three such challenges beyond enforcement and dis-
cuss possible solutions.

CCS CONCEPTS

« Security and privacy — Information accountability
and usage control; Access control.

KEYWORDS

Access control, database-backed applications

ACM Reference Format:

Wen Zhang, Aurojit Panda, and Scott Shenker. 2023. Access Con-
trol for Database Applications: Beyond Policy Enforcement. In
Workshop on Hot Topics in Operating Systems (HotOS ’23), June

22-24, 2023, Providence, RI, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/lO.l145/3593856.3595905

1 INTRODUCTION

Many modern applications store sensitive data in databases.
Today, it is often the application’s responsibility to ensure
that such sensitive data is shown only to authorized users,
but application bugs can lead to sensitive data being improp-
erly disclosed [4, 16, 17, 26, 44]. This issue can be mitigated
by applying the principle of least privilege,! which in this
context entails giving an application access only to the data-
base content that the user being served is allowed to see.

TThis principle states that: “every privileged user of the system should

operate using the least amount of privilege necessary” [40].

This work is licensed under a Creative Commons Attribution-
NoDerivs International 4.0 License.

HotOS ’23, June 22—24, 2023, Providence, RI, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0195-5/23/06.
https://doi.org/10.1145/3593856.3595905

ing per-user access control outside the application. Access
control for databases is a well-trodden research area, and
there have been many proposals for secure and efficient
access-control enforcement [9, 18, 19, 25, 27, 45, 49, 50]—i.e.,
ensuring that the database reveals only data allowed by a
data-access policy. Once deployed, these mechanisms are
indeed effective in preventing unauthorized data access.
And yet, if we consider what it takes to get these enforce-
ment mechanisms deployed in practice, we realize that en-
forcement is not the end of the access-control story—it is
not even the beginning of it. In fact, challenges arise before
enforcement can be deployed, and remain after enforcement
is in place. For example, consider the following questions:

(1) Given an existing application, how can we infer what
policy it was designed to enforce?

(2) Given a policy, how can we validate that it sufficiently
protects sensitive data?

(3) When a program submits inappropriate queries, how
can we help the developer find and resolve the issue?

Until we have answered such questions, we have not ad-
dressed the full life-cycle of controlling access to sensitive
data. It is important for access-control research to look be-
yond enforcement design and explore the challenges that arise
as enforcement mechanisms become used in practice.

2 BACKGROUND AND MOTIVATION

2.1 A Primer on Policy Enforcement

Before discussing issues beyond policy enforcement, we first
provide some brief background on enforcement itself.

The goal of access-control enforcement is to restrict an
application’s data accesses to the data allowed by a given
policy. An enforcement design must answer two questions:

(1) At what granularity is a policy specified?

(2) How is a policy enforced?
And the many enforcement designs in literature are largely
distinguished by their answers to these questions—e.g.:

(1) Policies (i.e., what data can be accessed) can be speci-
fied at the granularity of table columns [42], rows [25,
32], cells [18, 19, 25, 32, 49], views [5, 29, 39, 50], etc.

223

https://orcid.org/0009-0007-3721-2882
https://orcid.org/0000-0001-9664-4377
https://orcid.org/0000-0002-1357-7533
https://doi.org/10.1145/3593856.3595905
https://doi.org/10.1145/3593856.3595905
https://creativecommons.org/licenses/by-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593856.3595905&domain=pdf&date_stamp=2023-06-22

HotOS ’23, June 22-24, 2023, Providence, RI, USA

(2) Policy enforcement can be static [9, 19, 42] vs dy-
namic [18, 25, 32, 49, 50], query-modifying [18, 25, 27,
49] vs semantic-preserving [9, 19, 50], etc.

These designs offers different trade-offs among policy ex-
pressiveness, ease of use, and performance.

2.2 A Concrete Setting

All the challenges we identify in this paper apply to a range
of enforcement scenarios. But for concreteness, we frame
our discussion in the setting of Blockaid [50], a recent en-
forcement solution proposed in the systems community.

Blockaid enforces access control for applications that store
sensitive data in a relational database. A policy is specified
using SQL views (parameterized by user ID), and is enforced
using a SQL proxy that intercepts each application-issued
query, allowing it if its answer is guaranteed to reveal no
more information than the views do, and blocking it other-
wise. When vetting a query, the proxy considers the history
of prior queries and their results; this allows it to safely allow
certain queries that would be blocked in isolation.

Example 2.1 (Calendar application [51]). Consider a policy
for a calendar application consisting of two views:

(V;) SELECT EId FROM Attendance WHERE UId = ?MyUId
(Each user can see the IDs of events they attend.)
(V2) SELECT * FROM Events e JOIN Attendance a
ON e.EId = a.EId WHERE a.UId = ?MyUId

(Each user can see the details of events they attend.)

Suppose the application, when serving a user with UId = 1,
issues the following sequence of queries:

(Q1) SELECT 1 FROM Attendance WHERE UId=1 AND EId=2
(Does User #1—the current user—attend Event #2?)
This query is allowed under the policy because the
information it reveals is covered by View V;.

Now, suppose the database returns one row, indicating
the current user does attend the event.

(O,) SELECT * FROM Events WHERE EId=2
(Fetches details about Event #2.)

This query is allowed given that Q; has returned one
row, an assumption that guarantees the information
revealed by this query is covered by View V;.

If not for the history of Q; returning non-empty, Q, would
have been blocked: by itself, Q, is not guaranteed to reveal
only information covered by V,. <

We stress two traits of Blockaid’s design. First, a query is
either executed as-is or blocked outright; it is never executed
with modification. Second, with Blockaid the application
must still contain access checks; Blockaid merely ensures that
the checks are sufficient to confine data revelation to what
the policy allows. The specifics of the research directions laid

224

Wen Zhang, Aurojit Panda, and Scott Shenker

out in this paper will sometimes rely on these two traits, but
every challenge we identify has equivalents in other settings.

2.3 Challenges Beyond Enforcement

Enforcement provides the security guarantees that rule out
unauthorized data access, and so it is deservedly the central
piece of the access-control puzzle. But it is not the only piece
that matters. As access control is used in practice, challenges
can arise both before and after enforcement. In what follows,
we identify three such challenges beyond enforcement that
are crucial to the life-cycle of data access control and, in each
case, propose potential solutions.

3 POLICY CREATION

3.1 Challenge: Creating a Policy for an
Existing Application

Ideally, a widely-applicable enforcement mechanism should
apply to a range of currently deployed applications. However,
before such an enforcement mechanism can be installed,
an administrator—we’ll call her Dora—must come up with
a policy that grants the application access to the minimal
amount of information it needs. While existing applications
employ data-access checks internally (e.g., in the form of
if-statements), they typically do not come with a data-access
policy specified for external access control. And so Dora faces
her first obstacle: how to come up with a policy that captures
the data accesses required by an existing application?

The most immediate way is for Dora to sit down and study
the application’s intended data accesses, and then write down
the most restrictive set of views that allows them. Indeed,
this is what we did for Blockaid’s evaluation [50, §8.1].

But manual policy creation is tedious: Dora, who may
not be application’s developer, must painstakingly map out
possible application behaviors, including edge cases. What
is worse, tedium leads to errors: a human who has to wade
through thousands of lines of application code is prone to
typos and omissions, which can lead to the policy being
overly restrictive or overly permissive. (We made at least
one such mistake, which remained undetected for a while,
when we wrote policies manually in the past [50, §8.7].)

Challenge 1. Systematically determine the policy embodied
in an existing application.

3.2 Proposal: Policy Extraction

Part of the struggle is that Dora must write a policy from
scratch. What she had a tool that could generate a draft policy
from the application, to be then refined into its final form?
Such a tool is plausible because legacy applications already
contain enough information to produce a draft policy. Often,
developers use access checks and filters to query only the

Access Control for Database Applications: Beyond Policy Enforcement

1 def show_event(db, params, session):

2 if db.sql("SELECT 1 FROM Attendance "

3 "WHERE UId = ? AND EId = ?",

4 session["user_id"], params["event_id"]
5).is_empty():

6 raise Http404("event not found")

7 return format_event(db.sql(

8 "SELECT * FROM Events WHERE EId = ?"

9 params["event_id"1))

Listing 1: A handler that displays a calendar event.

data required for a functionality (e.g., rendering a calendar
event). The tool need simply extract this existing behavior.

Example 3.1. Continuing from Example 2.1, Listing 1 shows
a code snippet for rendering a calendar event. (This could be
the code that issued Q;-Q;.) Dora, by studying the code or
observing queries issued by runs of this code, can infer the
policy V1=V, which is in fact a maximally restrictive policy
that allows this functionality, as prescribed by the principle
of least privilege. We wish to automate this process. «

We propose to aid in policy creation for legacy applications
via policy extraction: automatically generating a maximally
restrictive policy that allows the application’s current behav-
ior. A human can then examine the extracted policy to see if
any view is too permissive; if so, the program behavior that
led to the view’s production is likely a bug.

There are many ways to implement such an extraction
tool; here we outline two ways forward.

3.2.1 Language-based extraction: Symbolic execution. As-
suming the application’s source code is available, we can
symbolically execute it to find (1) what SQL queries can be
issued, and (2) under what conditions each SQL query is is-
sued (i.e., a path condition for each query-issuing statement).
We can then generate a policy to allow only these queries,
and only under their respective conditions.

At first glance, it is unclear if this approach would work:
symbolic execution can be impractically slow due to path
explosion [8], a challenge exacerbated by web applications’
usage of dynamic languages (like Ruby). But we have hope:

e Path explosion is often caused by loops [31]; but as
prior work has observed, web applications typically
have simple loop structure [9, 43].

e Prior work was able to symbolically execute code in a
dynamic language without re-implementing language
features, by co-opting the language’s standard inter-
preter [30]; we could leverage similar techniques here.

An extraction tool based on symbolic execution would
have to be language-specific. Fortunately, server-side web
programming is dominated by just a few popular languages

225

HotOS ’23, June 22-24, 2023, Providence, RI, USA

and technologies like PHP, .NET, and Ruby [47], and so even a
tool specific to one of these languages can have wide impact.
There has been much prior work using code analysis to
explore an application’s data-access behavior, two example
being privilege inference via taint tracking [7] and vulnera-
bility detection via dynamic invariant generation [13]. Unlike
these systems, policy extraction based on symbolic execu-
tion would be able to systematically explore program paths
without relying on Dora to craft comprehensive test cases.

3.2.2 Language-agnostic extraction: Specification mining. If
application source code is unavailable, or if we insist on
language-agnostic extraction, then we must resort to black-
box techniques. A black-box extraction tool would execute
the application on inputs of its choice and observe the queries
issued and answers returned, before outputting a policy.

If we regard the policy as a “specification” of the applica-
tion’s data accesses, then our extraction task becomes a task
of dynamic specification mining [2]: inferring likely speci-
fications by analyzing an application’s behaviors [23]. But
unlike prior efforts that extract FSM [2, 48] or LTL [20] speci-
fications, or those that infer specifications for social-network
updates [24] or syscall sandboxing [33], we seek to extract
SQL views that summarize the application’s data queries.

A black-box extraction tool must carry out two steps. First,
it must run the application and collect query traces. Here, it
is crucial to achieve good coverage. If the application has a
comprehensive test suite, it may suffice to just run the suite.
Otherwise, we could leverage test generation [3], guided
fuzzing [15], or active learning [43] to achieve good coverage.

Second, the tool must “learn” a policy from the traces in a
generalizing way—i.e., produce a policy that allows not only
the traces observed so far, but also any other trace generated
by the same application logic. For Example 2.1, a generalizing
learner would extrapolate the trace Q;-Q,, which is specific
to User #1 and Event #2, into views V;-V;, which are generic
over users and events. But it must not over-generalize by, say,
allowing any user to view any event regardless of attendance.

So how can we design an extraction algorithm that gen-
eralizes, but not too much? While in theory this problem
might be unsolvable without the ground truth for application
behavior, a few practical approaches look promising:

e Limit the size of the generated policy. A policy that
relies on non-generalizing views must, by nature, con-
tain a lot of them (e.g., one for each user in the data-
base). This can be avoided by using a large collection of
traces but insisting that the generated policy be small.

e Solicit hints on what can appear in a policy—e.g., re-
quire that a concrete event ID (like EId=2) never appear
in a policy, since event IDs are opaque identifiers. With
this rule, traces will be generalized across all events.

HotOS ’23, June 22-24, 2023, Providence, RI, USA

o Actively discover which constraints in a trace to keep.
For example, unsure if an Attendance row’s notes
value matters to data-access checking, the algorithm
can re-run the application with the notes cell mutated
to a random string. If the subsequent trace is unaf-
fected, it can conclude that notes does not affect if an
event can be accessed, and omit it from the policy.

3.3 Applicability and Usefulness

We end this section by discussing when policy extraction
applies, and why we expect it to be useful to Dora.

Legacy vs new applications. Policy extraction simplifies pol-
icy creation for legacy applications, ones developed without
externally-enforced access control in mind. For a new appli-
cation whose policy is produced alongside its business logic—
perhaps using a policy-integrated language like Hails [14]
or Scooter [37]—we imagine policy creation would be less
burdensome, and policy extraction likely unnecessary.

Applicability under query modification. Policy extraction does
not apply to programs written to work with query-modifying
access control [18, 25, 27, 49]. These programs issue broad
queries for any data they could possibly use, and rely on an
external entity to rid answers of disallowed data. Without
using access checks or query filters, these programs contain
no information from which to extract a policy. But the devel-
oper is already required to produce a policy as the program
is written, so no extraction is necessary.

Vetting an extracted policy. A policy extraction tool cannot
tell whether an extracted policy reflects human intentions;
this question must be answered by Dora. But why would
Dora have an easier time vetting an extracted policy than
she would writing one from scratch?

From our experience writing view-based policies for web
applications, the meaning of each view has often been easy
to interpret, and the rationale behind it easy to ascertain—but
only in retrospect, after the view definition has been written
down. Coming up with the view in the first place can be
hard, especially if the view is needed only for an edge case,
and if the policy writer is not intimately familiar with the
application. Policy extraction helps by laying out the views
required by the nooks and crannies of the application’s logic.

Finally, once we extract a policy, we could evaluate it for
sensitive-data disclosure, a direction we explore next.

4 POLICY EVALUATION
4.1 Challenge: Evaluating a Policy for
Sensitive-data Disclosure

A policy, be it hand-written or extracted, should be sanity-
checked before being put into production. Policies have two

226

Wen Zhang, Aurojit Panda, and Scott Shenker

potentially conflicting imperatives. On the one hand, they
must allow queries required for the application’s operation.
On the other, they must prevent users from learning some-
thing about sensitive information (i.e., data that our operator,
Dora, wants hidden). In many cases, no policy satisfies both
imperatives. So how can Dora evaluate how much sensitive
information is disclosed, so that she can determine whether
the policy (and the application’s functionality) must be mod-
ified to limit such disclosure?

To be more precise, suppose S is a query whose answer
Dora wants hidden (we will refer to such queries as sensitive
queries). Dora first checks whether query S is blocked by
the policy. But she must go further: even if S is blocked,
substantial information could be disclosed on the answer to S
from answers to other queries allowed by the policy [28].

Example 4.1 ([11, §2]). Consider a hospital-management
system whose policy allows staff to view (1) the doctor as-
signed to each patient, and (2) the diseases treated by each
doctor; but the disease each patient is treated for is deemed
sensitive information. Suppose patient John is treated by a
doctor who only treats two diseases. The policy would block
a direct query for John’s disease, but discloses enough infor-
mation to narrow the answer down to two possibilities. <«

Challenge 2. Design an evaluation tool that detects poten-
tial sensitive-data disclosure by a given data-access policy.

The first problem we face when tackling this challenge is
to define what we mean by “disclosure”. Despite much prior
work, identifying a practical notion of disclosure useful to
operators turns out to be nontrivial.

4.2 Existing Work: Bayesian Privacy

One of the most well-studied notions of disclosure in the
database literature is that of Bayesian privacy [11, 28], where
disclosure is modeled as the shift in an adversary’s belief for
the answer to a sensitive query S after observing the views.
The bigger the shift, the more the knowledge gained by the
adversary, and the more extensive the disclosure.

To complicate matters, such shift depends not only on the
policy and sensitive query, but also on the adversary’s prior
belief. For example, a neighbor who has seen John coughing
might change his belief only slightly when he learns that
John is treated by a doctor who treats only pneumonia and tu-
berculosis (Example 4.1); someone without prior knowledge
of John’s cough might undergo a bigger shift.

As a result, Bayesian privacy criteria are typically param-
eterized by the class of prior beliefs considered. But we are
now caught between a rock and a hard place: we can assume
either (1) a general class of priors (e.g., all tuple-independent
distributions [28]), yielding a criterion that applies to diverse
adversaries but imposes impractically strict restrictions on

Access Control for Database Applications: Beyond Policy Enforcement

what a policy can reveal; or (2) a specific family of priors (as
in Dalvi et al. [10]), yielding a criterion that is more permis-
sive but applies only to a specific class of adversaries—one
that might not match the adversaries that arise in reality.

4.3 Proposal: Prior-agnostic Privacy

At the root of this dilemma is Bayesian privacy’s reliance
on modeling the adversary’s prior belief. In contrast to the
kinds of distributions routinely modeled in systems work—
like for traffic arrivals [34], which can be readily measured
and validated—distributions on people’s prior beliefs are
much harder to model realistically and validate empirically.
And if we can’t validate a prior, we can’t precisely interpret
a Bayesian guarantee based on that prior.

For this reason, we think it is time to turn to prior-agnostic
privacy criteria—ones that do not require modeling priors.
Many such criteria can be defined, and no one criterion fits
all. We highlight two examples from computational logic:
positive query implication (PQI) and negative query implica-
tion (NQI) [6, Def. 3.5], adapted to view-based access control.

Fix a set V of policy views and a sensitive query S. We
call a row t a possible answer to S if it is returned by S on
some database, a certain answer if on all databases, and an
impossible answer if on no database. Then, we say:

o PQI¢(V) holds if revealing the contents of V could
render a possible answer to S certain.

o NOQI¢(V) holds if revealing the contents of V could
render a possible answer to S impossible.

PQI and NQI signal disclosure—i.e., the contents of V en-
abling certain inferences about the answer to S. We illustrate
these concepts with a toy example.

Example 4.2. Define two queries on an employee database:
(Q1) SELECT name FROM Employees WHERE age >= 60
(Q,) SELECT name FROM Employees WHERE age >= 18
Take V = {Q;} and S = Q,. Revealing Q;’s answer allows
positive inference on Q,’s answer: if Qg returns "Alex", then
so must Q,. Thus, PQI,, ({Q1}) holds.

Conversely, take V = {Q,} and S = Q;. Revealing Q,’s
answer allows negative inference on Q;’s: if Q, doesn’t return
"Alex", then nor can Q. So we have NQI, ({Q2}).

PQI and NQI are prior-agnostic: nowhere in our reasoning
did we appeal to assumptions on the adversary’s belief. <«

Remark 4.3. In all fairness, if it were possible to accurately
model belief as a probability distribution, then Bayesian pri-
vacy would be a valuable metric as it provides the probability
of someone holding that belief correctly guessing a sensitive
value—exactly the event we wish to avoid. Our proposal is
motivated only by the inherent difficulty of modeling belief.

Once Dora finds PQI or NQI, or some other condition, to be
a useful criterion for her application, she can write down her

227

HotOS ’23, June 22-24, 2023, Providence, RI, USA

sensitive queries and ensure that a policy is disclosure-free
by invoking a checking algorithm for the criterion.

It remains to develop checking algorithms prior-agnostic
privacy. As far as we know, algorithms for checking PQI
and NQI have been studied only in theoretical contexts for
simple, conjunctive queries [6]. Practical algorithms exist
for checking k-anonymity [41, 46] (another prior-agnostic
criterion), but they typically assume single-table schemas. It
is a promising direction to explore how to extend these algo-
rithms to complex schemas and queries found in practice.

5 VIOLATION DIAGNOSIS

5.1 Challenge: Troubleshooting Violations

Having produced a policy she’s happy with, Dora enables
policy enforcement on her application. One day, the applica-
tion (possibly after a code update) issues a query that gets
blocked due to policy violation. What has gone wrong?

Answering this question can be difficult. Because we use
allow-list policies (i.e., views that a user is allowed to access),?
no item or subset of items in the policy can be singled out for
causing the violation. Then what form of feedback should
be provided to help Dora diagnose the problem?

While providing feedback is straightforward for simpler
policy specifications (like row- or column-level policies), the
solution is less obvious for the more expressive view-based
policies. A natural proposal is to display a counterexample—
in Blockaid’s case, a pair of databases on which every view
produces the same answer, but the blocked query produces
different answers.?> However, while a counterexample is a
proof-of-violation, it is not easily interpreted by Dora—what
is she to do with two databases shown side by side?

Challenge 3. Assist human in diagnosing policy violations.

Streamlining diagnosis is crucial to keeping an access-
control deployment manageable. The more effort needed to
resolve violations, the more likely is Dora to forgo access
control out of frustration or, worse, to silence violations by
setting overly permissive policies, leaving data unprotected.

5.2 Proposal: Patch Generation

A policy violation is caused by either the policy being stricter
than intended, or the application accessing more data than
intended. A tool cannot easily distinguish between the two
cases, but it can suggest patches to both the policy and the
application such that, once any patch is applied, the offending

2Allow-lists can naturally implement least privilege: simply write the policy
to allow the minimum necessary information. Block-lists, where the extent
of allowed access is implicit, risk granting more privilege than necessary.
3Intuitively, for a query to be allowed, its answer must be uniquely deter-
mined by the answers to the views; a counterexample refutes this property.
See prior work for a more formal discussion [50, §4.2].

HotOS ’23, June 22-24, 2023, Providence, RI, USA

query would be allowed. Even patches that do not get applied
can help. For example, if all policy patches look unreasonable
(e.g., they allow every user access to all calendar events), then
the application—not the policy—is the likely culprit.

5.2.1 Patching the policy. Policy patches, consisting of mod-
ified/added view definitions, can be generated via policy
extraction (Section 3.2): run the extraction algorithm either
on the up-to-date source code, or on a test suite augmented
with the offending query, and then compare the extracted
policy with the current one. The extraction algorithm could
also be augmented to produce deltas over an existing policy.

5.2.2 Patching the application. A typical application patch
would take one of two forms:

(1) Narrowing down the offending query (e.g., by adding
a conjunct to its SQL WHERE clause), or

(2) Wrapping the offending query in an additional access
check (along the lines of the if statement in Listing 1).

We envision both forms of patching will work at the query
level, and can be applied to applications written in any lan-
guage. In particular, an access-check patch will consist of a
condition on database content (e.g., the existence of a particu-
lar row), which can be checked in any application language.*

The two patch forms might require different techniques
to generate. Conceptually, the task of narrowing down a
blocked query Q reduces to the database-theoretic prob-
lem of finding a contained rewriting Q’ of Q using the policy
views [22]—i.e., Q" may refer only to view names (and not
base tables), and its answer must be a subset of Q’s on all
databases.” There has also been theoretical work on find-
ing maximally contained rewritings—ensuring Q’ returns as
much data as possible without violating the policy—for re-
stricted query languages like conjunctive queries (CQs) [21,
36] and CQs with arithmetic comparisons [1]. The practical
systems problems, then, are (1) to extend these algorithms to
more expressive query languages found in practice, and to
implement them efficiently; and (2) to empirically evaluate
the extent to which the rewriting found helps a developer.

Generating an access check requires finding a state-
ment about database content such that (1) once known, this
statement (with the existing trace) makes the blocked query
compliant; and (2) the statement is consistent with the exist-
ing trace. In Example 2.1, if Q, were issued alone (it would
be blocked), one such statement would be “the Attendance
table contains row (UId=1, EId=2)”, which the developer
can check for in her code before issuing the query.

4This is in contrast to leak repair for liquid information flow control [35,
§5], which statically analyzes source code written in a special type system.
More precisely, we only need the latter condition to hold on all databases
consistent with the trace prior to Q’s issuance.

228

Wen Zhang, Aurojit Panda, and Scott Shenker

The search for such a statement falls under abductive in-
ference: finding an “explanatory hypothesis for a desired
outcome” [12], with the desired outcome being policy compli-
ance for the blocked query. As such, a promising approach is
to leverage program synthesis techniques for abduction [38].

6 CONCLUSION

Data-access policy enforcement has received much attention
and seen great advances in recent years, but less attention has
been paid to issues that arise before and after enforcement is
deployed. We hope this paper will spur further research on
challenges beyond enforcement—like policy creation, policy
evaluation, and violation diagnosis—whose resolution will
be crucial to addressing the full life-cycle of access control.

ACKNOWLEDGMENTS

We thank the reviewers for their comments, Victor Vianu
for discussions on database privacy, and Lucas Lovric and
Phillip Lovric for discussions on policy extraction. This work
was supported by NSF grants 1704941 and 2145471, and by
funding from Intel, VMware, Ericsson, Google, and IBM.

REFERENCES

[1] Foto N. Afrati, Chen Li, and Prasenjit Mitra. 2006. Rewriting queries
using views in the presence of arithmetic comparisons. Theor. Comput.
Sci. 368, 1-2 (2006), 88—123. https://doi.org/10.1016/j.tcs.2006.08.020
Glenn Ammons, Rastislav Bodik, and James R. Larus. 2002. Mining
specifications. In Conference Record of POPL 2002: The 29th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Portland,
OR, USA, January 16-18, 2002, John Launchbury and John C. Mitchell
(Eds.). ACM, 4-16. https://doi.org/10.1145/503272.503275
Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig, Amit M.
Paradkar, and Michael D. Ernst. 2008. Finding bugs in dynamic web
applications. In Proceedings of the ACM/SIGSOFT International Sympo-
sium on Software Testing and Analysis, ISSTA 2008, Seattle, WA, USA,
July 20-24, 2008, Barbara G. Ryder and Andreas Zeller (Eds.). ACM,
261-272. https://doi.org/10.1145/1390630.1390662
Warwick Ashford. 2015. Facebook photo leak flaw raises security con-
cerns. https://www.computerweekly.com/news/2240242708/Facebook-
photo-leak-flaw-raises-security-concerns
Gabriel Bender, Lucja Kot, Johannes Gehrke, and Christoph Koch. 2013.
Fine-grained disclosure control for app ecosystems. In Proceedings of
the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2013, New York, NY, USA, June 22-27, 2013, Kenneth A. Ross,
Divesh Srivastava, and Dimitris Papadias (Eds.). ACM, 869-880. https:
//doi.org/10.1145/2463676.2467798
Michael Benedikt, Pierre Bourhis, Balder ten Cate, Gabriele Puppis,
and Michael Vanden Boom. 2021. Inference from Visible Information
and Background Knowledge. ACM Trans. Comput. Log. 22, 2 (2021),
13:1-13:69. https://doi.org/10.1145/3452919
Aaron Blankstein and Michael J. Freedman. 2014. Automating Isola-
tion and Least Privilege in Web Services. In 2014 IEEE Symposium on
Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014. IEEE
Computer Society, 133-148. https://doi.org/10.1109/SP.2014.16
[8] James Bornholt and Emina Torlak. 2018. Finding code that explodes
under symbolic evaluation. Proc. ACM Program. Lang. 2, OOPSLA
(2018), 149:1-149:26. https://doi.org/10.1145/3276519

(2]

3

[t

[4

[l

(5

—

[6

—

[7

—

https://doi.org/10.1016/j.tcs.2006.08.020
https://doi.org/10.1145/503272.503275
https://doi.org/10.1145/1390630.1390662
https://www.computerweekly.com/news/2240242708/Facebook-photo-leak-flaw-raises-security-concerns
https://www.computerweekly.com/news/2240242708/Facebook-photo-leak-flaw-raises-security-concerns
https://doi.org/10.1145/2463676.2467798
https://doi.org/10.1145/2463676.2467798
https://doi.org/10.1145/3452919
https://doi.org/10.1109/SP.2014.16
https://doi.org/10.1145/3276519

Access Control for Database Applications: Beyond Policy Enforcement

[9] Adam Chlipala. 2010. Static Checking of Dynamically-Varying Security

[10

[11

[12

(13

(14

(15

(16
[17

(18

(19

[20

=

—

—

=

[l

=

= S

[

[t

Policies in Database-Backed Applications. In 9th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2010, October 4-
6, 2010, Vancouver, BC, Canada, Proceedings, Remzi H. Arpaci-Dusseau
and Brad Chen (Eds.). USENIX Association, 105-118. http://www.
usenix.org/events/osdil0/tech/full_papers/Chlipala.pdf

Nilesh N. Dalvi, Gerome Miklau, and Dan Suciu. 2005. Asymptotic
Conditional Probabilities for Conjunctive Queries. In Database Theory
- ICDT 2005, 10th International Conference, Edinburgh, UK, January
5-7, 2005, Proceedings (Lecture Notes in Computer Science, Vol. 3363),
Thomas Eiter and Leonid Libkin (Eds.). Springer, 289-305. https:
//doi.org/10.1007/978-3-540-30570-5_20

Alin Deutsch. 2008. Privacy in Database Publishing: A Bayesian
Perspective. In Handbook of Database Security - Applications and
Trends, Michael Gertz and Sushil Jajodia (Eds.). Springer, 461-487.
https://doi.org/10.1007/978-0-387-48533-1_19

Isil Dillig, Thomas Dillig, and Alex Aiken. 2012. Automated error
diagnosis using abductive inference. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’12, Beijing,
China - June 11 - 16, 2012, Jan Vitek, Haibo Lin, and Frank Tip (Eds.).
ACM, 181-192. https://doi.org/10.1145/2254064.2254087

Viktoria Felmetsger, Ludovico Cavedon, Christopher Kruegel, and
Giovanni Vigna. 2010. Toward Automated Detection of Logic Vul-
nerabilities in Web Applications. In 19th USENIX Security Symposium,
Washington, DC, USA, August 11-13, 2010, Proceedings. USENIX Associ-
ation, 143-160. http://www.usenix.org/events/sec10/tech/full_papers/
Felmetsger.pdf

Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Maziéres,
John C. Mitchell, and Alejandro Russo. 2012. Hails: Protecting Data
Privacy in Untrusted Web Applications. In 10th USENLX Symposium on
Operating Systems Design and Implementation, OSDI 2012, Hollywood,
CA, USA, October 8-10, 2012, Chandu Thekkath and Amin Vahdat (Eds.).
USENIX Association, 47-60. https://www.usenix.org/conference/
osdi12/technical-sessions/presentation/giffin

Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008.
Automated Whitebox Fuzz Testing. In Proceedings of the Network
and Distributed System Security Symposium, NDSS 2008, San Diego,
California, USA, 10th February - 13th February 2008. The Internet
Society. https://www.ndss-symposium.org/ndss2008/automated-
whitebox-fuzz-testing/

Eddie Kohler. 2013. Hide review rounds from paper authors. https:
//github.com/kohler/hotcrp/commit/5d53ab

Eddie Kohler. 2015. Download PC review assignments obeys paper
administrators. https://github.com/kohler/hotcrp/commit/80£f96
Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac, Raghu Ramakrish-
nan, Yirong Xu, and David J. DeWitt. 2004. Limiting Disclosure in Hip-
pocratic Databases. In (e)Proceedings of the Thirtieth International Con-
ference on Very Large Data Bases, VLDB 2004, Toronto, Canada, August
31 - September 3 2004, Mario A. Nascimento, M. Tamer Ozsu, Donald
Kossmann, Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer
(Eds.). Morgan Kaufmann, 108-119. https://doi.org/10.1016/B978-
012088469-8.50013-9

Nico Lehmann, Rose Kunkel, Jordan Brown, Jean Yang, Niki Vazou,
Nadia Polikarpova, Deian Stefan, and Ranjit Jhala. 2021. STORM: Re-
finement Types for Secure Web Applications. In 15th USENLX Sympo-
sium on Operating Systems Design and Implementation, OSDI 2021, July
14-16, 2021, Angela Demke Brown and Jay R. Lorch (Eds.). USENIX
Association, 441-459.
presentation/lehmann
Caroline Lemieux, Dennis Park, and Ivan Beschastnikh. 2015. Gen-
eral LTL Specification Mining (T). In 30th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2015, Lincoln, NE,

https://www.usenix.org/conference/osdi21/

229

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

HotOS ’23, June 22-24, 2023, Providence, RI, USA

USA, November 9-13, 2015, Myra B. Cohen, Lars Grunske, and Michael
Whalen (Eds.). IEEE Computer Society, 81-92. https://doi.org/10.1109/
ASE.2015.71

Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh
Srivastava. 1995. Answering Queries Using Views. In Proceedings of
the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, May 22-25, 1995, San Jose, California, USA, Mihalis
Yannakakis and Serge Abiteboul (Eds.). ACM Press, 95-104. https:
//doi.org/10.1145/212433.220198

Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. 1996. Querying
Heterogeneous Information Sources Using Source Descriptions. In
VLDB’96, Proceedings of 22th International Conference on Very Large
Data Bases, September 3-6, 1996, Mumbai (Bombay), India, T. M. Vija-
yaraman, Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda
(Eds.). Morgan Kaufmann, 251-262. http://www.vldb.org/conf/1996/
P251.PDF

Wenchao Li. 2014. Specification Mining: New Formalisms, Algorithms
and Applications. Ph. D. Dissertation. EECS Department, University of
California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2014/EECS-2014-20.html

Paul Marinescu, Chad Parry, Marjori Pomarole, Yuan Tian, Patrick
Tague, and Ioannis Papagiannis. 2017. IVD: Automatic Learning and
Enforcement of Authorization Rules in Online Social Networks. In
2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA,
USA, May 22-26, 2017. IEEE Computer Society, 1094-1109. https:
//doi.org/10.1109/SP.2017.33

Alana Marzoev, Lara Timb6 Araudjo, Malte Schwarzkopf, Samyukta
Yagati, Eddie Kohler, Robert Tappan Morris, M. Frans Kaashoek, and
Sam Madden. 2019. Towards Multiverse Databases. In Proceedings of
the Workshop on Hot Topics in Operating Systems, HotOS 2019, Bertinoro,
Italy, May 13-15, 2019. ACM, 88-95. https://doi.org/10.1145/3317550.
3321425

Mark Maunder. 2016. Vulnerability in WordPress Core: By-
pass any password protected post. CVSS Score: 7.5 (High).
https://www.wordfence.com/blog/2016/06/wordpress-core-
vulnerability-bypass-password-protected-posts/

Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak Garg, and Peter
Druschel. 2017. Qapla: Policy compliance for database-backed systems.
In 26th USENIX Security Symposium, USENIX Security 2017, Vancouver,
BC, Canada, August 16-18, 2017, Engin Kirda and Thomas Ristenpart
(Eds.). USENIX Association, 1463-1479. https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/mehta
Gerome Miklau and Dan Suciu. 2004. A Formal Analysis of Information
Disclosure in Data Exchange. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Paris, France, June 13-
18, 2004, Gerhard Weikum, Arnd Christian Kénig, and Stefan Deflloch
(Eds.). ACM, 575-586. https://doi.org/10.1145/1007568.1007633
Amihai Motro. 1989. An Access Authorization Model for Relational
Databases Based on Algebraic Manipulation of View Definitions. In
Proceedings of the Fifth International Conference on Data Engineering,
February 6-10, 1989, Los Angeles, California, USA. IEEE Computer Soci-
ety, 339-347. https://doi.org/10.1109/ICDE.1989.47234

Joseph P. Near and Daniel Jackson. 2014. Symbolic Execution for (Al-
most) Free: Hijacking an Existing Implementation to Perform Symbolic
Execution. Technical Report MIT-CSAIL-TR-2014-007. CSAIL, Mas-
sachusetts Institute of Technology, Cambridge, MA. http://hdlLhandle.
net/1721.1/86235

Jan Obdrzélek and Marek Trtik. 2011. Efficient Loop Navigation for
Symbolic Execution. In Automated Technology for Verification and
Analysis, 9th International Symposium, ATVA 2011, Taipei, Taiwan,
October 11-14, 2011. Proceedings (Lecture Notes in Computer Science,
Vol. 6996), Tevfik Bultan and Pao-Ann Hsiung (Eds.). Springer, 453-462.

http://www.usenix.org/events/osdi10/tech/full_papers/Chlipala.pdf
http://www.usenix.org/events/osdi10/tech/full_papers/Chlipala.pdf
https://doi.org/10.1007/978-3-540-30570-5_20
https://doi.org/10.1007/978-3-540-30570-5_20
https://doi.org/10.1007/978-0-387-48533-1_19
https://doi.org/10.1145/2254064.2254087
http://www.usenix.org/events/sec10/tech/full_papers/Felmetsger.pdf
http://www.usenix.org/events/sec10/tech/full_papers/Felmetsger.pdf
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/giffin
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/giffin
https://www.ndss-symposium.org/ndss2008/automated-whitebox-fuzz-testing/
https://www.ndss-symposium.org/ndss2008/automated-whitebox-fuzz-testing/
https://github.com/kohler/hotcrp/commit/5d53ab
https://github.com/kohler/hotcrp/commit/5d53ab
https://github.com/kohler/hotcrp/commit/80ff96
https://doi.org/10.1016/B978-012088469-8.50013-9
https://doi.org/10.1016/B978-012088469-8.50013-9
https://www.usenix.org/conference/osdi21/presentation/lehmann
https://www.usenix.org/conference/osdi21/presentation/lehmann
https://doi.org/10.1109/ASE.2015.71
https://doi.org/10.1109/ASE.2015.71
https://doi.org/10.1145/212433.220198
https://doi.org/10.1145/212433.220198
http://www.vldb.org/conf/1996/P251.PDF
http://www.vldb.org/conf/1996/P251.PDF
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-20.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-20.html
https://doi.org/10.1109/SP.2017.33
https://doi.org/10.1109/SP.2017.33
https://doi.org/10.1145/3317550.3321425
https://doi.org/10.1145/3317550.3321425
https://www.wordfence.com/blog/2016/06/wordpress-core-vulnerability-bypass-password-protected-posts/
https://www.wordfence.com/blog/2016/06/wordpress-core-vulnerability-bypass-password-protected-posts/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/mehta
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/mehta
https://doi.org/10.1145/1007568.1007633
https://doi.org/10.1109/ICDE.1989.47234
http://hdl.handle.net/1721.1/86235
http://hdl.handle.net/1721.1/86235

HotOS ’23, June 22-24, 2023, Providence, RI, USA

https://doi.org/10.1007/978-3-642-24372-1_34
Oracle. 2017. Using Oracle Virtual Private Database to Control Data
Access. https://docs.oracle.com/database/121/DBSEG/vpd.htm
Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig. 2020.
Automated policy synthesis for system call sandboxing. Proc. ACM
Program. Lang. 4, OOPSLA (2020), 135:1-135:26. https://doi.org/10.
1145/3428203
[34] Vern Paxson and Sally Floyd. 1994. Wide-Area Traffic: The Failure
of Poisson Modeling. In Proceedings of the ACM SIGCOMM 1994 Con-
ference on Communications Architectures, Protocols and Applications,
London, UK, August 31 - September 2, 1994, Jon Crowcroft (Ed.). ACM,
257-268. https://doi.org/10.1145/190314.190338
Nadia Polikarpova, Deian Stefan, Jean Yang, Shachar Itzhaky, Travis
Hance, and Armando Solar-Lezama. 2020. Liquid information flow
control. Proc. ACM Program. Lang. 4, ICFP (2020), 105:1-105:30. https:
//doi.org/10.1145/3408987
Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. 1995. An-
swering Queries Using Templates with Binding Patterns. In Proceedings
of the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, May 22-25, 1995, San Jose, California, USA,
Mihalis Yannakakis and Serge Abiteboul (Eds.). ACM Press, 105-112.
https://doi.org/10.1145/212433.220199
[37] John Renner, Alex Sanchez-Stern, Fraser Brown, Sorin Lerner, and
Deian Stefan. 2021. Scooter & Sidecar: a domain-specific approach
to writing secure database migrations. In PLDI °21: 42nd ACM SIG-
PLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 2021, Stephen N.
Freund and Eran Yahav (Eds.). ACM, 710-724. https://doi.org/10.1145/
3453483.3454072
Andrew Reynolds, Haniel Barbosa, Daniel Larraz, and Cesare Tinelli.
2020. Scalable Algorithms for Abduction via Enumerative Syntax-
Guided Synthesis. In Automated Reasoning - 10th International Joint
Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part
I (Lecture Notes in Computer Science, Vol. 12166), Nicolas Peltier and
Viorica Sofronie-Stokkermans (Eds.). Springer, 141-160. https://doi.
org/10.1007/978-3-030-51074-9_9
Shariq Rizvi, Alberto O. Mendelzon, S. Sudarshan, and Prasan Roy.
2004. Extending Query Rewriting Techniques for Fine-Grained Access
Control. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Paris, France, June 13-18, 2004, Gerhard Weikum,
Arnd Christian Kénig, and Stefan Defloch (Eds.). ACM, 551-562. https:
//doi.org/10.1145/1007568.1007631
[40] Jerome H. Saltzer. 1974. Protection and the Control of Information
Sharing in Multics. Commun. ACM 17, 7 (1974), 388-402. https:
//doi.org/10.1145/361011.361067
[41] Pierangela Samarati. 2001. Protecting Respondents’ Identities in Mi-
crodata Release. IEEE Trans. Knowl. Data Eng. 13, 6 (2001), 1010-1027.
https://doi.org/10.1109/69.971193
[42] Daniel Schoepe, Daniel Hedin, and Andrei Sabelfeld. 2014. SeLINQ:
tracking information across application-database boundaries. In Pro-
ceedings of the 19th ACM SIGPLAN international conference on Func-
tional programming, Gothenburg, Sweden, September 1-3, 2014, Johan
Jeuring and Manuel M. T. Chakravarty (Eds.). ACM, 25-38. https:
//doi.org/10.1145/2628136.2628151
[43] Jiasi Shen and Martin C. Rinard. 2019. Using active learning to syn-
thesize models of applications that access databases. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26,
2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 269-285.
https://doi.org/10.1145/3314221.3314591
Ben Stock. 2018. Search leaks hidden tags. https://github.com/kohler/
hotcrp/issues/135

(32

—

(33

[t

(35

=

[36

—

(38

[t

[39

—

(44

[l

230

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Wen Zhang, Aurojit Panda, and Scott Shenker

Michael Stonebraker and Eugene Wong. 1974. Access control in a
relational data base management system by query modification. In
Proceedings of the 1974 ACM Annual Conference, San Diego, California,
USA, November 1974, Volume 1, Roger C. Brown and Donald E. Glaze
(Eds.). ACM, 180-186. https://doi.org/10.1145/800182.810400
Latanya Sweeney. 2002. K-Anonymity: A Model for Protecting Privacy.
Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10, 5 (2002).

W3Techs. 2023. Usage statistics of server-side programming lan-
guages for websites. https://w3techs.com/technologies/overview/
programming_language

Westley Weimer and George C. Necula. 2005. Mining Temporal
Specifications for Error Detection. In Tools and Algorithms for the
Construction and Analysis of Systems, 11th International Conference,
TACAS 2005, Held as Part of the Joint European Conferences on The-
ory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-
8, 2005, Proceedings (Lecture Notes in Computer Science, Vol. 3440),
Nicolas Halbwachs and Lenore D. Zuck (Eds.). Springer, 461-476.
https://doi.org/10.1007/978-3-540-31980-1_30

Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama,
Cormac Flanagan, and Stephen Chong. 2016. Precise, dynamic in-
formation flow for database-backed applications. In Proceedings of
the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,
2016, Chandra Krintz and Emery D. Berger (Eds.). ACM, 631-647.
https://doi.org/10.1145/2908080.2908098

Wen Zhang, Eric Sheng, Michael Alan Chang, Aurojit Panda, Mooly
Sagiv, and Scott Shenker. 2022. Blockaid: Data Access Policy Enforce-
ment for Web Applications. In 16th USENLX Symposium on Operating
Systems Design and Implementation, OSDI 2022, Carlsbad, CA, USA,
July 11-13, 2022, Marcos K. Aguilera and Hakim Weatherspoon (Eds.).
USENIX Association, 701-718. https://www.usenix.org/conference/
osdi22/presentation/zhang

Wen Zhang, Eric Sheng, Michael Alan Chang, Aurojit Panda, Mooly
Sagiv, and Scott Shenker. 2022. Blockaid: Data Access Policy Enforcement
for Web Applications (slides). https://www.usenix.org/sites/default/
files/conference/protected-files/osdi22_slides_zhang-wen.pdf

https://doi.org/10.1007/978-3-642-24372-1_34
https://docs.oracle.com/database/121/DBSEG/vpd.htm
https://doi.org/10.1145/3428203
https://doi.org/10.1145/3428203
https://doi.org/10.1145/190314.190338
https://doi.org/10.1145/3408987
https://doi.org/10.1145/3408987
https://doi.org/10.1145/212433.220199
https://doi.org/10.1145/3453483.3454072
https://doi.org/10.1145/3453483.3454072
https://doi.org/10.1007/978-3-030-51074-9_9
https://doi.org/10.1007/978-3-030-51074-9_9
https://doi.org/10.1145/1007568.1007631
https://doi.org/10.1145/1007568.1007631
https://doi.org/10.1145/361011.361067
https://doi.org/10.1145/361011.361067
https://doi.org/10.1109/69.971193
https://doi.org/10.1145/2628136.2628151
https://doi.org/10.1145/2628136.2628151
https://doi.org/10.1145/3314221.3314591
https://github.com/kohler/hotcrp/issues/135
https://github.com/kohler/hotcrp/issues/135
https://doi.org/10.1145/800182.810400
https://w3techs.com/technologies/overview/programming_language
https://w3techs.com/technologies/overview/programming_language
https://doi.org/10.1007/978-3-540-31980-1_30
https://doi.org/10.1145/2908080.2908098
https://www.usenix.org/conference/osdi22/presentation/zhang
https://www.usenix.org/conference/osdi22/presentation/zhang
https://www.usenix.org/sites/default/files/conference/protected-files/osdi22_slides_zhang-wen.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/osdi22_slides_zhang-wen.pdf

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 A Primer on Policy Enforcement
	2.2 A Concrete Setting
	2.3 Challenges Beyond Enforcement

	3 Policy Creation
	3.1 Challenge: Creating a Policy for an Existing Application
	3.2 Proposal: Policy Extraction
	3.3 Applicability and Usefulness

	4 Policy Evaluation
	4.1 Challenge: Evaluating a Policy for Sensitive-data Disclosure
	4.2 Existing Work: Bayesian Privacy
	4.3 Proposal: Prior-agnostic Privacy

	5 Violation Diagnosis
	5.1 Challenge: Troubleshooting Violations
	5.2 Proposal: Patch Generation

	6 Conclusion
	Acknowledgments
	References

