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ABSTRACT Applying the principle of least privilege requires enforc-

There have been many recent advances in enforcing fine-
grained access control for database-backed applications. How-
ever, operators face significant challenges both before and

after an enforcement mechanism has been deployed. We

identify three such challenges beyond enforcement and dis-
cuss possible solutions.
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1 INTRODUCTION

Many modern applications store sensitive data in databases.
Today, it is often the application’s responsibility to ensure
that such sensitive data is shown only to authorized users,
but application bugs can lead to sensitive data being improp-
erly disclosed [4, 16, 17, 26, 44]. This issue can be mitigated
by applying the principle of least privilege,! which in this
context entails giving an application access only to the data-
base content that the user being served is allowed to see.

TThis principle states that: “every privileged user of the system should

operate using the least amount of privilege necessary” [40].
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ing per-user access control outside the application. Access
control for databases is a well-trodden research area, and
there have been many proposals for secure and efficient
access-control enforcement [9, 18, 19, 25, 27, 45, 49, 50]—i.e.,
ensuring that the database reveals only data allowed by a
data-access policy. Once deployed, these mechanisms are
indeed effective in preventing unauthorized data access.
And yet, if we consider what it takes to get these enforce-
ment mechanisms deployed in practice, we realize that en-
forcement is not the end of the access-control story—it is
not even the beginning of it. In fact, challenges arise before
enforcement can be deployed, and remain after enforcement
is in place. For example, consider the following questions:

(1) Given an existing application, how can we infer what
policy it was designed to enforce?

(2) Given a policy, how can we validate that it sufficiently
protects sensitive data?

(3) When a program submits inappropriate queries, how
can we help the developer find and resolve the issue?

Until we have answered such questions, we have not ad-
dressed the full life-cycle of controlling access to sensitive
data. It is important for access-control research to look be-
yond enforcement design and explore the challenges that arise
as enforcement mechanisms become used in practice.

2 BACKGROUND AND MOTIVATION

2.1 A Primer on Policy Enforcement

Before discussing issues beyond policy enforcement, we first
provide some brief background on enforcement itself.

The goal of access-control enforcement is to restrict an
application’s data accesses to the data allowed by a given
policy. An enforcement design must answer two questions:

(1) At what granularity is a policy specified?

(2) How is a policy enforced?
And the many enforcement designs in literature are largely
distinguished by their answers to these questions—e.g.:

(1) Policies (i.e., what data can be accessed) can be speci-
fied at the granularity of table columns [42], rows [25,
32], cells [18, 19, 25, 32, 49], views [5, 29, 39, 50], etc.
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(2) Policy enforcement can be static [9, 19, 42] vs dy-
namic [18, 25, 32, 49, 50], query-modifying [18, 25, 27,
49] vs semantic-preserving [9, 19, 50], etc.

These designs offers different trade-offs among policy ex-
pressiveness, ease of use, and performance.

2.2 A Concrete Setting

All the challenges we identify in this paper apply to a range
of enforcement scenarios. But for concreteness, we frame
our discussion in the setting of Blockaid [50], a recent en-
forcement solution proposed in the systems community.

Blockaid enforces access control for applications that store
sensitive data in a relational database. A policy is specified
using SQL views (parameterized by user ID), and is enforced
using a SQL proxy that intercepts each application-issued
query, allowing it if its answer is guaranteed to reveal no
more information than the views do, and blocking it other-
wise. When vetting a query, the proxy considers the history
of prior queries and their results; this allows it to safely allow
certain queries that would be blocked in isolation.

Example 2.1 (Calendar application [51]). Consider a policy
for a calendar application consisting of two views:

(V;) SELECT EId FROM Attendance WHERE UId = ?MyUId
(Each user can see the IDs of events they attend.)
(V2) SELECT * FROM Events e JOIN Attendance a
ON e.EId = a.EId WHERE a.UId = ?MyUId

(Each user can see the details of events they attend.)

Suppose the application, when serving a user with UId = 1,
issues the following sequence of queries:

(Q1) SELECT 1 FROM Attendance WHERE UId=1 AND EId=2
(Does User #1—the current user—attend Event #2?)
This query is allowed under the policy because the
information it reveals is covered by View V;.

Now, suppose the database returns one row, indicating
the current user does attend the event.

(O,) SELECT * FROM Events WHERE EId=2
(Fetches details about Event #2.)

This query is allowed given that Q; has returned one
row, an assumption that guarantees the information
revealed by this query is covered by View V;.

If not for the history of Q; returning non-empty, Q, would
have been blocked: by itself, Q, is not guaranteed to reveal
only information covered by V,. <

We stress two traits of Blockaid’s design. First, a query is
either executed as-is or blocked outright; it is never executed
with modification. Second, with Blockaid the application
must still contain access checks; Blockaid merely ensures that
the checks are sufficient to confine data revelation to what
the policy allows. The specifics of the research directions laid
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out in this paper will sometimes rely on these two traits, but
every challenge we identify has equivalents in other settings.

2.3 Challenges Beyond Enforcement

Enforcement provides the security guarantees that rule out
unauthorized data access, and so it is deservedly the central
piece of the access-control puzzle. But it is not the only piece
that matters. As access control is used in practice, challenges
can arise both before and after enforcement. In what follows,
we identify three such challenges beyond enforcement that
are crucial to the life-cycle of data access control and, in each
case, propose potential solutions.

3 POLICY CREATION

3.1 Challenge: Creating a Policy for an
Existing Application

Ideally, a widely-applicable enforcement mechanism should
apply to a range of currently deployed applications. However,
before such an enforcement mechanism can be installed,
an administrator—we’ll call her Dora—must come up with
a policy that grants the application access to the minimal
amount of information it needs. While existing applications
employ data-access checks internally (e.g., in the form of
if-statements), they typically do not come with a data-access
policy specified for external access control. And so Dora faces
her first obstacle: how to come up with a policy that captures
the data accesses required by an existing application?

The most immediate way is for Dora to sit down and study
the application’s intended data accesses, and then write down
the most restrictive set of views that allows them. Indeed,
this is what we did for Blockaid’s evaluation [50, §8.1].

But manual policy creation is tedious: Dora, who may
not be application’s developer, must painstakingly map out
possible application behaviors, including edge cases. What
is worse, tedium leads to errors: a human who has to wade
through thousands of lines of application code is prone to
typos and omissions, which can lead to the policy being
overly restrictive or overly permissive. (We made at least
one such mistake, which remained undetected for a while,
when we wrote policies manually in the past [50, §8.7].)

Challenge 1. Systematically determine the policy embodied
in an existing application.

3.2 Proposal: Policy Extraction

Part of the struggle is that Dora must write a policy from
scratch. What she had a tool that could generate a draft policy
from the application, to be then refined into its final form?
Such a tool is plausible because legacy applications already
contain enough information to produce a draft policy. Often,
developers use access checks and filters to query only the
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1 def show_event(db, params, session):

2 if db.sql("SELECT 1 FROM Attendance "

3 "WHERE UId = ? AND EId = ?",

4 session["user_id"], params["event_id"]
5 ).is_empty():

6 raise Http404("event not found")

7 return format_event(db.sql(

8 "SELECT * FROM Events WHERE EId = ?"

9 params["event_id"1))

Listing 1: A handler that displays a calendar event.

data required for a functionality (e.g., rendering a calendar
event). The tool need simply extract this existing behavior.

Example 3.1. Continuing from Example 2.1, Listing 1 shows
a code snippet for rendering a calendar event. (This could be
the code that issued Q;-Q;.) Dora, by studying the code or
observing queries issued by runs of this code, can infer the
policy V1=V, which is in fact a maximally restrictive policy
that allows this functionality, as prescribed by the principle
of least privilege. We wish to automate this process. «

We propose to aid in policy creation for legacy applications
via policy extraction: automatically generating a maximally
restrictive policy that allows the application’s current behav-
ior. A human can then examine the extracted policy to see if
any view is too permissive; if so, the program behavior that
led to the view’s production is likely a bug.

There are many ways to implement such an extraction
tool; here we outline two ways forward.

3.2.1 Language-based extraction: Symbolic execution. As-
suming the application’s source code is available, we can
symbolically execute it to find (1) what SQL queries can be
issued, and (2) under what conditions each SQL query is is-
sued (i.e., a path condition for each query-issuing statement).
We can then generate a policy to allow only these queries,
and only under their respective conditions.

At first glance, it is unclear if this approach would work:
symbolic execution can be impractically slow due to path
explosion [8], a challenge exacerbated by web applications’
usage of dynamic languages (like Ruby). But we have hope:

e Path explosion is often caused by loops [31]; but as
prior work has observed, web applications typically
have simple loop structure [9, 43].

e Prior work was able to symbolically execute code in a
dynamic language without re-implementing language
features, by co-opting the language’s standard inter-
preter [30]; we could leverage similar techniques here.

An extraction tool based on symbolic execution would
have to be language-specific. Fortunately, server-side web
programming is dominated by just a few popular languages
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and technologies like PHP, .NET, and Ruby [47], and so even a
tool specific to one of these languages can have wide impact.
There has been much prior work using code analysis to
explore an application’s data-access behavior, two example
being privilege inference via taint tracking [7] and vulnera-
bility detection via dynamic invariant generation [13]. Unlike
these systems, policy extraction based on symbolic execu-
tion would be able to systematically explore program paths
without relying on Dora to craft comprehensive test cases.

3.2.2 Language-agnostic extraction: Specification mining. If
application source code is unavailable, or if we insist on
language-agnostic extraction, then we must resort to black-
box techniques. A black-box extraction tool would execute
the application on inputs of its choice and observe the queries
issued and answers returned, before outputting a policy.

If we regard the policy as a “specification” of the applica-
tion’s data accesses, then our extraction task becomes a task
of dynamic specification mining [2]: inferring likely speci-
fications by analyzing an application’s behaviors [23]. But
unlike prior efforts that extract FSM [2, 48] or LTL [20] speci-
fications, or those that infer specifications for social-network
updates [24] or syscall sandboxing [33], we seek to extract
SQL views that summarize the application’s data queries.

A black-box extraction tool must carry out two steps. First,
it must run the application and collect query traces. Here, it
is crucial to achieve good coverage. If the application has a
comprehensive test suite, it may suffice to just run the suite.
Otherwise, we could leverage test generation [3], guided
fuzzing [15], or active learning [43] to achieve good coverage.

Second, the tool must “learn” a policy from the traces in a
generalizing way—i.e., produce a policy that allows not only
the traces observed so far, but also any other trace generated
by the same application logic. For Example 2.1, a generalizing
learner would extrapolate the trace Q;-Q,, which is specific
to User #1 and Event #2, into views V;-V;, which are generic
over users and events. But it must not over-generalize by, say,
allowing any user to view any event regardless of attendance.

So how can we design an extraction algorithm that gen-
eralizes, but not too much? While in theory this problem
might be unsolvable without the ground truth for application
behavior, a few practical approaches look promising:

e Limit the size of the generated policy. A policy that
relies on non-generalizing views must, by nature, con-
tain a lot of them (e.g., one for each user in the data-
base). This can be avoided by using a large collection of
traces but insisting that the generated policy be small.

e Solicit hints on what can appear in a policy—e.g., re-
quire that a concrete event ID (like EId=2) never appear
in a policy, since event IDs are opaque identifiers. With
this rule, traces will be generalized across all events.
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o Actively discover which constraints in a trace to keep.
For example, unsure if an Attendance row’s notes
value matters to data-access checking, the algorithm
can re-run the application with the notes cell mutated
to a random string. If the subsequent trace is unaf-
fected, it can conclude that notes does not affect if an
event can be accessed, and omit it from the policy.

3.3 Applicability and Usefulness

We end this section by discussing when policy extraction
applies, and why we expect it to be useful to Dora.

Legacy vs new applications. Policy extraction simplifies pol-
icy creation for legacy applications, ones developed without
externally-enforced access control in mind. For a new appli-
cation whose policy is produced alongside its business logic—
perhaps using a policy-integrated language like Hails [14]
or Scooter [37]—we imagine policy creation would be less
burdensome, and policy extraction likely unnecessary.

Applicability under query modification. Policy extraction does
not apply to programs written to work with query-modifying
access control [18, 25, 27, 49]. These programs issue broad
queries for any data they could possibly use, and rely on an
external entity to rid answers of disallowed data. Without
using access checks or query filters, these programs contain
no information from which to extract a policy. But the devel-
oper is already required to produce a policy as the program
is written, so no extraction is necessary.

Vetting an extracted policy. A policy extraction tool cannot
tell whether an extracted policy reflects human intentions;
this question must be answered by Dora. But why would
Dora have an easier time vetting an extracted policy than
she would writing one from scratch?

From our experience writing view-based policies for web
applications, the meaning of each view has often been easy
to interpret, and the rationale behind it easy to ascertain—but
only in retrospect, after the view definition has been written
down. Coming up with the view in the first place can be
hard, especially if the view is needed only for an edge case,
and if the policy writer is not intimately familiar with the
application. Policy extraction helps by laying out the views
required by the nooks and crannies of the application’s logic.

Finally, once we extract a policy, we could evaluate it for
sensitive-data disclosure, a direction we explore next.

4 POLICY EVALUATION
4.1 Challenge: Evaluating a Policy for
Sensitive-data Disclosure

A policy, be it hand-written or extracted, should be sanity-
checked before being put into production. Policies have two
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potentially conflicting imperatives. On the one hand, they
must allow queries required for the application’s operation.
On the other, they must prevent users from learning some-
thing about sensitive information (i.e., data that our operator,
Dora, wants hidden). In many cases, no policy satisfies both
imperatives. So how can Dora evaluate how much sensitive
information is disclosed, so that she can determine whether
the policy (and the application’s functionality) must be mod-
ified to limit such disclosure?

To be more precise, suppose S is a query whose answer
Dora wants hidden (we will refer to such queries as sensitive
queries). Dora first checks whether query S is blocked by
the policy. But she must go further: even if S is blocked,
substantial information could be disclosed on the answer to S
from answers to other queries allowed by the policy [28].

Example 4.1 ([11, §2]). Consider a hospital-management
system whose policy allows staff to view (1) the doctor as-
signed to each patient, and (2) the diseases treated by each
doctor; but the disease each patient is treated for is deemed
sensitive information. Suppose patient John is treated by a
doctor who only treats two diseases. The policy would block
a direct query for John’s disease, but discloses enough infor-
mation to narrow the answer down to two possibilities. <«

Challenge 2. Design an evaluation tool that detects poten-
tial sensitive-data disclosure by a given data-access policy.

The first problem we face when tackling this challenge is
to define what we mean by “disclosure”. Despite much prior
work, identifying a practical notion of disclosure useful to
operators turns out to be nontrivial.

4.2 Existing Work: Bayesian Privacy

One of the most well-studied notions of disclosure in the
database literature is that of Bayesian privacy [11, 28], where
disclosure is modeled as the shift in an adversary’s belief for
the answer to a sensitive query S after observing the views.
The bigger the shift, the more the knowledge gained by the
adversary, and the more extensive the disclosure.

To complicate matters, such shift depends not only on the
policy and sensitive query, but also on the adversary’s prior
belief. For example, a neighbor who has seen John coughing
might change his belief only slightly when he learns that
John is treated by a doctor who treats only pneumonia and tu-
berculosis (Example 4.1); someone without prior knowledge
of John’s cough might undergo a bigger shift.

As a result, Bayesian privacy criteria are typically param-
eterized by the class of prior beliefs considered. But we are
now caught between a rock and a hard place: we can assume
either (1) a general class of priors (e.g., all tuple-independent
distributions [28]), yielding a criterion that applies to diverse
adversaries but imposes impractically strict restrictions on
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what a policy can reveal; or (2) a specific family of priors (as
in Dalvi et al. [10]), yielding a criterion that is more permis-
sive but applies only to a specific class of adversaries—one
that might not match the adversaries that arise in reality.

4.3 Proposal: Prior-agnostic Privacy

At the root of this dilemma is Bayesian privacy’s reliance
on modeling the adversary’s prior belief. In contrast to the
kinds of distributions routinely modeled in systems work—
like for traffic arrivals [34], which can be readily measured
and validated—distributions on people’s prior beliefs are
much harder to model realistically and validate empirically.
And if we can’t validate a prior, we can’t precisely interpret
a Bayesian guarantee based on that prior.

For this reason, we think it is time to turn to prior-agnostic
privacy criteria—ones that do not require modeling priors.
Many such criteria can be defined, and no one criterion fits
all. We highlight two examples from computational logic:
positive query implication (PQI) and negative query implica-
tion (NQI) [6, Def. 3.5], adapted to view-based access control.

Fix a set V of policy views and a sensitive query S. We
call a row t a possible answer to S if it is returned by S on
some database, a certain answer if on all databases, and an
impossible answer if on no database. Then, we say:

o PQI¢(V) holds if revealing the contents of V could
render a possible answer to S certain.

o NOQI¢(V) holds if revealing the contents of V could
render a possible answer to S impossible.

PQI and NQI signal disclosure—i.e., the contents of V en-
abling certain inferences about the answer to S. We illustrate
these concepts with a toy example.

Example 4.2. Define two queries on an employee database:
(Q1) SELECT name FROM Employees WHERE age >= 60
(Q,) SELECT name FROM Employees WHERE age >= 18
Take V = {Q;} and S = Q,. Revealing Q;’s answer allows
positive inference on Q,’s answer: if Qg returns "Alex", then
so must Q,. Thus, PQI,, ({Q1}) holds.

Conversely, take V = {Q,} and S = Q;. Revealing Q,’s
answer allows negative inference on Q;’s: if Q, doesn’t return
"Alex", then nor can Q. So we have NQI, ({Q2}).

PQI and NQI are prior-agnostic: nowhere in our reasoning
did we appeal to assumptions on the adversary’s belief. <«

Remark 4.3. In all fairness, if it were possible to accurately
model belief as a probability distribution, then Bayesian pri-
vacy would be a valuable metric as it provides the probability
of someone holding that belief correctly guessing a sensitive
value—exactly the event we wish to avoid. Our proposal is
motivated only by the inherent difficulty of modeling belief.

Once Dora finds PQI or NQI, or some other condition, to be
a useful criterion for her application, she can write down her
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sensitive queries and ensure that a policy is disclosure-free
by invoking a checking algorithm for the criterion.

It remains to develop checking algorithms prior-agnostic
privacy. As far as we know, algorithms for checking PQI
and NQI have been studied only in theoretical contexts for
simple, conjunctive queries [6]. Practical algorithms exist
for checking k-anonymity [41, 46] (another prior-agnostic
criterion), but they typically assume single-table schemas. It
is a promising direction to explore how to extend these algo-
rithms to complex schemas and queries found in practice.

5 VIOLATION DIAGNOSIS

5.1 Challenge: Troubleshooting Violations

Having produced a policy she’s happy with, Dora enables
policy enforcement on her application. One day, the applica-
tion (possibly after a code update) issues a query that gets
blocked due to policy violation. What has gone wrong?

Answering this question can be difficult. Because we use
allow-list policies (i.e., views that a user is allowed to access),?
no item or subset of items in the policy can be singled out for
causing the violation. Then what form of feedback should
be provided to help Dora diagnose the problem?

While providing feedback is straightforward for simpler
policy specifications (like row- or column-level policies), the
solution is less obvious for the more expressive view-based
policies. A natural proposal is to display a counterexample—
in Blockaid’s case, a pair of databases on which every view
produces the same answer, but the blocked query produces
different answers.?> However, while a counterexample is a
proof-of-violation, it is not easily interpreted by Dora—what
is she to do with two databases shown side by side?

Challenge 3. Assist human in diagnosing policy violations.

Streamlining diagnosis is crucial to keeping an access-
control deployment manageable. The more effort needed to
resolve violations, the more likely is Dora to forgo access
control out of frustration or, worse, to silence violations by
setting overly permissive policies, leaving data unprotected.

5.2 Proposal: Patch Generation

A policy violation is caused by either the policy being stricter
than intended, or the application accessing more data than
intended. A tool cannot easily distinguish between the two
cases, but it can suggest patches to both the policy and the
application such that, once any patch is applied, the offending

2Allow-lists can naturally implement least privilege: simply write the policy
to allow the minimum necessary information. Block-lists, where the extent
of allowed access is implicit, risk granting more privilege than necessary.
3Intuitively, for a query to be allowed, its answer must be uniquely deter-
mined by the answers to the views; a counterexample refutes this property.
See prior work for a more formal discussion [50, §4.2].
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query would be allowed. Even patches that do not get applied
can help. For example, if all policy patches look unreasonable
(e.g., they allow every user access to all calendar events), then
the application—not the policy—is the likely culprit.

5.2.1 Patching the policy. Policy patches, consisting of mod-
ified/added view definitions, can be generated via policy
extraction (Section 3.2): run the extraction algorithm either
on the up-to-date source code, or on a test suite augmented
with the offending query, and then compare the extracted
policy with the current one. The extraction algorithm could
also be augmented to produce deltas over an existing policy.

5.2.2  Patching the application. A typical application patch
would take one of two forms:

(1) Narrowing down the offending query (e.g., by adding
a conjunct to its SQL WHERE clause), or

(2) Wrapping the offending query in an additional access
check (along the lines of the if statement in Listing 1).

We envision both forms of patching will work at the query
level, and can be applied to applications written in any lan-
guage. In particular, an access-check patch will consist of a
condition on database content (e.g., the existence of a particu-
lar row), which can be checked in any application language.*

The two patch forms might require different techniques
to generate. Conceptually, the task of narrowing down a
blocked query Q reduces to the database-theoretic prob-
lem of finding a contained rewriting Q’ of Q using the policy
views [22]—i.e., Q" may refer only to view names (and not
base tables), and its answer must be a subset of Q’s on all
databases.” There has also been theoretical work on find-
ing maximally contained rewritings—ensuring Q’ returns as
much data as possible without violating the policy—for re-
stricted query languages like conjunctive queries (CQs) [21,
36] and CQs with arithmetic comparisons [1]. The practical
systems problems, then, are (1) to extend these algorithms to
more expressive query languages found in practice, and to
implement them efficiently; and (2) to empirically evaluate
the extent to which the rewriting found helps a developer.

Generating an access check requires finding a state-
ment about database content such that (1) once known, this
statement (with the existing trace) makes the blocked query
compliant; and (2) the statement is consistent with the exist-
ing trace. In Example 2.1, if Q, were issued alone (it would
be blocked), one such statement would be “the Attendance
table contains row (UId=1, EId=2)”, which the developer
can check for in her code before issuing the query.

4This is in contrast to leak repair for liquid information flow control [35,
§5], which statically analyzes source code written in a special type system.
More precisely, we only need the latter condition to hold on all databases
consistent with the trace prior to Q’s issuance.
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The search for such a statement falls under abductive in-
ference: finding an “explanatory hypothesis for a desired
outcome” [12], with the desired outcome being policy compli-
ance for the blocked query. As such, a promising approach is
to leverage program synthesis techniques for abduction [38].

6 CONCLUSION

Data-access policy enforcement has received much attention
and seen great advances in recent years, but less attention has
been paid to issues that arise before and after enforcement is
deployed. We hope this paper will spur further research on
challenges beyond enforcement—like policy creation, policy
evaluation, and violation diagnosis—whose resolution will
be crucial to addressing the full life-cycle of access control.
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