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Abstract

Providing high concurrency in B+-trees has been

studied extensively. But few efforts have been doc-

umented for combining concurrency methods with

a recovery scheme that preserves well-formed trees

across system crashes. We describe an approach for

this that works for a class of index trees that is a

generalization of the B1i’k-tree. A major feature of

our method is that it works with a range of different

recovery methods. It achieves this by decomposing

structure changes in an index tree into a sequence

of atomic actions, each one leaving the tree well-

formed and each working on a separate level of the

tree. All atomic actions on levels of the tree above

the leaf level are independent of database transac-

tions, and so are of short duration.

1 Introduction

The subject of concurrency in B+-trees has a long

history [1, 6, 14, 16, 17, 18]. Most work, with the

exception of [5, 14], have not treated the problem

of system crashes during structure changes. In this

paper, we show how to manage concurrency and

recovery for a wide class of index tree structures,

single attribute, multiattribute, and versioned. Fur-

ther, our approach works for a large class of recovery

methods.

The four innovations that make it possible for us

to provide high concurrency for index trees are the

following:
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We define a search structure, called a II-tree,

that is a generalization of the Blink-tree [6].

Our concurrency and recovery method is de-

tined to work with all search structures in

this class. Recent work [19] suggests that

approaches based on Blink-trees should have

higher concurrency than other proposed meth-

ods. Thus, our technique has both good per-

formance and very broad applicability.

II-tree structure changes consist of a sequence

of atomic actions [7]. These separate actions

are serializable and are guaranteed to have the

all or nothing property by the recovery method.

Searchers can see the intermediate states of the

II-tree that exist between these atomic actions.

Hence, complete structural changes are not se-

rializable. By contrast, in ARIES/IM [14] com-

plete structural changes are serial.

We define separate actions for performing up-

dates at each level of the tree. Update ac-

tions on non-leaf nodes are separate from any

transaction whose update triggers a structure

change. Only node-splitting at the leaves of

a tree may need to be within an updating

transaction. Even in this case, only for page-

oriented UNDO recovery systems do locks on

the split nodes need to be kept to the end

of the transaction. This is unlike [14] where

entire structure changes are subtransactions

of database transactions and where non-page-

oriented UNDO recovery must be supported.

When a system crash occurs during the se-

quence of atomic actions that constitutes a

complete II-tree structure change, crash re-
cover y takes no special measures. A crash

may cause an intermediate etate to persist for

some time. The structure change is completed

when the intermediate state is detected during

normal subsequent processing by scheduling a

completing atomic action. The state is tested



again in the completing atomic action to ensure

the idempotence of completion.

The rest of this paper is organized in the follow-

ing way. Section 2 defines the II-tree. Section 3

describes the operations on II-trees. In section 4,

atomic actions are described in general. Section 5

describes how II-tree structure changes are decom-

posed into atomic actions, and how to cope with

such decomposed changes. Finally, section 6 is a

short discussion of what we have accomplished.

2 The ~-tree

2.1 Structural Description

Informally, a II-tree is a balanced tree, and we mea-

sure the level of a node by the number of child edges

on any path between the node and a leaf node.

More precisely, however, a II-tree is a rooted DAG

because, like the Blink-tree, nodes have edges to sib-

ling nodes as well as child nodes. All these terms

are defined below.

2.1.1 Within One Level

Each node is responsible for a specific part of the

key space, and it retains that responsibility for as

long as it is allocated. A node can meet its space

responsibility in two ways. It can directly contain

entries (data or index terms) for the space. Alter-

natively, it can delegate responsibility for part of

the space to a sibling node.

A node delegates space to a new sibling node dur-

ing a node split. A sibling term describes a key

space for which a sibling node is responsible and

includes a side pointer to the sibling. A node

containing a sibling term is called the containing

node and the sibling node to which it refers is called

the contained node.

Any node except the root can contain sibling

terms to contained nodes. A level of the II-tree

is a maximal connected subgraph of nodes and side

pointer edges. Each level of the II-tree is responsi-
ble for the entire key space. The first node at each

level is responsible for the whole space, i.e. it is the

containing node for the whole key space. Each level

describes a partition of the space into subspaces di-

rectly contained by nodes of that level. This gives

the II-tree its name.

2.1.2 Multiple Levels

The II-tree is split from the bottom, like the B-tree.

Data nodes (leaves) are at level O. Data nodes

contain only data records and/or sibling terms. As

the II-tree grows in height via splitting of a root,

new levels are formed.

A split is normally described by an index term.

Each index term, when posted, includes a child

pointer to a child node and a description of a

key space for which the child node is responsible. A

node containing the index term for a child node is

called a parent node. In H-trees, as in B1ink-trees,

parent nodes are index nodes which contain only

index terms and/or sibling terms. Parents nodes

are at a level one higher than their children.

2.1.3 Well-formed II-trees

Side pointers and child pointers must refer to nodes

which are responsible for spaces that contain the

indicated subspaces. A pointer can never refer to

a de-allocated node. Further, an index node must

contain index terms that refer to nodes that are re-

sponsible for spaces, the union of which contains

the subspace directly contained by the index node.

However, each node at a level need not have a par-

ent node at the next higher level. This is an ab-

straction and generalization of the idea introduced

in the Blink-tree[6]. That is, having a new node

connected in the Blink-tree only via a side pointer

is acceptable.

Like [18], we define the requirements of a well-

formed general search structure. Thus, a II-tree is

well-formed if

1. each node is responsible for a subspace of the

search space;

2. each sibling term describes a subspace of its

containing node for which its referenced node

is responsible.

3. each index term describes a subspace of the

index node for which its referenced node is re-

sponsible;

4. the union of the spaces described by the index

terms and the sibling terms contains the space

an index node is responsible for;

5. the lowest level nodes are data nodes.

6. a root exists that is responsible for the entire

search space.

The well-formedness description above defines a

correct search structure, All structure changing

atomic actions must preserve this well-formedness.

We will need additional constraints on structure

changing actions to facilitate node consolidation

(deletion).
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2.2 Applicability y to Various Search

Structures

There are a number of search trees which can be

described as II-trees, and hence exploit our concur-

rency control and recovery method.

2.2.1 Blink-trees

In a Blink-tree , an index term (respectively sib-

ling term) is represented by a key value and node

pointer. It denotes that the child node (respectively

sibling node) referenced is responsible for the entire

space greater than or equal to the key. The dhectly

‘ink-tree node is the space itcontained space of a B

is responsible for minus the space it has delegated

to its (one) sibling.

2.2.2 The TSB-tree

A TSB-tree [10] provides indexed access to multi-

ple versions of key sequenced records. As a result,

it indexes these records both by key and by time,

and we can split by either of these attributes. His-

torical nodes (nodes created by a split in the time

dimension) never split again. History sibling point-

ers permit the current node directly containing a

key space to access history nodes that contain the

previous versions of records in that space.

In Figure 1, the region covered by a current node

after a number of splits is in the lower right hand

corner of the key space it started with. A time split

produces a new (hktorical) node with the original

node directly containing the more recent time. A

history sibling pointer in the current node refers to

the hkitory node. The new history node contains a

copy of the prior history sibling pointer.

A key split produces a new (current) node with

the original node directly containing the lower part

of the key space. A key sibling pointer in the cur-

rent node refers to the new current node containing

the higher part of the key space. The new node

will contain a copy of the history sibling pointer.

It makes the new current node responsible for not

merely its current key space, but for the entire his-

tory of this key space.

2.2.3 The hB-Tree

In the hB-tree [11], the idea of containing and con-

tained nodes is explicit and they are described with
kd-tree fragments. The “External” markers of [11]

can be replaced with the addresses of the nodes

which were extracted, and a linking network es-

tablished with the desired properties. In addition,

when the split is by a hyperplane, instead of elim-

inating the root of the local tree in the splitting
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Figure 1: In the Time-Split B-tree, new current

nodes contain copies of old history node pointers

and old key pointers. New historic nodes contain

copies of old history pointers. Current nodes are

responsible for all previous time through their his-

torical pointers and all higher key ranges through

their key (side) pointers.

node, as in [11], one child of the root (say the right

child) points to the new sibling containing the con-

tents of the right subtree. This makes the treatment

of hyperplane splits consistent with that of other

splits. This is illustrated in Figure 2. A complete

description and explanation of hB-tree concurrency,

node splitting, and node consolidation is given in

[3]. -

3 II-tree Operations

Here we describe the operations on II-trees in a very

general way. The steps do not describe how to deal

with concurrent operations, with failures, or how to

decompose structure changes into atomic actions.

These are described in later sections.

3.1 Searching

Searches start at the root of the II-tree. The root

is an index node that directly contains the entire

search space. In an index node whose directly con-

tained space includes a search point, an index term

must exist that references a child node that is re-

sponsible for the space that contains the search

point. There may be several such child nodes. How-

ever, it is desirable to follow the child pointer to

the node that directly contains the search point.
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Figure 2: An hB-tree index showing the use of k-d

trees for sibling terms. External markers (showing

what spaces have been removed in creating “holes”)

have been replaced with sibling pointers.

This avoids subsequent sibling traversals at the next

lower level.

Because the posting of index terms can be de-

layed, we can only calculate the space approxi-

mately contained by a child with respect to a

given parent. This is the difference between that

part of the space of the parent node the child is

responsible for and the subspaces that it has dele-

gated to other child nodes referenced by index terms

that are present in the index node.

We proceed to the child that approximately con-

tains the search point. This node will usually, but

not always, contain the search point. If the di-

rectly contained space of a node does not include

the search point, a side pointer is followed to the

sibling node that has been delegated the subspace

containing the search point. Eventually, a sibling is

found whose directly contained space includes the

search point.
The search continues until the data node level

of the tree is reached. The record for the search

point will be present in the data node whose directly

contained space includes the search point, if it exists

at all.

3.2 Node Splitting

3.2.1 Node Splitting Steps

A node split has the following steps:

1. Allocate space for the new node.

2.

3.

4.

5.

6.

Partition the subspace directly contained by

the original node into two parts. The origi-

nal node continues to directly contain one part.

The other part is delegated to the new sibling

node.

If the node being split is a data node, place in

the sibling node all of the original node’s data

that are contained in the delegated space. In-

clude any sibling terms to subspaces for which

the new node is now responsible. Remove from

the original node all the data that it no longer

directly contains. This partitions the data.
(What is dealt with here is point data.)

If the node being split is an index node, include

in each node the index terms that refer to child

nodes whose approximately contained spaces

intersect the space directly contained by the

node.

Put a sibling term in the original node that

refers to the new node.

Schedule the posting of an index term describ-

ing the split to the next higher level of the tree.

The index term describes the new sibling and

the space for which it is responsible. Posting

occurs in a separate atomic action from the ac-

tion that performs the split.

Example: In a B link-tree, to perform a node split,

all records (“records” may be index entries in index

nodes or data records in data nodes) whose keys

are ordered after the middle record’s key are copied

from the original node to the new node. The new

node has been delegated the high order key sub-

space. The link (sibling term) is copied from the

old node to the new node. Then the copied records

are removed from the old node and the link in the

old node is replaced with a new sibling term (ad-

dress of the new node and the split key value).

3.2.2 Clipping

When an index node is split, it is simplest, if possi-

ble, to delegate to the new sibling a space which is

the union of the approximately contained spaces of

a subset of child nodes. However, it can be difficult

to split an index node in a multi-attribute index tree

in this way because either the space partitioning is

too complex, resulting in very large index and sib-

ling terms, or because the division between original

and new sibling nodes is too unbalanced, reducing

storage ut ilizat ion. In this case, a child term whose

approximately contained space intersects the new
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sibling’s space as well as the remaining directly con-

tained space in the old sibling is said to be clipped.

The child term is placed in both parents.

When a child term is clipped, posting index terms

describing the subsequent splitting of this child may

involve the updating of several parent index nodes.

We choose to post to each parent in a separate

atomic action. When the split of the child occurs,

we post only to the parent that is on the current

search path to the splitting node. Other parents

can be updated when they are on a search path
that results in a sibling traversal to the new node.

This exploits a mechanism that is already present

to cope with system failures in the midst of II-tree

structure changes. Subsequently, when we refer to

“the parent”, we intend this to denote the parent

that is on the current search path.

3.3 Node Consolidation

When a node becomes under-utilized, it may be

possible to consolidate it with either its containing

node or one of its contained nodes. We always move

the node contents from contained node to contain-

ing node, regardless of which is the underutilized

node. Then the index term for the contained node

is deleted and the contained node is de-allocated.

For this to work well,

both container and contained node must be

referenced by index terms in the same parent

node, and

the contained node must only be referenced by

this parent.

These conditions mean that only the single parent

of the contained node need be updated during a

consolidation. This node will also be a parent of the

container. This is important as a node cannot be

deleted until all references to it have been purged.

(This complication arises only in multiattribute II-

trees; Blink-tree nodes never have multiple parents.)

There is a difficulty with the above constraints.

Whether a node is referenced by more than one par-

ent is not derivable from the index term informa-

tion we have described thus far. However, multi-

parent nodes are only formed when (1) an index

node (the parent) splits, clipping one or more of its

index terms, or (2) when a child with more than one

parent is split, possibly requiring posting in more
than one place. We mark these clipped index terms

as referring to multi-parent nodes.

4 Atomic Actions for Update

We must ensure that interactions between atomic

actions do not cause undetected deadlocks or in-

correct searches. Atomic actions must have the all

or nothing property and must leave the tree well-

formed, All update atomic actions must be cor-

rectly serialized. How this is done is described in

this section.

4.1 Latching for Atomic Actions

4.1.1 Latch Deadlock Avoidance

Latches can be used for concurrency control in-

volving atomic actions that change an index tree

above the leaf level. Latches are semaphores for

which the holder’s usage pattern guarantees the ab-

sence of deadlock. Latches normally come in two

modes, share (S) mode which permits others with

S latches to access the latched data simultaneously,

and exclusive (X) mode which prevents all other

access so that update can be performed. Latches do

not involve the database lock manager and latches

do not conflict with standard database locks.

Deadlock is avoided by PREVENTING cycles in

a “potential delay” graph [8]. If resources are or-
dered and latched in that order, the potential delay

graph can be kept cycle-free without materializing

it. Since a II-tree is usually accessed in search order,

we can order parent nodes prior to their children

and containing nodes prior to the contained nodes

referenced via their side pointers. Space manage-

ment information can be ordered last.

When arbitrary atomic actions are possible, two

phase locking is used to ensure serializability [2].

However, when dealing with index trees, latches can

sometimes be released early without violating cor-

rectness. This occurs in traversing tree nodes dur-

ing a search.

Promoting a previously acquired latch violates

the ordering of resources and compromises deadlock

avoidance. Promotion is the most common cause of

deadlock [5]. For example, when two transactions

set S latches on the same object to be updated, and

then subsequently desire to promote their latches

to X, a deadlock results.

Update (U) mode [4] supports promotion. It

allows sharing by readers, but conflicts with X and

other U modes. An atomic action is not allowed to

promote from a S to an X latch. But it may pro-
mote from U to X mode. However, a U latch may

only be safely promoted to X under restricted cir-

cumstances. The rule that we observe is that the

promotion request is not made while the requester
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holds latches on higher ordered resources. When-

ever a node might be written, a U latch is used.

4.1.2 Avoiding Latch-Lock Deadlocks

There are two situations where an index tree atomic

action may interact with database transactions and

also require locks. These are (1) normal accessing of

a database record for fetch, insert, delete, or update

and (2) moving data records, whet her to split or

consolidate nodes.

Should holders of database locks be required to

wait for latches on data nodes, this wait is not

known to the lock manager and can result in an

undetected deadlock even though no deadlock in-

volving only latches is possible. To avoid latch-lock

deadlocks, we observe the:

. No Wait Rule [14]: An action does not wait

for database locks while holding a latch that

can conflict with a holder of a database lock.

For our II-tree operations, we must release latches

on data nodes whenever we wait for database locks.

However, latches on index nodes may be retained.

Except for data node consolidation, no atomic

action or database transaction both: (i) holds

database locks; and (ii) uses other than S latches

above the data node level. S latches on index nodes

never conflict with database transactions, only with

index change at omit actions. Except for consoli-

date, these actions never hold database locks. And

consolidate never requests a U-latch on the index

node to be updated while it holds database locks.

Hence, its holding of this U-latch cannot conflict

with another consolidate (or any other action) that

holds database locks. Details of the consolidate op-

eration can be found in [12].

4.2 Page-oriented UNDO

4.2.1 Non-commutative Updates

Data node splitting and consolidation require

database locks for some (but not all) recovery

protocols. For example, if undos of updates on
database records must take place on the same page

(leaf node) as the original update, (page-oriented

UNDO) the records cannot be moved until their

updating transaction commits or aborts. No up-

dates can be permitted on records moved by uncom-

mitted structure changes, since undoing the move

would cause those records to move, Finally, no up-

date can be permitted that makes the undoing of

the move impossible. Such updates are those that

consume space in the node that is needed in order

to consolidate nodes split by a transaction. Only

operations (together with their inverses) that com-

mute with the structure change can be permitted.

When a structure change is part of an indepen-

dent atomic action, the locks needed for the struc-

ture change are two phased but only persist for the

duration of this action. All node consolidation is
like this. Some data node splitting can also be done

in an independent atomic action. If a transaction,

T, whose update triggers the need for a node split,

has not yet updated any record to be moved by

the split, the split can be performed in an action

independent of and before T. Then, updates that

do not commute with the structure change are only

blocked during this independent action. Further, of

course, the structure change will not be undone if

T aborts.

Other data node splits in page-oriented undo sys-

tems must be done within an updating database

transaction. In this case, the database locks are

held to the end of transaction and the structure

change must be undone if the transaction aborts.

4.2.2 Move Locks

For page-oriented undo, a move lock is required

that conflicts with non-commutative updates. The

move lock causes the structure change operation to

wait until all transactions that are updating records

to be moved have completed. Further, it blocks up-

dating transactions from changing records moved

until the moving transaction completes. Finally,

the move lock keeps updates from consuming space

that would prevent the undoing of the move. Since

reads do not require undo, concurrent reads can be

tolerated. Hence, move locks are compatible with

share mode locks.

When data node splitting occurs in a system with

page-oriented undo, the move lock must be held to

the end of the transaction T that does the splitting.

The posting of the index term for splits cannot oc-

cur until and unless T commits, so that undo of the

split is possible if T aborts. For the same reason,

any other transaction which traverses the sibling

pointer created by T’s split may not post the index

term until T commits. Therefore a move lock must
be distinguished from a share lock. A transaction

encountering a move lock on a sibling traversal does

not schedule an index posting.

A move lock can be realized with a set of indi-

vidual record locks, a page-level lock, a key-range
lock, or even a lock on the whole relation. This de-

pends on the implementation specifics. If the move

lock is implemented using a lock whose granule is a

node size or larger, once granted, no update activ-

ity can alter the locking required. This one lock is

sufficient.
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Should the move lock be realized as a set of

record locks, the need to wait for one of these locks

means that the latch on the splitting node must be

released. This permits changes to the node that

can result in the need for additional records to be

locked. Since the space involved—one node—is lim-

ited, the frequency of this problem should be low.

The node is re-latched and examined for changes

(records inserted or deleted). The outcomes possi-

ble are no change, different locks required, or even

that the move is no longer required.

4.3 Providing Atomicity

We want our approach to index tree concurrency

and recovery to work with a large number of recov-

ery methods. Thus, we indicate what our approach

requires from a recovery method, without specifying

exactly how these requirements are satisfied.

4.3.1 Logging

We assume that write-ahead logging (the WAL pro-

tocol) is used. The WAL protocol ensures that ac-

tions are logged so as to permit their undo, prior to

making changes in the stable database.

Our atomic actions are not user visible and do not

involve user commitment promises. Atomic actions

need only be “relatively” durable. That is, they

must be durable prior to the commitment of trans-

actions that use their results. Thus, it is not nec-

essary to force a ‘(commit” record to the log when

an atomic action completes. This “commit” record

can be written when the next transaction commits,

forcing the log. This transaction is the first one

that might depend on the results of the atomic ac-

tion. This optimization assumes that any transac-

tion which might depend on these results uses the

same log.

4.3.2 Identifying an Atomic Action

Atomic actions must complete or partial executions

must be rolled back, Hence, the recovery manager

needs to know about atomic actions. Three possible

ways of identifying an atomic action to the recovery

manager are as (i) a separate database transaction,

(ii) a special system transaction, or (iii) as a “nested

top level action” [13]. Our approach works with any

of these techniques, or any other that guarantees

atomicity.

s Structure Changes

A II-tree structure change is decomposed into a se-

quence of atomic actions. An update or insert of

data into a node can result in a node split. This is

one atomic action. The posting of index terms cor-

rectly describing the split, and refering to old and

new nodes, is a second node update (of the parent of

the splitting node) and occurs in a different atomic

action. Posting an index term can also result in a

node split. Thus, node splitting changes a II-tree

one level at a time. A node consolidation makes

changes at two levels of the II-tree, moving data

between nodes and consolidating index terms, in a

single atomic action, Consolidation of index terms

can lead to further node consolidation, escalating

tree changes to the next level, like splitting.

5.1 Completing Structure Changes

There is a window between the time a node splits

in one atomic action and the index term describing

it is posted in another. Between these atomic ac-

tions, a II-tree is said to be in an intermediate state.

We try to complete structure changes because inter-

mediate states may result in non-optimal search or

storage utilization.

There are at least two reasons why we “lose

track” of which structure changes need completion.

1. A system crash may interrupt a structure

change after some of its atomic actions have

been executed, but not all.

2. We only schedule the posting of an index term

to a single parent.

Structure changes are detected as being incom-

plete by a tree traversal that includes following a

side pointer. At this time, we schedule an atomic

action to post the index term. Several tree traver-

sals may follow the same side pointer, and hence

try to post the index term multiple times. A sub-

sequent node consolidation may have removed the

need to post the index term. These are acceptable

because the state of the tree is testable. Before

posting the index term, we test that the posting has

not already been done and still needs to be done.

Node consolidations are scheduled when encoun-

tering underutilized nodes. As with node splitting,

the II-tree state is tested to make sure that the con-

solidation is only performed once, and only when

appropriate.

5.2 Exploiting Saved State

Exploiting saved information is an important as-

pect of efficient index tree structure changes. The

bad news of independence is that information about

the II-tree acquired by early atomic actions of the

structure change may have changed and so cannot
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be trusted by later atomic actions. The II-tree may

have been altered in the interim. Thus, saved infor-

mation needs to be verified before it is used.

The information that we save consists of search

key, nodes traversed on the path from root to data

node containing the search key, and the location of

the relevant index terms within those nodes. This

information can permit us to locate nodes to be re-

structured without a second search of the nodes on

the path, and to find a location within an index

node where a new index term is to be inserted or

an old one deleted.

To verify saved information, we use state identi-

fiers [9] within nodes to indicate the states of each

node. We record these identifiers as part of our

saved path. The basic idea is that if a node and its

state id (stored in the node) equal saved node and

state id, then there have not been any updates to

the saved node since the previous traversal. (Log

sequence numbers are used for state identifiers in

many commercial systems.)

Whether node consolidation is possible has a ma-

jor impact on how we handle this information. The

possibility of removal of a node from the structure

affects the extent to which saved information can

be trusted.

5.2.1 No Consolidate Case

Consolidation Not Supported [CNS] Invari-

ant: A node, once responsible for a key wabspace, is

always responsible for the subspace, CNS has three

effects on our tree operations.

1.

2.

3.

During a tree traversal, an index node is

searched for an index or sibling term for the

pointer to the next node to be searched. We

need not hold latches so as to ensure the

pointer’s continued validity. The latch on an

index node can be released after a search and

prior to latching a child or sibling node, Only

one latch at a time is held during a traversal.

When posting an index term in a parent node,

it is not necessary to verify the existence of the
nodes result ing from the split. These nodes are

immortal and remain responsible for the key

space assigned to them during the split.

During a node split, the parent index node to

be updated is either the one remembered from

the original traversal (the usual case) or a node

that can be reached by following sibling point-

ers, Thus

ways start

“re-traversals” to fin-d a pa~e-nt al-

with the remembered parent.

5.2.2 Consolidate Case

Consolidation Possible [CP] Invariant: A

node, once responsible for a key subspace, remains

reaponsib~e for the subspace oniy until it is de-

allocated.

De-allocated nodes are not responsible for any

key subspace, When re-allocated, they maybe used

in any way, including being assigned responsibility

for different key subspaces, or being used in other

indexes. This affects the “validity)’ of remembered

state. Saved path information needs to be verified

before being trusted.

The effect CP has on the tree operations is as

follows:

1.

2.

3.

During a tree traversal, latch coupling is used

to ensure that a node referenced via a pointer

is not freed before the pointer de-referencing is

completed. The latch on the referenced node

is acquired prior to the release of the latch on

the referencing node. Thus, two latches need

to be held simultaneously during a traversal.

When posting an index term in a parent node,

we must verify that the node produced by the

split continues to exist. Thus, in the atomic

operation that posts the index term, we also

verify that the node that it describes exists by

continuing our traversal down to this node.

During a node split, the remembered par-

ent node to be updated may have been de-

allocated. How to deal with this contin-

gency depends upon how node de-allocation is

treated. There are two strategies for handling

node de-allocation.

(a)

(b)

De-allocation is NOT a Node Up-

date: A node’s state identifier is un-

changed by de-allocation. It is impossi-

ble to determine by state identifier exam-

ination if a node has been de-allocated.

However, we ensure that the root does not

move and is never de-allocated. Then,

any node reachable from the root via a

tree traversal is guaranteed to be allo-

cated. Thus, tree re-traversals start at

the root. A node on the path is accessed

and latched using latch coupling, just as

in the original traversal. Typically, a path

re-traversal is limited to re-latching path

nodes and comparing new state ids with

remembered state ids, which will usually

be equal.

De-allocation is a Node Update:

Node de-allocation changes not only space
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management information, but also the

node’s state identifier to indicate that de-

allocation has taken place. This requires

the posting of a log record and possibly

an additional disk access. However, the

remembered parent node in the path will

always be allocated if its state identifier

has not changed and re-traversals can be-

gin from there. If it has changed, however,

one must go up the path, setting and re-

leasing latches until a node with an un-

changed state id is found or the root is

encountered. A path re-traversal begins

at this node. Since node de-allocation is

rare, full re-traversals of the tree are usu-

ally avoided.

5.3 A Structure Change Action

To illustrate the detailed steps of an atomic action,

we treat the case of posting index terms in a B1ink-

tree where node consolidation is possible and de-

allocation is not a node update. The arguments for

the index term posting operation are: The LEVEL

of the tree where the index term will be posted,

the remembered PATH, the ADDRESS of the new

node, and the KEY which was searched for.

Index term posting for the Blink-tree performs the

following steps:

1.

2.

Search: The search starts from the root us-

ing latch-coupling with S-latches. As long as

the state identifiers are unchanged, the remem-

bered PATH is used. If a state identifier is

changed, a search for the KEY begins. When

the LEVEL is reached, U-latches are used, pos-

sibly traversing side pointers until the correct

NODE is U-latched. The parent of NODE is

left S-latched.

Verify Split:. If the index term has already

been posted, the action is terminated. Other-

wise the child node with the largest index term

key value smaller than the KEY is S latched. It

is accessed to determine whether a side pointer

refers to a sibling node that is responsible for

the space that contains the KEY. If not, then

the node whose index term is being posted has

already been deleted and the action is termi-

nated.

If a sibling exists that is responsible for space

containing the KEY, this sibling becomes the

one whose index term is posted. (This may

mean a new ADDRESS will be in the new index

term.) The S latches are dropped. The U latch

on NODE is promoted to an X latch, (The new

3,

4.

6

node whose index term is being posted can-

not be consolidated while a latch is held on

NODE.)

Space Test: Test NODE for sufficient space to

accommodate the update. If sufficient, proceed

to Update Node.

Otherwise, split NODE: The space manage-

ment information is X latched and a new node

is allocated. The key space directly contained

by the current node is divided, such that the

new node becomes responsible for a subspace

of the key space. A sibling term that references

the new node is placed in NODE, The change

to NODE and the creation of the new node

are logged. If NODE is not the root, an index

term is generated containing the new node’s

address as a child pointer. (At the end of the

action, when all latches are released, an index

posting operation is scheduled for the parent of

NODE.)

If NODE is the root, a second node is allocated.

NODE’s contents are removed from the root

and put into this new node. A pair of index

terms is generated that describe the two new

nodes and they are posted to the root. These

changes are logged.

Then check which resulting node has a directly

contained space that includes KEY, and make

that NODE. This can require descending one

more level in the II-tree should NODE have

been the root where the split causes the tree to

increase in height. Release the X latch on the

other node, but retain the X latch on NODE.

Repeat this Space Test step.

Update NODE: Post the index term in

NODE. Post a log record describing the up-

date to the log. Release all latches still held by

the action.

Discussion

There are many ways to realize II-tree updates and

associated structure changes. We describe a specific

complete procedure in [12]. In this paper, we have

emphasized the abstract elements of our approach.

These elements include

●

●

extending the notion of sibling link to encom-

pass a much wider class of tree-like structures

which we have called II-trees;

decomposing updates into a number of atomic

actions so as to separate structure changes that
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●

●

●

alter the index from updates in database trans- [7]

act ions;

completion of structure changes when incom-

plete structure changes are encountered during

normal processing;

using latches for efficient concurrency control
[8]

without deadlock;

dealing with node consolidation as well as its ,91

absence. L-J

Our approach to index tree structure changes

provides high concurrency while being usable with

many recovery schemes and with many varieties of . .

Lomet, D. B. Process structuring, synchroniza-

tion, and recover y using atomic actions. Proc.

ACM Conf. on Language Design for Reliable

Softwa~e, SIGPLAN Notices 12,3 (Mar 1977)

128-137.

Lomet, D.B. Subsystems of processes with dead-

lock avoidance. IEEE Trans. on Software Engi-

neering SE-6,3 (May 1980) 297-304.

Lomet, D.B. Recovery for shared disk systems

using multiple redo logs. Digital Equipment

Corp. Tech ReportCRL90/4 (Ott 1990) Cam-

bridge Research Lab, Cambridge, MA

index trees. ‘We have described it in-an abstract [1OJ Lomet, D. and Salzberg, B., Access meth-

way which emphasizes its generality and hopefully ods for multiversion data, Proc. ACM SIGMOD

makes the approach understandable. Conf., Portland, OR (May 1989) 315-324.

Our techniques permit multiple concurrent struc- [11] Lomet, D. and Salzberg, B., The hB-tree: a
ture changes. In addition, all update activity and

structure change activity above the data level exe-

cutes in short independent atomic actions which do

not impede normal database activity. Only data

node splitting might execute in the context of a

database transaction, and even here the resulting

index term posting is separate from the database

transaction. Should the recovery method support

non-page-oriented UNDO, even data node splitting

can occur out side of the database transaction.
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