
Access Pattern-Based Memory and
Connectivity Architecture Exploration

PETER GRUN, NIKIL DUTT, and ALEX NICOLAU
Center for Embedded Computer Systems, University of California

Memory accesses represent a major bottleneck in embedded systems power and performance.
Traditionally, designers tried to alleviate this problem by relying on a simple cache hierarchy, or a
limited use of special purpose memory modules such as stream buffers. Although real-life applica-
tions contain a large number of memory references to a diverse set of data structures, a significant
percentage of all memory accesses in the application are generated from a few memory instruc-
tions that exhibit predictable, well-known access patterns; this creates an opportunity for memory
customization, targeting the needs of these access patterns. We present APEX, an approach that
extracts, analyzes and clusters the most active access patterns in the application, and aggressively
customizes the memory architecture to match the needs of the application. Moreover, though the
memory modules are important, the rate at which the memory system can produce the data for
the CPU is significantly impacted by the connectivity architecture between the memory subsystem
and the CPU. Thus, it is critical to consider the connectivity architecture early in the design flow, in
conjunction with the memory architecture. We couple the exploration of memory modules together
with their connectivity, to evaluate a wide range of cost, performance, and energy connectivity ar-
chitectures. We use a heuristic to prune the design space, guiding the exploration towards the most
promising designs. We present experiments on a set of large real-life benchmarks, showing signif-
icant performance improvements for varied cost and power characteristics, allowing the designer
to evaluate customized memory and connectivity configurations for embedded systems.

Categories and Subject Descriptors: B.3.3 [Hardware]: Memory Structures—Performance Analysis
and Design Aids

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Memory, architecture exploration, access patterns

1. MOTIVATION

In programmable embedded systems, memory represents a major performance
and power bottleneck [Przybylski 1997]. Traditionally, designers have at-
tempted to improve memory behavior by exploring different cache configura-
tions, with limited use of more special purpose memory modules such as stream
buffers [Jouppi 1990]. Real-life applications typically contain a large number of

This work was partially supported by grants from NSF (MIP-9708067), DARPA (F33615-00-C-
1632) and a Motorola fellowship.
Authors’ address: Center for Embedded Computer Systems, University of California, Irvine, CA,
USA.
Permission to make digital/hard copy of all or part of this material without fee for personal or
classroom use provided that the copies are not made or distributed for profit or commercial advan-
tage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice
is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or a fee.
C© 2003 ACM 1539-9087/03/0002-0033 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003, Pages 33–73.

34 • P. Grun et al.

memory references to a diverse set of data structures; however, a significant per-
centage of all memory accesses in the application are generated from only a few
instructions in the code. For instance, in vocoder (a GSM voice coding applica-
tion with 15 KB lines of code) 62% of all memory accesses are generated by only
15 instructions. Furthermore, these instructions often exhibit well-known pre-
dictable access patterns. This presents a tremendous opportunity to customize
the memory architecture to match the needs of the predominant access patterns
in the application, and significantly improve the memory system behavior.

Moreover, the cost, bandwidth, and power footprint of the memory system
is influenced not only by the memory modules employed, but also by the con-
nectivity components (buses, interconnections) that transfer the data between
the memory modules and the CPU. Indeed, though the memory configuration
and characteristics are important, often the connectivity structure has a com-
parably large impact on the system performance, cost, and power, and consid-
ering it early in the design flow is crucial. In this article, we present a sim-
ulation/analysis approach that explores memory architectures (by extracting,
analyzing, and clustering the most active memory access patterns in the appli-
cation), and couples it with connectivity exploration (evaluating a wide range
of connectivity configurations using components from a connectivity IP library,
such as standard on-chip buses, MUX-based connections, and off-chip buses).
This coupled approach improves the performance of the system, for varying cost,
and power consumption, allowing the designer to evaluate and select custom
memory configurations and architectures.

In our approach, we use the access patterns to customize the memory archi-
tecture, employing modules from a memory IP library, to explore a wide range
of cost, performance, and power designs. We use a heuristic to prune the de-
sign space of such memory customizations, and guide the search towards the
designs with best cost/gain ratios, exploring a space well beyond the one tra-
ditionally considered. We couple the memory exploration approach with the
exploration of the connectivity architecture, to improve the behavior of the
memory–connectivity system. There are two possible approaches to improve
the memory system behavior: (a) A synthesis-oriented, optimization approach,
where the result is a unique “best” solution, and (b) an exploration-based ap-
proach, where different memory system architectures are evaluated, and the
most promising designs following a pareto-like shape are generated, allowing
the designer to further refine the choice, according to the goals of the system.
We follow the second approach: We guide the design space search towards the
pareto points in different design spaces (such as the cost/performance, and
performance/power spaces), pruning the noninteresting designs early in the
exploration process, and avoiding full simulation of the design space.

In Section 2, we present related work in the area of connectivity and memory
architecture exploration. In Section 3, we present the flow of our approach. In
Section 4, we use an example application to illustrate our exploration strategy,
and in Section 5 we show the details of our memory and connectivity exploration
algorithm. We conclude with a set of experiments showing the cost, perfor-
mance, and power trade-offs obtained by our coupled memory and connectivity
exploration.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 35

2. RELATED WORK

There has been related work in five main domains: (i) Disk file systems
and databases, (ii) high-level synthesis, (iii) computer Architecture, (iv) pro-
grammable embedded systems, and (v) interface synthesis and layout/routing
of the connectivity wires.

(i) In the domain of file systems and databases, there have been several ap-
proaches to use the file access patterns to improve the file system behavior.
Parsons et al. [1997] present an approach allowing the application pro-
grammer to specify the file I/O parallel behavior using a set of templates
which can be composed to form more complex access patterns. Patterson
et al. [1995] advocate the use of hints describing the access pattern (cur-
rently supporting sequential accesses and an explicit list of accesses) to
select particular prefetching and caching policies in the file system.

(ii) In the domain of high-level synthesis, custom synthesis of the memory
architecture has been addressed for design of embedded ASICs. Catthoor
et al. [1998] address memory allocation, packing the data structures ac-
cording to their size and bitwidth into memory modules from a library,
to minimize the memory cost, and optimize port sharing. Wuytack et al.
[1996] present an approach to manage the memory bandwidth by increas-
ing memory port utilization, through memory mapping and code reorder-
ing optimizations. Bakshi and Gajski [1995] present a memory exploration
approach, combining memory modules using different connectivity and
port configurations for pipelined DSP systems. We complement this work
by extracting and analyzing the prevailing accesses in the application in
terms of access patterns, their relationships, similarities and interferences,
and customize the memory architecture using memory modules from a li-
brary to generate a wide range of cost/performance/power trade-offs in the
context of programmable embedded systems. We use the connectivity and
memory power/area estimation models from [Catthoor et al. 1998] to drive
our exploration.

Narayan and Gajski [1994] synthesize the bus structure and commu-
nication protocols to implement a set of virtual communication channels,
trading off the width of the bus and the performance of the processes com-
municating over it. Daveau et al. [1995] present a library-based exploration
approach, where they use a library of connectivity components, with differ-
ent costs and performance. We complement these approaches by exploring
the connectivity design space in terms of all the three design goals: Cost,
performance, and power simultaneously.

Givargis and Vahid [1998] present a connectivity exploration technique
that employs different encoding techniques to improve the power behavior
of the system. However, due to their platform-based approach, where they
assume a predesigned architecture platform that they tune for power, they
do not consider the cost of the architecture as a metric. Maguerdichian et al.
[2001] present an on-chip bus network design methodology, optimizing
the allocation of the cores to buses to reduce the latency of the transfers
across the buses. Lahiri et al. [2000] present a methodology for the design

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

36 • P. Grun et al.

of custom system-on-chip communication architectures, which proposes
the use of dynamic reconfiguration of the communication characteristics,
taking into account the needs of the application.

(iii) In the domain of computer architecture, Jouppi [1990] and Palacharla and
Kessler [1994] propose the use of hardware stream buffers to enhance
the memory system performance. Reconfigurable cache architectures have
been proposed recently [Veidenbaum et al. 1999] to improve the cache be-
havior for general purpose processors, targeting a large set of applications.
However, the extra control needed for adaptability and dynamic prediction
of the access patterns, although acceptable in general purpose computing
where performance is the main target, may result in a power overhead,
which is prohibitive in embedded systems that are typically power con-
strained. Instead of using such dynamic prediction mechanisms, we stati-
cally target the local memory architecture to the data access patterns.

On a related front, Hummel et al. [1994] address the problem of memory
disambiguation in the presence of dynamic data structures to improve the
parallelization opportunities. Instead of using this information for memory
disambiguation, we use a similar type of closed form description generated
by standard compiler analysis to represent the access patterns and guide
the memory architecture customization.

(iv) In the domain of programmable embedded systems, Kulkarni [2001] and
Panda et al. [1999] have addressed customization of the memory archi-
tecture targeting different cache configurations, or alternatively using on-
chip scratch pad SRAMs to store data with poor cache behavior. Grun
et al. [2001] present an approach that customizes the cache architecture
to match the locality needs of the access patterns in the application. How-
ever, this work only targets the cache architecture, and does not attempt
to use custom memory modules to target the different access patterns.

(v) Recent work on interface synthesis [Chou et al. 1995; Chung et al. 1996]
presents techniques to formally derive node clusters from interface timing
diagrams. These techniques can be used to provide an abstraction of the
connectivity and memory module timings in the form of reservation tables
[Hennessy and Patterson 1990]. Our algorithm uses the reservation tables
[Grun et al. 1999] for performance estimation, taking into account the
latency, pipelining, and resource conflicts in the connectivity and memory
architecture.

At the physical level, a large body of work has addressed connectivity layout
and wiring optimization and estimation. For instance, Chen et al. [1999] present
a method to combine interconnect planning and floorplanning for deep sub-
micron VLSI systems, where communication is increasingly important. Deng
and Maly [2001] propose the use of a 2.5-D layout model, through a stack of
single-layer monolithic ICs, to significantly reduce wire length. We use the area
models presented in Chen et al. [2001] and Deng and Maly [2001] to drive our
high-level connectivity exploration approach.

The work we present differs significantly from all the related work in that we
aggressively analyze, cluster, and map memory access patterns to customized

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 37

Fig. 1. The flow of our exploration approach.

memory architectures; this allows the designer to trade off performance and
power against cost of the memory system.

Moreover, to our knowledge, none of the previous approaches has addressed
connectivity exploration in conjunction with memory modules architecture, con-
sidering simultaneously the cost, performance, and power of the system, using
a library of connectivity components including standard buses (such as AMBA,
MUX-based connections, and off-chip buses). By pruning the noninteresting
designs early in the design flow, and simulating only the most promising archi-
tectures, we allow the designer to explore the connectivity architectures space,
to best trade off the different goals of the system.

3. OUR APPROACH

Figure 1 shows the flow of our approach. The connectivity exploration (ConEx)
approach is part of the memorEx memory system exploration environment.
Starting from the input application in C, our access pattern based memory
exploration (APEX) algorithm first extracts the most active access patterns
exhibited by the application data structures, and explores the memory module

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

38 • P. Grun et al.

Fig. 2. The flow of our APEX approach.

configurations to match the needs of these access patterns; however, it assumes
a simple connectivity model. Our ConEx connectivity exploration approach
starts from this set of selected memory module configurations generated by
APEX, and explores the most promising connectivity architectures that best
match the performance, cost, and power goals of the system. Since the com-
plete design space is very large, and evaluating all possible combinations in
general is intractable, at each stage we prune out the noninteresting design
configurations, and consider for further exploration only the points that follow
a pareto-like curve shape in the design space.

Figure 2 presents the flow of our APEX approach. We start by extracting
the most active access patterns from the input C application; we then ana-
lyze and cluster these access patterns according to similarities and interfer-
ence, and customize the memory architecture by allocating a set of memory
modules from a memory modules IP library. We explore the space of these
memory customizations by using a heuristic to intelligently guide the search
towards the most promising cost/performance memory architecture trade-offs.
We prune the design space by using a fast time-sampling simulation to rule
out the noninteresting parts of the design space, and then fully simulate
and determine the power consumption only for the selected memory architec-
tures. After narrowing down the search to the most promising cost/performance

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 39

Fig. 3. Memory architecture template.

designs, we allow the designer to best match the power requirements of the sys-
tem by providing full cost/performance/power characteristics for the selected
designs.

The basic idea is to target specifically the needs of the most active mem-
ory access patterns in the application and customize a memory architecture,
exploring a wide range of designs that exhibit varied cost, performance, and
power characteristics.

Figure 3 presents the memory architecture template. The memory access re-
quests from the processor are routed to one of the memory modules 0 through
n or to the cache, based on the address. The custom memory modules can read
the data directly from the DRAM, or alternatively can go through the cache
which is already present in the architecture, allowing access patterns that ex-
hibit locality to make use of the locality properties of the cache. The custom
memory modules implement different types of access patterns, such as stream
accesses, linked-list accesses, or a simple SRAM to store hard-to-predict or ran-
dom accesses. We use custom memory modules to target the most active access
patterns in the application, whereas the remaining, less frequent access pat-
terns are serviced by the on-chip cache.

Starting from a memory architecture containing a set of memory modules, we
map the communication channels between these modules, the off-chip memory,
and the CPU to connectivity modules from a connectivity IP library. Figure 4(a)
shows the connectivity architecture template for an example memory architec-
ture, containing a cache, a stream buffer, an on-chip SRAM, and an off-chip
DRAM. The communication channels between the on-chip memory modules,
the off-chip memory modules, and the CPU can be implemented in many ways.
One naive implementation is where each communication channel is mapped
to one connectivity module from the library. However, though this solution
may generate good performance, in general the cost is prohibitive. Instead,
we cluster the communication channels into groups based on their bandwidth
requirement, and map each such cluster to connectivity modules. Figure 4(b)
shows an example connectivity architecture implementing the communication
channels, containing two on-chip buses, a dedicated connection, and an off-chip
bus.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

40 • P. Grun et al.

Fig. 4. (a) The connectivity architecture template and (b) an example connectivity architecture.

4. ILLUSTRATIVE EXAMPLE

We use the compress benchmark (from SPEC95) to illustrate the performance,
power, and cost trade-offs generated by our approach. The benchmark contains
a varied set of access patterns, presenting interesting opportunities for cus-
tomizing the memory architecture.

4.1 Memory Exploration

We start by profiling the application, to determine the most active basic blocks
and memory references. In the compress benchmark, 40% of all memory ac-
cesses are generated by only 19 instructions. Indeed, this is a typical situation:
In many large real-life applications, a significant percentage of the memory
accesses are generated from a few instructions in the code.

By traversing the most active basic blocks, we extract the most active access
patterns from the application. Figure 5 shows an excerpt of code from com-
press, containing references to three arrays: htab, codetab, and rmask. htab is
a hashing table represented as an array of 69,001 unsigned longs (we assume
that both longs and ints are stored on 32 bits), codetab is an array of 69,001

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 41

Fig. 5. Example access patterns.

shorts, and rmask is an array of nine characters. The sequence of accesses to
htab, codetab, and rmask represents access patterns ap1, ap2, and ap3, re-
spectively. The hashing table htab is traversed using the array codetab as an
indirect index, and the sequence of accesses to the array codetab is generated
by a self-indirection, by using the values read from the array itself as the next
index. The sequence in which the array rmask is traversed is difficult to predict,
due to a complex index expression computed across multiple functions. There-
fore we consider the order of accesses as unknown. However, rmask represents
a small table of coefficients, accessed very often.

Compress contains many other memory references exhibiting different types
of access patterns such as streams with positive or negative stride. We extract
the most active access patterns in the application and cluster them according
to similarity and interference. Since all the access patterns in a cluster will
be treated together, we group together the access patterns that are compatible
(for instance access patterns that are similar and do not interfere) in the hope
that all the access patterns in a cluster can be mapped to one custom memory
module.

Next, for each such access pattern cluster, we allocate a custom memory
module from the memory modules library. We use a library of parameterizable
memory modules containing both generic structures such as caches and on-chip
SRAMs, as well as a set of parameterizable custom memory modules developed
for specific types of access patterns such as streams with positive, negative,
or nonunit strides, indirect accesses, self-indirect accesses, and linked-list ac-
cesses. Although these custom memory modules themselves are not the contri-
bution of this article (we simply use them as input to our memory architecture
exploration algorithm), we briefly describe one such module for illustration.
The custom memory modules are based on approaches proposed in the gen-
eral purpose computing domain [Chiueh 1994], with the modification that the
dynamic prediction mechanisms are replaced with the static compile-time anal-
ysis of the access patterns, and the prefetched data is stored in special purpose
FIFOs.

For instance, for the example access pattern ap2 from compress, we use a
custom memory module implementing a self-indirect access pattern, whereas

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

42 • P. Grun et al.

Fig. 6. Self-indirect custom memory module.

for the access pattern ap3, due to the small size of the array rmask, we use a
small on-chip SRAM [Panda et al. 1999]. Figure 6 presents an outline of the
self-indirect custom memory module architecture used for the access pattern
ap2, where the value read from the array is used as the index for the next
access to the array. The base register stores the base address of the array, the
index register stores the previous value that will be used as an index in the
next access, and the small FIFO stores the stream of values read from the next
memory level, along with the address tag used for write coherency. When the
CPU sends a read request, the data is provided from the FIFO. The empty spot
in the FIFO initiates a fetch from the next level memory to bring in the next
data element. The adder computes the address for the next data element based
on the base address and the previous data value. We assume that the base
register is initialized to the base of the codetab array and the index register to
the initial index through a memory mapped control register model (a store to
the address corresponding to the base register writes the base address value
into the register).

The custom memory modules from the library can be combined together,
based on the relationships between the access patterns. For instance, the access
pattern ap1 uses the access pattern ap2 as an index for the references. In
such a case, we use the self-indirection memory module implementing ap2 in
conjunction with a simple indirection memory module, which computes the
sequence of addresses by adding the base address of the array htab with the
values produced by ap2, and generate ap1 = htab[ap2].

After selecting a set of custom memory modules from the library, we map
the access pattern clusters to memory modules. Starting from the traditional
memory architecture, containing a small cache, we incrementally customize
access pattern clusters, to significantly improve the memory behavior. Many
such memory module allocations and mappings are possible. Exploring the
full space of such designs would be prohibitively expensive. To provide the
designer with a spectrum of such design points without the time penalty of
investigating the full space, we use a heuristic to select the most promising
memory architectures, providing the best cost/performance/power trade-offs.

For the compress benchmark, we explore the design space choosing a set
of five memory architectures that provide advantageous cost/performance

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 43

Fig. 7. The most promising memory modules architectures for the compress benchmark.

trade-offs. Figure 7 shows the memory modules architectures explored by APEX
for the compress example. The x-axis represents the cost of the memory mod-
ules in basic gates, and the y-axis represents the overall miss ratio.1 The
overall miss rate of the memory system is reduced by 39%, generating a sig-
nificant performance improvement for varied cost and power characteristics.
APEX prunes the noninteresting designs, on the inside of the pareto curve,
choosing only the most promising cost/performance architectures for further
exploration. The points labeled 1 through 5 represent the selected memory
modules designs that will be used as the starting point for the connectivity
exploration.

In this manner, we can customize the memory architecture by extracting and
analyzing the access patterns in the application, thus substantially improving
the memory system behavior, and allowing the designer to trade off the different
goals of the system.

4.2 Connectivity Exploration

In the previous section, we illustrated our APEX, generating a set of promis-
ing memory modules architectures. For each such memory modules architec-
ture, a set of different connectivity architectures are possible, each resulting
in different cost, performance, and power characteristics. Our ConEx approach
starts from the memory modules architectures generated by APEX, and ex-
plores the connectivity configurations using components from a connectivity
library (such as the AMBA buses, MUX-based connections, etc.), trading off the

1We define hits to be accesses to on-chip memories (such as caches or SRAMs) and misses as accesses
to off-chip memories.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

44 • P. Grun et al.

cost, performance, and power for the full memory system, taking into account
both the memory modules and the connectivity structure.

For our compress illustrative example benchmark, APEX selects the most
promising memory modules configurations. The resulting memory architec-
tures employ different combinations of modules such as caches, SRAMs, and
DMA-like custom memory modules storing well-behaved data such as linked
lists, arrays of pointers, streams, etc. [Grun et al. 2001]. Figure 7 shows
the memory modules architectures explored by APEX for the compress ex-
ample. The points labeled 1 through 5 represent the selected memory mod-
ules designs that will be used as the starting point for the connectivity
exploration.

Each such selected memory architecture may contain multiple memory
modules with different characteristics and communication requirements. For
each such architecture, different connectivity structures with varied combi-
nations of connectivity modules from the library may be used. For instance,
the memory modules architecture labeled 3 in Figure 7 contains a cache, a
memory module for stream accesses, a memory module for self-indirect2 array
references, and an off-chip DRAM. When using dedicated or MUX-based con-
nections from the CPU to the memory modules, the latency of the accesses is
small, at the expense of longer connection wires. Alternatively, when using a
bus-based connection, such as the AMBA system bus (ASB), the wire length
decreases, at the expense of increased latency due to the need for more com-
plex arbitration. Similarly, when using wider buses, with pipelined or split
transaction accesses, such as the AMBA high-performance bus (AHB), the
wiring and bus controller area increases further. Moreover, all these consid-
erations impact the energy footprint of the system. For instance, longer con-
nection wires generate larger capacitances, which may lead to increased power
consumption.

Figure 8 shows the ConEx connectivity exploration for the compress bench-
mark. The x-axis represents the cost of the memory and connectivity system.
The y-axis represents the average memory latency, including the latency due
to the memory modules, as well as the latency due to the connectivity. The av-
erage memory latency is reduced from 10.6 cycles to 6.7 cycles, representing a
36% improvement,3 while trading off the cost of the connectivity and memory
modules.

Alternatively, for energy-aware designs, similar trade-offs are obtained in
the cost/power or the performance/power design spaces (the energy consump-
tion trade-offs are presented in Section 6). In this manner, we can customize the
connectivity architecture, thus substantially improving the memory and con-
nectivity system behavior, and allowing the designer to trade off the different
goals of the system.

2We call self-indirect the array references that use the current array element value to compute the
index for the next array element access.
3Please note that to keep the figures clear, we did not include the uninteresting designs exhibiting
very bad performance (many times worse than the best designs). Although those designs would
increase the performance variation even further, in general they are not useful.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 45

Fig. 8. The connectivity architecture exploration for the compress benchmark.

5. THE MEMORY AND CONNECTIVITY EXPLORATION APPROACH

5.1 The Access Pattern-Based Memory Exploration (APEX) Approach

Our access pattern-based memory exploration (APEX) approach is a heuristic
method to extract, analyze, and cluster the most active access patterns in the
application, and customize the memory architecture, explore the design space
to trade off the different goals of the system. It contains two phases: (I) access
pattern clustering; and (II) exploration of custom memory configurations.

5.1.1 Access Pattern Clustering. In the first phase of our approach, we ex-
tract the access patterns from the application, analyze and group them into
access pattern clusters, according to their relationships, similarities, and in-
terferences. Figure 9 presents an outline of the access pattern extraction and
clustering algorithm. The access pattern clustering algorithm contains four
steps.

(1) We extract the most active access patterns from the input application. We
consider three types of access patterns: (a) access patterns that can be deter-
mined automatically by analyzing the application code; (b) access patterns
about which the user has prior knowledge; and (c) access patterns that are
difficult to determine, or are input-dependent.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

46 • P. Grun et al.

Fig. 9. Access Pattern Clustering algorithm.

(a) Often access patterns can be determined at compile time, using tradi-
tional compiler analysis. Especially in DSP and embedded systems, the
access patterns tend to be more regular and predictable at compile time
(e.g., in video, image, and voice compression).

First, we use profiling to determine the most active basic blocks in
the application. For each memory reference in these basic blocks, we
traverse the use-def chains to construct the address expression until
we reach statically known variables, constants, loop indexes, or other
access patterns. This closed form formula represents the access pattern
of the memory reference. If all the elements in this expression are stat-
ically predictable, and the loop indexes have known bounds, the access
pattern represented by this formula is predictable.

(b) In the case of well-known data structures (e.g., hashing tables, linked
lists, etc.), or well-understood high-level concepts (such as the traversal
algorithms in well-known DSP functions), the programmer has prior
knowledge on the data structures and the access patterns. By provid-
ing this information in the form of assertions, he can give hints on the
predominant accesses in the application. Especially when the memory
references depend on variables that traverse multiple functions, indi-
rections, and aliasing, and determining the access pattern automati-
cally is difficult, allowing the user to input such readily available infor-
mation, significantly improves the memory architecture customization
opportunities.

(c) In the case of memory references that are complex and difficult to pre-
dict, or depend on input data, we treat them as random access patterns.
Whereas for such references it is often impossible to fully understand
the access pattern, it may be useful to use generic memory modules
such as caches or on-chip scratch pad memories to exploit the locality
trends exhibited. A detailed description of the access pattern clustering
algorithm is presented in Grun et al. [2001].

(2) In the second step of the access pattern clustering algorithm we build the
access pattern graph (APG), containing as vertices the most active access
patterns from the application. The arcs in the APG represent properties
such as similarity, interference, whether two access patterns refer to the
same data structure, or whether an access pattern uses another access
pattern as an index for indirect addressing, or pointer computation.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 47

Fig. 10. Exploration algorithm.

(3) Based on the APG, we build the access pattern compatibility graph (APCG),
which has the same vertices as the APG (the access patterns), but the arcs
represent compatibility between access patterns. We say two access pat-
terns are compatible if they can belong to the same access pattern cluster.
For instance, access patterns that are similar (e.g., both have stream-like
behavior), but which have little interference (are accessed in different loops)
may share the same custom memory module, and it makes sense to place
them in the same cluster. The meaning of the access pattern clusters is that
all the access patterns in a cluster will be allocated to one memory module.

(4) In the last step of the access pattern clustering algorithm, we find the
cliques of fully connected subgraphs in the APCG compatibility graph. Each
such clique represents an access pattern cluster, where all the access pat-
terns are compatible, according to the compatibility criteria determined
from the previous step (for a complete description of the compatibility cri-
teria, please refer to Grun et al. [2001]). Each such access pattern clus-
ter will be mapped in the following phase to a memory module from the
library.

5.1.2 Exploring Custom Memory Configurations. In the second phase of
the APEX approach, we explore the custom memory module implementations
and access pattern cluster mappings, using a heuristic to find the most promis-
ing design points.

Figure 10 presents an outline of our exploration heuristic. We first initialize
the memory architecture to contain a small traditional cache, representing the
starting point of our exploration.

For each design point, the number of alternative customizations available is
large, and fully exploring them is prohibitively expensive. For instance, each ac-
cess pattern cluster can be mapped to custom memory modules from the library,

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

48 • P. Grun et al.

or to the traditional cache, each such configuration generating a different cost/
performance/power trade-off. To prune the design space, at each exploration
step we first estimate the incremental cost and gain obtained by the further
possible customization alternatives, then choose the alternative leading to the
best cost/gain ratio for further exploration. Once a customization alternative
has been chosen, we consider it the current architecture, and perform full simu-
lation for the new design point. We then continue the exploration, by evaluating
the further possible customization opportunities, starting from this new design
point.

We tuned our exploration heuristic to prune out the design points with poor
cost/ performance characteristics, guiding the search towards points on the
lower bound of the cost/performance design space.

For performance estimation purposes, we use a time-sampling technique,
which significantly speeds the simulation process. Although this may not be
highly accurate compared to full simulation, the fidelity is sufficient to make
good incremental decisions guiding the search through the design space. To
verify that our heuristic guides the search towards the pareto curve of the
design space, we compare the exploration results with a full simulation of all
the allocation and access pattern mapping alternatives for a large example.
Indeed, as shown in Section 6, our algorithm finds the best cost/performance
points in the design space, without requiring full simulation of the design space.
For more details on our APEX algorithm, please refer to Grun et al. [2001].

5.2 Connectivity Exploration Algorithm

Our connectivity exploration (ConEx) algorithm is a heuristic method to eval-
uate a wide range of connectivity architectures, using components from a con-
nectivity IP library, and selecting the most promising architectures, which best
trade-off the connectivity cost, performance, and power.

Figure 11 shows our ConEx algorithm. The input to our ConEx algorithm
is the application in C, a set of selected memory modules architectures (gen-
erated by the APEX exploration step [Grun et al. 2001]), and the connectivity
library. Our algorithm generates as output the set of most promising connectiv-
ity/memory modules architectures, in terms of cost, performance, and power.

For each memory modules architecture selected in the APEX memory mod-
ules exploration stage [Grun et al. 2001], multiple connectivity implementa-
tions are possible. Starting from these memory modules architectures, we ex-
plore the connectivity configurations by taking into account the behavior of
the complete memory and connectivity system, allowing the designer to trade
off the cost, performance, and power of the design. The ConEx algorithm pro-
ceeds in two phases: (I) evaluate connectivity configurations and (II) select most
promising designs.

(I) Evaluate connectivity configurations. For each memory architecture se-
lected from the previous APEX memory modules exploration phase [Grun et al.
2001], we evaluate different connectivity architecture templates and connectiv-
ity allocations using components from the connectivity IP library. We estimate
the cost, performance, and power of each such connectivity architecture, and

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 49

Fig. 11. Connectivity exploration algorithm.

perform an initial selection of the most promising design points for further
evaluation.

We start by profiling the bandwidth requirement between the memory mod-
ules and CPU for each memory modules architecture selected from APEX, and
constructing a bandwidth requirement graph (BRG). The bandwidth require-
ment graph represents the bandwidth requirements of the application for the
given memory modules architecture. The nodes in the BRG represent the mem-
ory and processing cores in the system (such as the caches, on-chip SRAMs,
DMAs, off-chip DRAMs, the CPU, etc.), and the arcs represent the channels
of communication between these modules. The BRG arcs are labeled with the
average bandwidth requirement between the two modules.

Each arc in the BRG has to be implemented by a connectivity component
from the connectivity library. One possible connectivity architecture is where

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

50 • P. Grun et al.

each arc in the BRG is assigned to a different component from the connectivity
library. However, this naive implementation may result in excessively high cost,
because it does not try to share the connectivity components. To allow different
communication channels to share the same connectivity module, we hierar-
chically cluster the BRG arcs into logical connections, based on the bandwidth
requirement of each channel. We first group the channels with the lowest band-
width requirements into logical connections. We label each such cluster with the
cumulative bandwidth of the individual channels, and continue the hierarchical
clustering. For each such clustering level, we then explore all feasible assign-
ments of the clusters to connectivity components from the library, and estimate
the cost, performance, and power of the memory and connectivity system.

(II) Select most promising designs. In the second phase of our algorithm,
for each memory and connectivity architecture selected from phase I, we per-
form full simulation to determine accurate performance and power metrics. We
then select the best combined memory and connectivity candidates from the
simulated architectures.

Whereas in phase I, we selected separately for each memory module archi-
tecture the best connectivity configurations, in phase II we combine the selected
designs and choose the best overall architectures, in terms of both the memory
module and connectivity configuration.

The different design points present different cost, performance, and power
characteristics. In general, these three optimization goals are incompatible. For
instance, when optimizing for performance, the designer has to give up either
cost or power. Typically, the pareto points in the cost/performance space have
a poor power behavior, whereas the pareto points in the performance/power
space will incur a large cost. We select the most promising architectures using
three scenarios: (a) in a power-constrained scenario, where the energy consump-
tion has to be less then a threshold value, we determine the cost/performance
pareto points, to optimize for cost and performance, while keeping the power
less then the constraint; (b) in a cost-constrained scenario, we compute the per-
formance/power pareto points; and (c) in a performance-constrained scenario,
we compute the pareto points in the cost–power space, optimizing for cost and
power, while keeping the performance within the requirements.

(a) In the power-constrained scenario, we first determine the pareto points in
the cost–performance space. A design is on the pareto curve if there is no
other design which is better in both cost and performance. We then collect
the energy consumption information for the selected designs. The points on
the cost–performance pareto curve may not be optimal from the the energy
consumption perspective. From the selected cost–performance pareto points
we choose only the ones that satisfy the energy consumption constraint. The
designer can then trade off the cost and performance of the system to best
match the design goals.

(b) In the cost-constrained scenario, we start by determining the pareto points
in the performance–power space, and use the system cost as a constraint.
Conversely, the pareto points in the performance–power space are in gen-
eral not optimal from the cost perspective.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 51

(c) When using the performance as a constraint, we determine the cost–power
pareto points.

For performance and power estimation purposes, we use a time-sampling
technique [Kessler et al. 1991], which significantly speeds the simulation
process. Although this may not be highly accurate compared to full simula-
tion, the fidelity is sufficient to make good incremental decisions guiding the
search through the design space. To verify that our heuristic guides the search
towards the pareto curve of the design space, we compare the exploration results
with a full simulation of all the memory and connectivity mapping alternatives
for two large examples. Indeed, as shown in Section 6, our algorithm success-
fully finds the best points in the design space, without requiring full simulation
of the design space.

5.2.1 Cost, Performance, and Power Models. We present in the following
the cost, performance and power models used during our memory modules and
connectivity exploration approach.

The cost of the chip is composed of two parts: the cost of the cores (such as
CPU cores, memories, and controllers), and the cost of the connectivity wiring.
We use the method employed in Chen et al. [1999] to compute the total chip
area: Since the wiring area and the cores area can be proportionally important,
we use two factors α and β tuned so that the overall wire and core areas are
balanced [Chen et al. 1999]

Chip area = α ∗Wire area+ β ∗ Cores area

where the Wire area is the area used by the connectivity wires, and the
Cores area is the area of the memory modules, memory controllers, CPU cores,
and bus controllers.

For the connectivity cost we consider the wire length and bitwidth of the
buses, and the complexity of the bus controller. We estimate the wire length to
half the perimeter of the modules connected by that wire [Catthoor et al. 1998]:

Conn length = 6(2 ∗
√

module area)

where the sum is over all the modules connected by that connectivity compo-
nent, and the module area is the area of each such module. The area of this
connectivity is then

Conn area = α ∗ Conn length ∗ Conn bitwidth+ β ∗ Controller area

where Conn bitwidth is the connectivity bitwidth, Controller area is the area of
the connectivity controller, and α and β are the two scaling factors determined
as mentioned above.

We determine the cost of the on-chip cache using the cost estimation tech-
niques presented in Catthoor et al. [1998]. For the cost of the custom memory
modules explored in the previous stage of our DSE approach [Grun et al. 2001]
we use figures from the Synopsys Design Compiler. For the CPU area (used
to compute the wire lengths for the wires connecting the memory modules to
the CPU), we use figures reported for the LEON SPARC gate count in 0.25 um
[Givargis and Vahid 1998].

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

52 • P. Grun et al.

Since the area of the off-chip memory is not as important as for the on-chip
components, we do not consider the off-chip memory area into our cost function.

We compute the performance of the memory system by generating a mem-
ory simulator for the specific memory modules and connectivity architectures
[Mishra et al. 2001]. We describe the timings and pipelining of the memory
and connectivity components using reservation tables, as presented in [Grun
et al. 1999]. Buses may support continuous or split transactions, with differ-
ent levels of pipelining. These features are also captured using the reservation
tables model, augmented with explicit information on the presence of split or
continuous transactions.

The memory system energy consumption comprises two parts: the connec-
tivity energy consumption, and the memory modules energy consumption.

We estimate the energy consumption of the connectivity components based
on the power estimation technique presented in Catthoor et al. [1998]:

Econn/access = 1/2 ∗ Bus bitwidth ∗ Atoggle ∗ Fclock ∗ (Cdriver+ Cload) ∗
Vdd2 ∗ access latency

where Econn/access is the energy per access consumed by the connectivity
module, Bus bitwidth is the bitwidth of the bus, Atoggle is the probability that
a bit line toggles between two consecutive transfers, Fclock is the clock fre-
quency, and Cdriver and Cload are the capacitance of the buffer that drives the
connectivity, and the total load capacitance of the wires, respectively.

We compute the load capacitance of the on-chip interconnect as

Cload = Lconn ∗ Cmm,

where Lconn is the length of the connectivity (computed as described above),
and Cmm is the capacitance per mm of the wires. We assume a capacitance of
0.19 pF/mm for 0.25 um technology [Catthoor et al. 1998]. Although this figure
is for the first metal layer, the capacitance values for the different layers are
not dramatically different [Catthoor et al. 1998].

For the driver capacitance we use the approach presented in Liu and Svenson
[1994]. Assuming that the size ratio in the inverter chain is 4, and the inverter
that drives the load has a capacitance of 1/4 of its load, the total capacitance
of the buffer is about 30% of the total load. The total capacitance ratio of the
inverter chain is

1
4
+ 1

16
+ 1

64
+ · · · = 0.3 Cdriver = Cload ∗ 0.3.

We compute the cache energy consumption per access using CACTI [Reinman
and Jouppi 1999]. We determine the energy consumed by off-chip accesses, in-
cluding the off-chip DRAM power, I/O pins, and assuming 30 mm off-chip bus
length [Catthoor et al. 1998]. For the off-chip connectivity, we use the capac-
itance figures presented in Catthoor et al. [1998]: A typical off-chip bus ca-
pacitance is 0.1 pF/mm (we assume a 30 mm off-chip bus), and the bus driver
capacitance is 5 pF. The chip I/O pins capacitance varies between 1 pF and
10 pF depending on the packaging type (we assume a capacitance of 5 pF for
the I/O pins).

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 53

For the off-chip DRAM energy consumption there is a lot of variation among
the figures considered by different researchers [Catthoor et al. 1998; Hicks
et al. 1997; Vijaykrishnan et al. 2000], depending on the main memory type
technology. The ratio between the energy consumed by on-chip cache accesses
and off-chip DRAM accesses varies significantly (Catthoor et al. [1998] reports
a ratio of 3 to 5 for accesses of same size, and Hicks et al. [1997] reports a
ratio between one and two orders of magnitude; however, it is not clear if this
includes the connectivity energy). To keep our technique independent of such
technology figures, and allow the designer to determine the relative importance
of these factors, we define a ratio R:

R = Emain memory access/Ecache access

where E main memory access and Ecache access are the energy consumed per
access by the main memory and the cache, respectively, for accesses of the same
size. We assume a ratio of 5, compared to an 8k two-way set associative cache.

We assume that the energy consumed by the custom memory controllers
presented in Grun et al. [2001] to be similar to the energy consumed by the
cache controller.

5.2.2 Coupled Memory/Connectivity Exploration Strategy. The quality of
the final selected memory–connectivity architectures in different spaces, such
as cost/performance, or cost/power spaces, depends on the quality of the initial
memory modules architectures selected as starting points for the connectiv-
ity exploration. The memory modules architecture selection has to be driven
by the same metric as the connectivity architecture selection. For instance,
when cost and performance are important, we guide the search towards the
cost/performance pareto points both in the early APEX memory modules explo-
ration, as well as in the ConEx connectivity exploration, and use power as a con-
straint. Alternatively, when cost and power are important, we use cost/power
as the metric to guide both the APEX and the ConEx explorations. For this,
we modified the APEX [Grun et al. 2001] algorithm to use cost/power as the
exploration driver, to determine the cost/power pareto points for the memory
modules architectures. We then use these architectures as the starting point
for the connectivity exploration.

To verify the sensitivity of the exploration on the memory modules archi-
tectures used as the starting point, we compare three exploration strategies,
using different sets of starting memory modules architectures: (i) pruned explo-
ration, where we select the most promising memory modules and connectivity
architectures, and perform full simulation to determine the pareto curve with-
out fully exploring the design space; (ii) neighborhood exploration, where we
expand the design space by including also the points in the neighborhood of the
architectures selected in the pruned approach; and (iii) full space exploration,
the naive approach where we fully simulate the design space, and compute the
pareto curve.

(i) In the pruned exploration approach, we start by selecting the most promis-
ing memory modules configurations, and use them as input for the connec-
tivity exploration phase. For each such memory module architecture, we

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

54 • P. Grun et al.

then explore different connectivity designs, estimating the cost, perfor-
mance, and energy consumption, and selecting at each step the best cost,
performance, and power trade-offs. We then simulate only the selected
designs and determine the pareto points from this reduced set of alterna-
tives, in the hope that we find the overall pareto architectures, without
fully simulating the design space.

(ii) To increase the chances of finding the designs on the actual pareto curve,
we expand the explored design space by including the memory modules
architectures in the neighborhood of the selected designs. In general, this
leads to more points in the neighborhood of the pareto curve being evalu-
ated, and possibly selected.

(iii) We compare our pruned and neighborhood exploration approaches to the
brute force approach, where we fully simulate the design space and fully
determine the pareto curve. Clearly, performing full simulation of the de-
sign space is very time consuming and often intractable. We use the naive
full space exploration approach only to verify that our pruned and neigh-
borhood exploration strategies successfully find the pareto curve designs
points, while significantly reducing the computation time.

Clearly, by intelligently exploring the memory modules and connectivity ar-
chitectures using components from a library, it is possible to explore a wide
range of memory system architectures, with varied cost, performance, and
power characteristics, allowing the designer to best trade off the different goals
of the system. We successfully find the most promising designs following the
pareto-like curve, without fully simulating the design space.

6. EXPERIMENTS

We performed a set of experiments on a number of large multimedia and sci-
entific applications to show the performance, cost, and power trade-offs gen-
erated by our approach. Our exploration algorithm guides the search towards
the points on the pareto curve4 of the design space, pruning out the nonin-
teresting designs. To verify that our design space exploration (DSE) approach
successfully finds the points on the pareto curve, we compare the exploration
algorithm results with the actual pareto curve obtained by fully simulating the
design space.

6.1 Memory Exploration

6.1.1 Experimental Setup. We simulated the design alternatives using our
simulator based on the SIMPRESS [Mishra et al. 2001] memory model, and
SHADE [Cmelik and Keppel 1993]. We assumed a processor based on the SUN
SPARC,5 and we compiled the applications using gcc. We estimated the cost
of the memory architectures (we assume the cost in equivalent basic gates)

4Assuming a two-dimensional cost–performance design space, a design is on the pareto curve, if
there is no other design which is better in terms of both cost and performance.
5The choice of SPARC was based on the availability of SHADE and a profiling engine; however our
approach is clearly applicable to any other (embedded) processor as well.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 55

using figures generated by the Synopsys Design Compiler, and an SRAM cost
estimation technique from Catthoor et al. [1998].

We computed the average memory power consumption of each design point,
using cache power figures from CACTI [Reinman and Jouppi 1999]. For the
main memory power consumption there is a lot of variation between the figures
considered by different researchers [Catthoor et al. 1998; Hicks et al. 1997],
depending on the main memory type, technology, and bus architecture. The ratio
between the energy consumed by on-chip cache accesses and off-chip DRAM
accesses varies between one and two orders of magnitude [Hicks et al. 1997].
To keep our technique independent of such technology figures, we allow the
designer to input the ratio R as:

R = E main memory access/E cache access

where E cache access is the energy for one cache access, and E main
memory access is the energy to bring in a full cache line. In our following power
computations, we assume a ratio R of 50, relative to the power consumption of
an 8k two-way set associative cache with line size of 16 bytes.

In this first set of memory exploration experiments, we consider a simple
connectivity architecture, which we refine during the connectivity exploration.
The use of multiple memory modules in parallel to service memory access re-
quests from the CPU requires using multiplexers to route the data from these
multiple sources. These multiplexers may increase the access time of the mem-
ory system, and if this is on the critical path of the clock cycle, it may lead
to the increase of the clock cycle. We use access times from CACTI [Reinman
and Jouppi 1999] to compute the access time increase and verify that the clock
cycle is not affected.

Different cache configurations can be coupled with the memory modules
explored, probing different areas of the design space. We present here our
technique starting from an instance of such a cache configuration. A more
detailed study for different cache configurations can be found in Grun et al.
[2001].

We used a set of large real-life multimedia and scientific benchmarks: Com-
press and Li are from SPEC95, and Vocoder is a GSM voice encoding application.

6.1.2 Results. Figure 12 presents the memory design space exploration
of the access pattern customizations for the compress application. The com-
press benchmark exhibits a large variety of access patterns providing many
customization opportunities. The x-axis represents the cost (in number of basic
gates) and the y-axis represents the overall miss ratio (the miss ratio of the
custom memory modules represents the number of accesses where the data is
not ready when it is needed by the CPU, divided by the total number of accesses
to that module).

The design points marked with a circle represent the memory architec-
tures chosen during the exploration as promising alternatives, and fully
simulated for accurate results. The design points marked only with a × rep-
resent the exploration attempts evaluated through fast time-sampling simu-
lation, from which the best cost/gain trade-off is chosen at each exploration

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

56 • P. Grun et al.

Fig. 12. Miss ratio vs. cost trade-off in memory design space exploration for compress (SPEC95).

step. For each such design we perform full simulation to determine accurate
cost/performance/power figures.

The design point labeled 1 represents the initial memory architecture, con-
taining an 8k two-way associative cache. Our exploration algorithm evaluates
the first set of customization alternatives, by trying to choose the best access
pattern cluster to map to a custom memory module. The best performance gain
for the incremental cost is generated by customizing the access pattern clus-
ter containing a reference to the hashing table htab, which uses as an index
in the array the access pattern reading the codetab array (the access pattern
is htab[codetab[i]]). This new architecture is selected as the next design point
in the exploration, labeled 2. After fully simulating the new memory architec-
ture, we continue the exploration by evaluating the further possible customiza-
tion opportunities, and selecting the best cost/performance ratio. In this way
we explore the memory architectures with most promising cost/performance
trade-offs, towards the lower bound of the design space.

The miss ratio of the compress application varies between 13.42% for the
initial cache-only architecture (for a cost of 319,634 gates), and 8.10% for a
memory architecture where three access pattern clusters have been mapped to
custom memory modules (for a cost of 334,864 gates). Based on a cost constraint
(or alternatively on a performance requirement), the designer can choose the
memory architecture that best matches the goals of the system.

To validate our space walking heuristic, and confirm that the chosen design
points follow the pareto-curve-like trajectory in the design space, we compared
the design points generated by our approach to the full simulation of the de-
sign space considering all the memory module allocations and access pattern
cluster mappings for the compress example benchmark. Figure 13 shows the
design space in terms of the estimated memory design cost (in number of basic

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 57

Fig. 13. Exploration heuristic compared to simulation of all access pattern cluster mapping com-
binations for compress.

gates), and the overall miss rate of the application. The design points marked
with a× represent the points explored by our heuristic. The points marked by a
black dot represent a full simulation of all allocation and mapping alternatives.
The points on the lower bound of the design space are the most promising, ex-
hibiting the best cost/performance trade-offs. Our algorithm guides the search
towards these design points, pruning the noninteresting points in the design
space. Our exploration heuristic successfully finds the most promising designs,
without fully simulating the whole design space: Each fully simulated design
on the lower bound (marked by a black dot) is covered by an explored design
(marked by a ×).6 This provides the designer the opportunity to choose the
best cost/performance trade-off, without the expense of investigating the whole
space.

Table I presents the performance, cost, and power results for a set of large,
real-life benchmarks from the multimedia and scientific domains. The first col-
umn shows the application, and the second column represents the memory ar-
chitectures explored for each such benchmark. The third column represents the
cost of the memory architecture (in number of basic gates), the fourth column
represents the miss ratio for each such design point, the fifth column shows the
average memory latency (in cycles), and the last column presents the average
memory power consumption, normalized to the initial cache-only architecture
(represented by the first design point for each benchmark).

In Table I, we present only the memory architectures with best cost/
performance characteristics, chosen during the exploration. The miss ratio

6Not all exploration points (×) are covered by a full simulation point (black dot), because some of
the exploration points represent estimations only.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

58 • P. Grun et al.

Table I. Exploration Results for our Access Pattern based Memory Customization
Algorithm

Benchmark Design Cost Miss ratio Memory Latency Memory Power
Point (gates) (%) (cycles) (normalized)

Compress 1 319,634 13.4200 28.56 1
2 323,521 10.5400 22.58 1.18
3 330,657 8.4500 18.42 1.36
4 334,864 8.1000 17.40 1.41
5 339,071 8.1000 17.35 1.41

Li 1 319,634 6.9800 15.82 1
2 323,841 4.6700 11.21 1.23
3 332,302 4.6200 11.01 1.24
4 340,763 4.6200 10.96 1.24

Vocoder 1 40,295 1.4600 4.90 1
2 44,502 1.3600 4.45 1.01
3 48,709 1.2600 4.16 1.02
4 53,765 1.2600 4.09 1.03
5 80,201 0.8100 3.61 0.68
6 84,408 0.7600 3.26 0.70
7 88,615 0.7400 3.13 0.70
8 93,671 0.7400 3.07 0.70

shown in the fourth column represents the number of memory accesses when
the data is not yet available in the cache or the custom memory modules when
required by the CPU. The average memory latency shown in the fifth column
represents the average number of cycles the CPU has to wait for an access to
the memory system. Due to the increased hit ratio, and to the fact that the
custom memory modules require less latency to access the small FIFO con-
taining the data than the latency required by the large cache tag, data array,
and cache control, the average memory latency varies significantly during the
exploration.

By customizing the memory architecture based on the access patterns in the
application, the memory system performance is significantly improved. For in-
stance, for the compress benchmark, the miss ratio is decreased from 13.4%
to 8.10%, representing a 39% miss ratio reduction for a relatively small cost
increase. However, this comes at the cost of an increased memory power con-
sumption by a factor between 1.1 and 1.4, mainly because of the increased main
memory bandwidth generated by the custom memory modules implementing
the access pattern clusters in the application. However, by exploring a varied
set of design points, the designer can trade off the cost, power, and performance
of the system, to best meet the design goals.

Vocoder is a multmedia benchmark exhibiting mainly stream-like regular ac-
cess patterns, which behave well with small cache sizes. Since the initial cache
of 1k has a small cost of 40,295 gates, there was enough space to double the
cache size. The design points 1 through 4 represent the memory architectures
containing the 1k cache, whereas the design points 5 through 8 represent the
memory architectures containing the 2k cache. As expected, the performance
increases significantly when increasing the cost of the memory architecture.
However, a surprising result is that the power consumption of the memory

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 59

system decreases when using the larger cache: Even though the power con-
sumed by the larger cache accesses increases, the main memory bandwidth
decrease due to a lower miss ratio results in a significantly lower main memory
power, which translates into a lower memory system power. Clearly, these types
of results are difficult to determine by analysis alone, and require a systematic
exploration approach to allow the designer to best trade off the different goals
of the system.

The wide range of cost, performance, and power trade-offs obtained are due to
the aggressive use of the memory access pattern information and customization
of the memory architecture beyond the traditional cache architecture.

6.2 Connectivity Exploration

We present here the experimental results taking into account the cost, perfor-
mance, and power for the full memory system, including both the memory and
the connectivity architecture.

6.2.1 Experimental Setup. We simulated the design alternatives using our
simulator based on the SIMPRESS [Mishra et al. 2001] cycle accurate memory
model, and SHADE [Cmelik and Keppel 1993]. We assumed a processor based
on the SUN SPARC, and we compiled the applications using gcc. The library of
connectivity modules contains information such as the resource usage, latency,
pipelining, parallelism, split transaction model, and bitwidth, and the explo-
ration algorithm selects automatically the different connectivity architectures,
estimates and prunes the design space, guiding the search towards the most
promising designs.

We use a time-sampling [Kessler et al. 1991] estimation to guide the walk
through the design space, pruning out the designs that are not interesting. The
time-sampling alternates “on-sampling” and “off-sampling” periods, assuming
a ratio of 1/9 between the on and off time intervals. We then use full simulation
for the most promising designs, to further refine the trade-off choices. The time-
sampling estimation does not have a very good absolute accuracy compared to
full simulation. However, we use it only for relative incremental decisions to
guide the design space search, and the estimation fidelity is sufficient to make
good pruning decisions.

6.2.2 Results. We performed two sets of experiments: (i) using cost/ per-
formance to drive the memory and connectivity exploration; and (ii) using
cost/energy to drive the exploration. In each such set of experiments, we present
the effect of the exploration in all the three dimensions (cost, performance, and
energy).

(i) Figure 14 shows the cost/performance trade-off for the connectivity explo-
ration of the compress benchmark. The x-axis represents the cost of the memory
and connectivity architecture, and the y-axis represents the average memory
latency including both the memory and connectivity latencies (e.g., due to the
cache misses, bus multiplexing, or bus conflicts).

In this experiment we used cost/ performance to drive the selection al-
gorithms both during the memory modules exploration and during the

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

60 • P. Grun et al.

Fig. 14. Cost/performance vs. performance/energy paretos in the cost/performance space for
compress.

connectivity exploration. The dots represent the attempted connectivity and
memory designs. The line connecting the squares represents the designs on the
cost/ performance pareto. However, the designs that have best cost/performance
behavior, do not necessarily have good power behavior. The line connecting the
triangles represents the designs in the cost/performance space which are on
the performance/energy pareto curve.7 Although the cost/performance and the
performance/energy pareto curves do not coincide, they do have a point in com-
mon. However, this point has a very large cost. In general, when trading off
cost, performance, and energy, the designer has to give up one of the goals in
order to optimize the other two. For instance, if the designer wants to optimize
performance and energy, typically it will come at the expense of higher cost.

Figure 15 shows the performance/energy trade-offs for the connectivity ex-
ploration of the compress benchmark, using cost/performance to drive the se-
lection of the starting memory modules. The x-axis represents the average
memory latency, including both the memory and connectivity components. The
y-axis represents the average energy per access consumed by the memory and
connectivity system. We use energy instead of average power consumption to
separate out the impact of the actual energy consumed from the variations
in performance. Variations in total latency may give a false indication of the
power behavior: For instance, when the performance decreases, the average

7The two criteria, cost/performance and power/performance pareto curves are drawn in the same
cost/performance design space by taking the cost/performance and performance/power pareto points
and drawing their cost and performance coordinates in the cost/performance 2D space.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 61

Fig. 15. Cost/performance vs. performance/energy paretos in the performance/energy space for
compress.

power may decrease due to the longer latency, but the total energy consumed
may be the same.

The line connecting the squares represents the cost/performance pareto
points in the performance/energy space. The line connecting the triangles shows
the performance/energy pareto points. Again, the best performance/energy
points do not necessarily also have low cost. The cost/performance pareto and
the performance/energy pareto do not coincide in the performance/energy space.
When trading off the three goals of the system, the designer has to give up one
of the dimensions in order to optimize the other two. The designs that have good
cost and performance behavior (the cost/performance pareto), have in general
higher energy consumption (are located on the inside of the performance/energy
pareto). The only exception is the common point, which in turn has higher
cost.

(ii) Figures 16 and 17 show the cost/performance and performance/energy
spaces, respectively, for the exploration results for compress, using cost/energy
to drive the memory and connectivity exploration.

In Figure 16, the line connecting the squares represents the cost/performance
pareto obtained by the experiments where cost/energy was used to guide the
exploration, and the line connecting the stars represents the cost/performance
pareto in the case where cost/performance was used throughout the exploration
as the driver. As expected, the best cost/performance points obtained during the
cost/performance exploration are better in terms of cost and performance than
the ones obtained during the cost/energy exploration.

In Figure 17, the line connecting the triangles represents the performance/
energy pareto for the cost/performance exploration, whereas the line connect-
ing the stars represents the performance/energy pareto for the cost/energy

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

62 • P. Grun et al.

Fig. 16. Cost/performance paretos for the connectivity exploration of compress, assuming
cost/performance and cost/energy memory modules exploration.

Fig. 17. performance/energy paretos for the connectivity exploration of compress, assuming
cost/performance and cost/energy memory modules exploration.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 63

Fig. 18. Cost/performance vs. performance/energy paretos in the cost/performance space for com-
press, assuming cost–energy memory modules exploration.

exploration. As expected, when using cost/energy to drive the early memory
modules exploration (APEX), the overall energy figures are better.

Similarly, the cost/energy space representation of the cost/energy exploration
yields better results in terms of cost and energy than the cost/performance
exploration.

Figures 18 and 19 show the comparison between the cost/performance and
the performance/energy paretos for the connectivity exploration, assuming that
the previous phase of memory modules exploration is driven by cost and energy.

Figures 20 and 21 show the comparison between the cost/performance and
the performance/energy paretos for the connectivity exploration for vocoder,
whereas Figures 22 and 23 show the comparison between the cost/performance
and the performance/energy paretos for the connectivity exploration for Li.

Figure 24 shows the analysis of the cost/performance pareto-like points for
the compress benchmark. The design points a through k represent the most
promising selected memory–connectivity architectures. Architectures a and b
represent two instances of a traditional cache-only memory configuration, us-
ing the AMBA AHB split transaction bus and a dedicated connection. The
architectures c through k represent different instances of novel memory and
connectivity architectures, employing SRAMs to store data that is accessed
often, DMA-like memory modules to bring in predictable, well-known data
structures (such as lists) closer to the CPU, and stream buffers for stream-
based accesses. Architecture c contains a linked-list DMA-like memory module,
implementing a self-indirect data structure, using a MUX-based connection.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

64 • P. Grun et al.

Fig. 19. Cost/performance vs. performance/energy paretos in the performance/energy space for
compress, assuming cost–energy memory modules exploration.

Fig. 20. Cost/performance vs. performance/energy paretos in the cost/performance space for
vocoder.

This architecture generates a roughly 10% performance improvement for a
small cost increase over the best traditional cache architecture (b). The ar-
chitecture d represents the same memory configuration as c, but with a con-
nectivity containing both a MUX-based structure and an AMBA APB bus.
Similarly, architectures e through k make use of additional linked-list DMAs,
stream buffers, and SRAMs, with MUX-based, AMBA AHB, ASB, and APB

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 65

Fig. 21. Cost/performance vs. performance/energy paretos in the performance/energy space for
vocoder.

Fig. 22. Cost/performance vs. performance/energy paretos in the cost/performance space for Li.

connections. Architecture g generates a roughly 26% performance improvement
over the best traditional cache architecture (b), for a roughly 30% memory cost
increase. Architecture k shows the best performance improvement, of roughly
30% over the best traditional cache architecture, for a larger cost increase.
Clearly, our memory–connectivity exploration approach generates a significant
performance improvement for varied cost configurations, allowing the designer

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

66 • P. Grun et al.

Fig. 23. Cost/performance vs. performance/energy paretos in the performance/energy space for Li.

Fig. 24. Analysis of the cost/performance pareto architectures for the compress benchmark.

to select the most promising designs, according to the available chip space and
performance requirements.

Figure 25 represents the analysis of the cost/performance pareto-like archi-
tectures for the vocoder benchmark. The architectures a and b represent the
traditional cache architectures with AMBA AHB and dedicated connections.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 67

Fig. 25. Analysis of the cost/performance pareto architectures for the vocoder benchmark.

The architecture c, containing the traditional cache and a stream buffer, gen-
erates a 5% performance improvement over the best traditional cache archi-
tecture (b) for a roughly 3% cost increase. Due to the fact that the vocoder
application is less memory intensive, containing mainly stream-based accesses,
which behave well on cache architectures, the performance variation is less sig-
nificant than in the other benchmarks. However, this illustrates the application-
dependent nature of the memory and bandwidth requirements of embedded
systems, prompting the need for early memory and connectivity exploration.
Clearly, without such an exploration framework it would be difficult to deter-
mine through analysis alone the number, amount, and type of memory modules
required to match the given performance, energy, and cost criteria.

Figure 26 represents the analysis of the cost/performance pareto-like archi-
tectures for the Li benchmark. The memory–connectivity architectures con-
taining novel memory modules, such as linked-list DMAs implementing self-
indirect accesses, and stream buffers, connected through AMBA AHB, ASB, and
APB buses, generate significant performance variations, allowing the designer
to best match the requirements of the system.

In the following, we present the exploration results for the Compress, Li, and
Vocoder benchmarks. Due to space limitations, we show only the selected most
promising cost/performance designs, in terms of their cost (in basic gates), av-
erage memory latency, and average energy consumption per access. In Table II,
the first column shows the benchmarks, the second, third, and fourth columns
show the cost, average memory latency, and energy consumption for the selected
design simulations. The simulation results show significant performance im-
provement for varied cost and energy characteristics of the designs for all the

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

68 • P. Grun et al.

Fig. 26. Analysis of the cost/performance pareto architectures for the Li benchmark.

benchmarks. For instance, when using different memory and connectivity con-
figurations, the performance of the compress and Li benchmarks varies by an
order of magnitude. The energy consumption of these benchmarks does not vary
significantly, due to the fact that the connectivity consumes a small amount of
energy compared to the memory modules.

Table III presents the coverage of the pareto points obtained by our memory
modules and connectivity exploration approach. Column 1 shows the bench-
mark and column 2 shows the category: Time represents the total computation
time required for the exploration; coverage shows the percentage of the points
on the pareto curve actually found by the exploration. Average distance shows
the average percentile deviation in terms of cost, performance, and energy con-
sumption between the pareto points that have not been covered and the closest
exploration point that approximates them. Column 3 represents the results for
the pruned exploration approach, where only the most promising design points
from the memory modules exploration are considered for connectivity space
exploration. Column 4 shows the neighborhood exploration results, where the
design points in the neighborhood of the selected points are also included in
the exploration, and the last column shows the results for the brute-force full
space exploration, where all the design points in the exploration space are fully
simulated and the pareto curve is fully determined.

The average cost, performance, and energy distance shows the average dis-
tance between the points on the pareto curve and the corresponding closest
points found by the exploration as the percentile deviation on the corresponding
axes. If this average distance is small, it means that even though a design point

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 69

Table II. Selected Cost/Performance Designs for the
Connectivity Exploration

Benchark Cost Avg mem latency Avg energy
[gates] [cycles] [nJ]

Compress 480,775 69.66 13.24
512,232 62.76 13.52
512,332 9.69 13.80
512,532 8.35 14.36
519,388 7.49 14.44
561,112 7.34 14.39
604,941 6.80 14.47
649,849 6.60 14.39
664,029 6.19 14.46
760,543 6.05 14.47
793,971 6.03 14.54
862,176 6.01 14.31
895,604 5.99 14.38

Li 480,775 57.59 10.42
494,992 57.48 10.43
512,232 50.29 10.70
512,332 9.18 10.98
512,532 7.76 11.54
605,767 6.97 11.57
664,029 6.87 11.58
760,543 6.84 11.59

Vocoder 156,806 16.37 5.05
169,370 13.28 5.33
169,481 5.09 5.61
169,703 3.60 6.17
175,865 3.40 6.43

Table III. pareto Coverage Results for Our Memory Architecture Exploration
Approach

Benchmark Category Pruned Neighborhood Full
Compress Time 2 days 2 weeks 1 month

Coverage [%] 50% 65% 100%
Avg. cost dist [%] 0.84% 0.59% 0%
Avg. perf. dist [%] 0.77% 0.60% 0%

Avg. energ. dist [%] 0.42% 0.28% 0%
Vocoder Time 24 min 29 min 50 min

Coverage [%] 83% 100% 100%
Avg. cost dist [%] 0.29% 0% 0%
Avg. perf. dist [%] 2.96% 0% 0%

Avg. energ. dist [%] 0.92% 0% 0%

on the pareto curve has not been found, another design with very close charac-
teristics (cost, performance, energy) is provided (there are no significant gaps
in the coverage of the pareto curve).

In the pruned approach, during each design space exploration phase we select
for further exploration only the most promising architectures, in the hope that
we will find the pareto curve designs without fully simulating the design space.
Neighborhood exploration expands the design space explored by also including

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

70 • P. Grun et al.

the points in the neighborhood of the points selected by the pruned approach.
We omitted the Li example from Table III due to the fact that the full simulation
computation time was intractable.

The pruned approach significantly reduces the computation time required
for the exploration. Moreover, full simulation of the design space is often in-
feasible (due to prohibitive computation time). Although in general, due to its
heuristic nature, the pruned approach may not find all the points on the pareto
curve, in practice it finds a large percentage of them, or approximates them
well with close alternative designs. For instance, the coverage for the vocoder
example shows that 83% of the designs on the pareto curve are successfully
found by the pruned exploration. Although the pruned approach does not find
all the points on the pareto curve, the average difference between the points
on the pareto and the corresponding closest points found by the exploration is
0.29% for cost, 2.96% for performance, and 0.92% for energy. In the compress
example the computation time is reduced from 1 month for the full simulation
to 2 days, at the expense of less pareto coverage. However, though only 50% of
the compress designs are exactly matched by the pruned approach, for every
pareto point missed, very close replacements points are generated, resulting in
an average distance of 1.95%, 1,83%, and 1.76% in terms of cost, performance,
and energy, respectively, to the closest overall pareto point. Thus, our explo-
ration strategy successfully finds most of the design points on the pareto curve
without fully simulating the design space. Moreover, even if it misses some of
the pareto points, it provides replacement architectures, which approximate
well the pareto designs.

The neighborhood exploration explores a wider design space than the pruned
approach, providing a better coverage of the pareto curve, at the expense of more
computation time. For instance, for the vocoder example, it finds 100% of the
pareto points.

6.3 Experiments’ Summary

We presented a set of experiments showing the performance, cost, and energy
variations generated by our memory and connectivity exploration approach. By
extracting and analyzing the different access patterns in the target application,
we evaluated different memory and connectivity configurations by allocating
specialized memory modules and connectivity components from a library. The
pareto curves generated can be used by designers to choose the design points
that best meet their goals. Although traditionally designers have relied mainly
on intuition and previous experience in making architectural decisions, using
such quantitative figures allows more confidence in the decisions, and can lead
to improvement in the match between the architecture and target application.

Our experiments have shown that in general when trying to optimize two of
the design goals (such as performance and energy), the designer has to give up
the third dimension (such us cost). For instance, the performance/energy pareto
curves do not coincide with the performance/cost pareto curves.

By performing combined exploration of the memory and connectivity archi-
tecture, we obtain a wide range of cost, performance, and energy trade-offs.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 71

Clearly, these types of results are difficult to determine by analysis alone, and
require a systematic exploration approach to allow the designer to optimize the
trade off among the different goals of the system.

7. SUMMARY

We presented an approach where by analyzing the access patterns in the ap-
plication we gain valuable insight on the access and storage needs of the in-
put application, and customize the memory architecture to better match these
requirements, generating significant performance improvements for varied
memory, cost, and power.

Traditionally, designers have attempted to alleviate the memory bottleneck
by exploring different cache configurations, with limited use of more special
purpose memory modules such as stream buffers. However, though real-life
applications contain a large number of memory references to a diverse set of
data structures, a significant percentage of all memory accesses in the appli-
cation are generated from a few instructions that often exhibit well-known,
predictable access patterns. This presents a tremendous opportunity to cus-
tomize the memory architecture to match the needs of the predominant access
patterns in the application, and significantly improve the memory system be-
havior. We present such an approach here, called APEX, that extracts, analyzes,
and clusters the most active access patterns in the application and customizes
the memory architecture to explore a wide range of cost, performance, and
power designs. We generate significant performance improvements for incre-
mental costs and explore a design space beyond the one traditionally considered,
allowing the designer to efficiently target the system goals. By intelligently ex-
ploring the design space, we guide the search towards the memory architectures
with the best cost/performance characteristics and avoid the expensive full sim-
ulation of the design space.

Moreover, though the memory modules are important, the connectivity be-
tween these modules often has an equally significant impact on the system
behavior. We present our connectivity exploration approach (ConEx), which
trades off the connectivity performance, power, and cost, using connectivity
modules from a library, and allowing the designer to choose the most promising
connectivity architectures for the specific design goals. We generate significant
performance improvements for incremental costs, and explore a design space
beyond the one traditionally considered, allowing the designer to efficiently
target the system goals.

We present a set of experiments on large multimedia and scientific examples,
where we explored a wide range of cost, performance, and power trade-offs by
customizing the memory and connectivity architecture to fit the needs of the
access patterns in the applications. Our exploration heuristic found the most
promising cost/gain designs compared to the full simulation of the design space,
considering all the memory module allocations and access pattern cluster map-
pings, without the time penalty of investigating the full design space. Future
work will address the use of better cost/energy models, as well as evaluating
different exploration heuristics.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

72 • P. Grun et al.

ACKNOWLEDGMENTS

We would like to acknowledge and thank Ashok Halambi, Prabhat Mishra,
Srikanth Srinivasan, Partha Biswas, Aviral Shrivastava, Radu Cornea, and
Nick Savoiu, for their contributions to the EXPRESS/ EXPRESSION project.

REFERENCES

ARM AMBA BUS SPECIFICATION. http://www.arm.com/armwww.ns4/html/AMBA?OpenDocument.
BAKSHI, S. AND GAJSKI, D. 1995. A memory selection algorithm for high-performance pipelines. In

EURO-DAC.
CATTHOOR, F., WUYTACK, S., DE GREEF, E., BALASA, F., NACHTERGAELE, L., AND VANDECAPPELLE, A. 1998.

Custom Memory Management Methodology. Kluwer.
CHEN, H.-M., ZHOU, H., YOUNG, F., WONG, D., YANG, H., AND SHERWANI, N. 1999. Integrated floor-

planning and interconnect planning. In ICCAD.
CHOU, P., ORTEGA, R., AND BORRIELLO, G. 1995. Interface co-synthesis techniques for embedded

systems. In ICCAD.
CHUNG, K.-S., GUPTA, R., AND LIU, C. L. 1996. Interface co-synthesis techniques for embedded

systems. In ICCAD.
CHIUEH, T. C. 1994. Sunder: A programmable hardware prefetch architecture for numerical loops.

In Conference on High Performance Networking and Computing.
CMELIK, R. AND KEPPEL, D. 1996. Shade: A fast instruction set simulator for execution profiling.

Technical report, SUN MICROSYSTEMS.
DAVEAU, J.-M., BEN ISMAIL, T., AND JERRAYA, A. 1995. Synthesis of system-level communication by

an allocation-based approach. In ISSS.
DENG, Y. AND MALY, W. 2001. Interconnect characteristics of 2.5-d system integration scheme. In

ISPD.
GAISLER RESEARCH. www.gaisler.com/leon.html.
GIVARGIS, T. AND VAHID, F. 1998. Interface exploration for reduced power in core-based systems.

In ISSS.
GRUN, P., DUTT, N., AND NICOLAU, A. 2000. Memory aware compilation through accurate timing

extraction. In DAC.
GRUN, P., DUTT, N., AND NICOLAU, A. 2001. Access pattern based local memory customization for

low power embedded systems. In DATE.
GRUN, P., DUTT, N., AND NICOLAU, A. 2001. APEX: Access pattern based memory architecture

exploration. In ISSS.
GRUN, P., DUTT, N., AND NICOLAU, A. 2001. Exploring memory architecture through access pattern

analysis and clustering. Technical report, #2001-14 University of California, Irvine.
HENNESSY, J. AND PATTERSON, D. 1990. Computer Architecture: A quantitative approach. Morgan

Kaufmann Publishers Inc, San Mateo, CA.
HICKS, P., WALNOCK, M., AND OWENS, R. M. 1997. Analysis of power consumption in memory hier-

archies. In ISPLED.
HUMMEL, J., HENDREN, L., AND NICOLAU, A. 1994. A language for conveying the aliasing proper-

ties of dynamic, pointer-based data structures. In Proceedings of the 8th International Parallel
Processing Symposium.

JOUPPI, N. 1990. Improving direct-mapped cache performance by the addition of a small fully-
associative cache and prefetch buffers. In ISCA.

KESSLER, R., HILL, M., AND WOOD, D. 1991. A comparison of trace-sampling techniques for multi-
megabyte caches. Technical report, University of Wisconsin.

KULKARNI, C. 2001. Cache optimization for Multimedia Applications. PhD thesis, IMEC.
LAHIRI, K., RAGHUNATAN, A., LAKSHMINARAYANA, G., AND DEY, S. 2000. Communication architec-

ture tuners: A methodology for hte deisng of high-performance communication architectures for
systems-on-chip. In DAC.

LIU, D. AND SVENSON, C. 1994. Power consumption estimation in cmos vlsi chips. IEEE J. of Solid
stage Circ. 29, 6.

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

Access Pattern-Based Memory and Connectivity Exploration • 73

MAGUERDICHIAN, S., DRINIC, M., AND KIROVSKI, D. 2001. Latency-driven design of multi-purpose
systems-on-chip. In DAC.

MISHRA, P., GRUN, P., DUTT, N., AND NICOLAU, A. 2001. Processor-memory co-explotation driven by
a memory-aware architecture description language. In International Conference on VLSI Design,
Bangalore, India.

NARAYAN, S. AND GAJSKI, D. D. 1994. Protocol generation for communication channels. In DAC.
PALACHARLA, S. AND KESSLER, R. 1994. Evaluating stream buffers as a secondary cache replace-

ment. In ISCA.
PANDA, P., DUTT, N., AND NICOLAU, N. 1999. Memory Issues in Embedded Systems-on-Chip. Kluwer.
PARSONS, I., UNRAU, R., SCHAEFFER, J., AND SZAFRON, D. 1997. Pi/ot: Parallel i/o templates. In Parallel

Computing, 23, 4–5, (May) 543–570.
PATTERSON, R., GIBSON, G., GINTING, E., STODOLSKY, D., AND ZELENKA, J. 1995. Informed prefeching

and caching. In SIGOPS.
PRZYBYLSKI, S. 1997. Sorting out the new DRAMs. In Hot Chips Tutorial, Stanford, CA.
REINMAN, G. AND JOUPPI, N. 1999. An integrated cache timing and power model. In Summer

Internship Report, COMPAQ Western Research Lab, Palo-Alto.
SYNOPSYS DESIGN COMPILER. www.synopsys.com.
VEIDENBAUM, A., TANG, W., GUPTA, R., NICOLAU, A., AND JI, X. 1999. Adapting cache line size to

application behavior. In ICS.
VIJAYKRISHNAN, N., KANDEMIR, M., IRWIN, M. J., KIM, H. S., AND YE, W. 2000. Energy-driven inte-

grated hardware-software optimizations using simplepower. In ISCA.
WUYTACK, S., CATTHOOR, F., DE JONG, G., LIN, B., AND DE MAN, H. 1996. Flow graph balancing for

minimizing the required memory bandwith. In ISSS, La Jolla, CA.

Received January 2002; accepted July 2002

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 1, February 2003.

