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Abstract. Many previous studies have examined the placement of ac-
cess points (APs) to improve the community’s understanding of the
deployment and behavioral characteristics of wireless networks. A key
implicit assumption in these studies is that one can estimate the AP lo-
cation accurately from wardriving-like measurements. However, existing
localization algorithms exhibit high error because they over-simplify the
complex nature of signal propagation. In this work, we propose a novel
approach that localizes APs using directional information derived from
local signal strength variations. Our algorithm only uses signal strength
information, and improves localization accuracy over existing techniques.
Furthermore, the algorithm is robust to the sampling biases and non-
uniform shadowing, which are common in wardriving measurements.

1 Introduction

Locating the source of a radio frequency (RF) transmission is important for a
wide range of purposes. These include finding rogue access points (APs), creat-
ing wardriving maps, and estimating the RF propagation properties of an area.
The traditional approach to localizing an AP is to perform wardriving-like mea-
surements (i.e., measure received signal strength and location information) and
to apply a number of common techniques to process the data. Unfortunately,
the types of algorithms that can be applied to such data are limited, and state-
of-the-art algorithms exhibit high error and high variation. Recent studies [1]
have shown that using erroneous results produced by state-of-art localization
algorithms impair the performance of mobile user positioning systems like Place
Lab [2] and cause inaccurate estimates of coverage and interference.

One approach to improving localization accuracy is to use more sophisticated
data collection techniques. For example, Subramanian et al. [3] recently improved
accuracy by using angle of arrival (AoA) information collected with a steerable
beam directional antenna. While such techniques improve accuracy, the cost of
hardware and human time is high. In this paper, we present a novel AP local-
ization algorithm called gradient that uses only information collected from con-
ventional wardriving, and that does not require extra hardware. Our approach
uses the local signal strength distribution to estimate the direction of the AP.
The gradient algorithm localizes the AP by combining directional estimates from

S. Moon and R. Teixeira (Eds.): Network Measurement, LNCS 5448, pp. 91–100, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



92 D. Han et al.

multiple vantage points. We show that gradient improves the mean accuracy by
12% over the state-of-the-art algorithm, and reduces the maximum error and
standard deviation of errors by more than 33%. This paper describes the key
insights and the design of the gradient algorithm, verifies the idea through sim-
ulation (Section 2), and compares its real-world performance against existing
methods (Section 3).

2 Localization Algorithm

The goal of our work is to estimate the location of an AP given a set of received
signal strength (RSS) measurements from different locations. These RSS mea-
surements are typically obtained by passively monitoring 802.11 frames from a
moving vehicle—a practice known as wardriving. The data contains measurement
locations (x, y) and a received signal strength RSS at each location.

We first examine the the most commonly used localization algorithms, cen-
troid, weighted centroid [2] and trilateration [4], to motivate the need for a better
algorithm. Given the set of measurement points <xi, yi, RSSi> of an AP, cen-

troid algorithms locate the AP at the averaged location:

(
N∑

i=1

wixi,

N∑
i=1

wiyi

)
.

For centroid, wi = 1/N , and for weighted centroid, wi =
SNRi∑N

j=1 SNRj

.

Trilateration [4] estimates the distance from the signal source at a measure-
ment point using the RSS and combines these distance estimates to infer the
location of the AP. The RSS is converted to distance using the log-distance
path loss model [5]. The model defines the path loss (PL) from transmitter to
receiver as a function of distance (d) as PL(dB) = PL(d0)+ 10n log ( d

d0
), where

d0 is a reference distance and n is the path loss exponent.
Despite their simplicity, centroid-based algorithms perform as well as other

existing algorithms that use signal strength [1, 3]. To understand why our gra-
dient algorithm can outperform all of these algorithms, we first examine one
representative case where centroid algorithms perform poorly.

2.1 Motivating Example

Figure 1 shows wardriving measurements collected for one AP inside an apart-
ment. The building is near a three-way junction. The AP is located towards the
front of the building. Each measurement point is shaded to indicate the received
signal strength according to the gray-scale legend on the right side of the figure.

Because the measurements are taken from a car, the path of the measurement
points reflects the shape of the roads. Wardriving measurements introduce strong
sampling biases. Figure 1 also shows non-uniform signal propagation. The area in
front of the AP has denser and stronger (light-colored) measurements compared
to the area behind the building. This is because the signal behind the building is
shadowed by multiple walls, while the front of the building has fewer obstructions.
Such non-uniform shadowing is also typical in wardriving measurements.
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Fig. 1. Real world measurement of an AP
located at the origin

Fig. 2. Drawing the arrow

As a result, both centroid and weighted centroid give high errors of 51.8m
and 52.3m (Figure 1). Centroid algorithms suffer when subject to 1) biased
sampling, which is exacerbated by the layout of the road, and 2) non-uniform
signal propagation due to different levels of shadowing.

Despite the skewed distribution, the signal strength distribution remains a use-
ful hint in localizing the AP. We see a clear trend of increasing signal strength
towards the AP, as denoted by the arrows in Figure 1. These arrows provide use-
ful information about the location of AP. Based on this observation, we develop
a novel AP location algorithm which we call the gradient algorithm.

2.2 Gradient Algorithm

The main idea in the gradient algorithm is to systematically point arrows towards
the signal source. We estimate the direction of an AP from every measurement
point by calculating the direction of strongest signal in the neighboring area. After
this process, each measurement point has an arrow that points to the direction of
AP. By combining the resulting arrows, we estimate the location of the AP. While
individual arrows have some error, overall these would cancel out during this stage.

The algorithm’s effectiveness arises from two properties of the signal propa-
gation: First, despite the inherent noise in the measurement, distance from the
source AP remains one of the most important determinants of RSS. Second,
obstructions cause sudden attenuation of signal that weakens the correlation be-
tween distance and RSS in the global space. However, measurements near-by in
space tend to have traveled through the same obstructions. Thus, when consider-
ing only local signal strength, distance is the single most important factor. The
algorithm leverages these observations and estimates the direction of the AP by
finding the direction of strongest signal in near-by space.

Although the effect of large-scale non-uniform shadowing may be constrained
in a local area, other small-scale factors — muti-path propagation, reflection, and
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errors in GPS positioning, among others— affect RSS. The gradient algorithm
treats them as noise and relies on averaging to mitigate their effect.

These steps of the gradient algorithm operate as follows:

Preprocessing. This phase averages signal observations to mitigate the effect
of various sources of error. First, we embed the recorded GPS coordinate into
a two dimensional coordinate system. Then we place a unit meter grid on the
map and average the RSS and coordinates that fall into the same grid square.

Drawing the arrows. We assume free-space propagation locally, and find the
direction of the AP by calculating the direction in which the RSS increases the
most. We do so by fitting a plane to “near-by” measurements in the x-y-RSS
space, and taking the gradient of the plane. We use minimum mean-square error
(MMSE) fit to overlay a plane, and take the gradient at the center point as the
direction of the AP in the x-y plane (Figure 2). We call this gradient an arrow.
We locate “near-by” space using a square centered at the center point, and define
“window size” to be half the length of the side of the square.

The window size is critical because it determines the area in which the signal
propagation is approximated as free-space. The optimal value depends on the
density of measurement points and their spatial distribution. Therefore, there is
no one-size-fits-all value across different APs. We revisit this problem at the end
of the section.

Combining the arrows. Once we determine the direction of the AP from each
measurement point by drawing arrows as described above, we locate the AP at
the position to which all of the arrows point. We position the AP at the location
that minimizes the sum-squared angular error from the arrows. In calculating
the sum-squared error, we weigh each error by the SNR at the measurement
point. This step is similar to the technique used by Subramanian et al [3], as
well as other algorithms that use AoA.

Any standard optimization tool can be used for this minimization. However,
most tools do not guarantee a global minimum and they require a good initial
guess from which they start searching. Because the performance of any particular
optimization algorithm is not of interest, we exhaustively search the space every
meter, limiting it to a 100m x 100m square centered at the maximum RSS point.
When using an optimization tool, we recommend using the maximum RSS point
as the initial guess.

Window size. The window size is important in accurately predicting the direc-
tion of the AP from each measurement point. If the window is too small and
contains few measurements, the resulting arrow is likely to have a high error. On
the other hand, making the window too large is not desirable because it breaks
our free-space assumption.

Because it is difficult to predict the best value for the window size at each
measurement point, we reduce the problem to finding a single optimal value of
the window size for each AP. We use the following heuristic to determine this
value. First, we produce a series of estimated locations using window sizes from
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1m to 50m. If the area covered by a window contains at least four measurements,
we use that area to draw an arrow. At the end of the arrow drawing phase, if
the arrows are drawn for fewer than 30% of all measurement points, the we do
not produce an estimate for the window size.

The gradient algorithm starts using a window size of 1m and repeatedly in-
creases it by one until five consecutive estimates converge within 5m from their
average. At that point the algorithm terminates and reports the average estimate
for the AP location. In Section 2.3, we verify the heuristic using simulation.

2.3 Simulation

We use simulation to verify the basic idea behind the gradient algorithm, and
show that it is accurate and robust to sampling bias and non-uniform shadowing.
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Fig. 3. Simulation topologies: measurements are generated only on the road

Accuracy. We create a single and a parallel road topology (Figure 3) to verify
the performance of the algorithm. We place an AP at the center of the maps
and generate measurement points randomly along the road. The RSS at each
point is calculated using the log-distance path loss model of Section 2. We set
the reference distance d0 to 1m, and subtract the path loss from signal strength
at the reference point to get the RSS. For the Figure 3(a) topology, we vary the
number of measurement points from 10 to 50. For (b), we generate 200 points
and run another simulation that further attenuates the signal strength by the
number on each quadrant to simulate non-uniform shading. Table 1 shows the
average error of 20 runs using the gradient and centroid algorithms.

Gradient performs better as the density of measurement increases, and local-
izes the AP within 1 meter when the number of measurements exceeds 35. In
contrast, the centroid algorithms suffer high error due to the biased sampling.
When only non-uniform shading is introduced, gradient suffers much less than
the weighted centroid, but in general needs denser measurements.

To see the effect of the path loss exponent, we vary the value of n from 2.0 to
5.0 which is the typical range in outdoor environments [5]. Figure 4 shows the
average, minimum and maximum estimation error for the gradient algorithm
using 10 different sampled topologies for Figure 3(a). The gradient algorithm
appears unaffected by the value of the path loss exponent.
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Table 1. Localization error for the topology in Figure 3(a) and (b). Units in meters.

Number of measurements
10 15 20 25 30 35

Gradient 10.0 6.5 1.8 1.2 1.1 1.0
Centroid 26.4 26.4 26.3 25.8 25.5 25.8
W. Cen. 26.1 26.2 26.1 25.7 25.3 25.6

With non-uniform attenuation
Gradient 6.7 W. Cen. 16.0

Without attenuation
Gradient 0.3 W. Cen. 3.0
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Fig. 4. Error versus path loss exponent
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Effect of window size. As mentioned in Section 2.2, the window size is impor-
tant for accuracy. To understand the effect, we generate 50 measurement points
using Figure 3(a)’s topology and produce a series of estimates while varying the
window size from 1 to 50m. The resulting curve (Figure 5) features a natural
minimization point, where the gradient algorithm stops.

When the window is small, only a few measurement points are considered
when drawing the arrow, thus leading to high error. As the window grows, our
two assumptions break down. The free-space assumption stops holding because
the large window now contains effects of non-uniform shadowing. (This effect
is not present in the free-space simulation.) Second, because the global signal
strength distribution is not linear, the distribution inside the large window also
becomes non-linear. This results in errors due to underfitting since the gradient
algorithm attempts to apply a linear fir to a non-linear distribution.

3 Evaluation

In this section, we evaluate the performance of the gradient algorithm in real
environments. We first collect measurements and use them to compare the algo-
rithm’s accuracy with that of previously proposed approaches. We demonstrate
that the algorithm is robust and clearly outperforms distance estimation based
on signal strength.

3.1 Data Collection Framework

We collected wardriving measurements using the following setup:
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Hardware and software. We used Intel-based laptops running Linux, with a
Pharos GPS device, an Atheros wireless cardbus card, and an external omnidi-
rectional antenna mounted on top of a car. In order to capture more packets,
we used two laptops, with one scanning only the popular orthogonal channels
1, 6 and 11, and the other scanning channels 1 through 11. The madwifi driver
and kismet were used to capture packets in monitor mode. The madwifi driver
reports continuous received signal strength levels, which is important to our al-
gorithm. Kismet records GPS coordinates, all received packets and their signal
strength. From the kismet log, we extract an <AP MAC address, SSID, latitude,
longitude, SNR, noise> tuple.

Wardriving. We took measurements in the residential Pittsburgh neighbor-
hood of Squirrel Hill. The area consists mostly of detached homes, townhouses
and small apartments. We drove at about 15mph, scanning each side of the
road two to four times. Slow speed and multiple scans allowed us to get more
measurements per AP. Scanning both sides of the road increases the number of
measurements inside a small area, which improves the accuracy of our algorithm.

Ground truth. Determining the actual location of an AP is crucial for eval-
uation, but is difficult, especially in the unplanned deployment setting that we
examine. We obtained ground truth locations in two ways. First, we knew some
of the AP owners personally. Second, we observed that many SSIDs contained
either street address or family names. Using an online phone book [6] plus the
local zipcode, we mapped family names to addresses. We further verified that
the resulting address was reasonably close to the observed location for the AP.

For each candidate ground truth AP, we measured the actual GPS coordi-
nates on the street in front of the addressed building. This step was surprisingly
important— address to GPS coordinate conversion services such as Google Maps
often produce inaccurate mapping that were off by a few houses. We manually
processed the measured coordinates by positioning the AP at the center of the
house using Google Maps. This process located twenty-five APs.

3.2 Real World Experiment

We compare the accuracy of the gradient algorithm with that of centroid and
trilateration using the data we collected in Section 3.1. We also compare with
an algorithm that we developed called cone-fit. Cone-fit uses the same path loss
model of Section 2. Given the path loss exponent as a parameter, it estimates, for
all measurement <xi, yi, RSSi>, the RSS from the path loss model and produces
<xi, yi, EstimatedRSSi> by placing the AP at a location. It locates the AP at
the location where

∑
(EstimatedRSSi − RSSi)2 is minimized. Visually, it is

fitting a 3 dimensional cone to <x, y, RSS> space whose skirt is shaped by the
path loss exponent.

Note that unlike gradient, trilateration and cone-fit are parameterized. Tri-
lateration takes as inputs the path loss exponent and the signal strength at the
reference point, and cone-fit takes the path loss exponent as input. We give them
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Fig. 6. Comparison of gradient, trilateration, centroid, and cone-fit

full advantage by calculating the best parameter given the actual known location
of each AP. Figure 6 shows the localization error of these algorithms.

The mean error and standard deviation of gradient were 34m and 14m respec-
tively. Gradient improves the mean error by 12% over weighted centroid, and
performs better than centroids and trilateration. Moreover, it has the lowest
worst case error, giving a factor of 1.4 improvement in standard deviation over
weighted centroid. The maximum error of gradient was 59m versus weighted
centroid’s 88m. Cone-fit’s average is 7% better than gradient only when the best
path loss exponent was given from the actual AP’s location, but when the pa-
rameter is fixed (e.g., n=2.0), it was worse than gradient. Its performance was
highly variable depending on the exponent, and degrades under non-uniform
shadowing and biased sampling.

Case study. To understand the characteristics of the gradient algorithm, we
describe some example scenarios from the actual measurement (Figure 7). The
figures show arrows at measurement points and the localization results of various
algorithms1. Figures 7(a),7(b), and 7(c) show some skewed distributions that
frequently occur in wardriving measurements. Note that a cut through the AP
can be made in the x-y plane such that one side of the cut contains the vast
majority of measurement points. Gradient performs well in these cases, unlike
other algorithms. The more uniform distribution in Figure 7(d) provided the
smallest error (of all 25 APs) for weighted centroid, because the AP was located
at the corner of a junction. All algorithms perform relatively well in this scenario.
While all algorithms perform well in under a uniform distribution of measurement
points, only gradient performs well in all shown cases.

4 Related Work and Discussion

Localization systems fall into three rough categories based upon the information
they use [4]: received signal strength, time-based, and angle-of-arrival (AoA).
1 Trilateration is not shown because its errors were too large.
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Fig. 7. Case study. Arrows are trimmed to improve readability.

RADAR [7] uses RSS to infer the distance between the signal source and the
receiver. However, a site-survey is required to compensate for the non-uniform
shading. Similarly, time-based approaches [8, 9] require accurate time synchro-
nization or use an additional medium such as ultrasound to address timing issues.

AoA systems measure the incident angle of the signal at the receiver. Subrama-
nian et al. [3] proposed an AP localization algorithm that uses AoA information
measured with a steerable beam directional antenna. This state-of-the-art al-
gorithm significantly reduces the localization error. However, the evaluation is
based on APs that were modified to transmit a large number of packets and
placed on the same channel to speed up the data collection. Simulations of
normal-speed data collection, commensurate to a real-world situation, showed
that the median localization error was comparable to that of gradient.

Of the three types of information, RSS is the only information collected in
conventional wardriving measurements. Furthermore, few techniques used in user
localization systems can be applied to AP localization in ad-hoc environments.
Therefore, centroid and weighted centroid have been commonly used [2, 1]. Our
work takes a novel approach in that we measure only RSS, but derive AoA
equivalent information.

Finally, particle filters [10] provide a new approach to combine information ob-
tained from each measurement regardless of its type. It provides a probabilistic
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mechanism to combine data instead of the deterministic ones used by most lo-
calization techniques. An interesting avenue of future work would be to combine
our work with a particle filter, to estimate locations using both the RSS and the
derived AoA information from our work.

5 Conclusion

This paper presents a novel access point localization algorithm called gradient
and its performance evaluation. Gradient is based on the idea that the signal
strength indirectly reflects the direction where the signal comes from. The al-
gorithm does not require extra hardware, and data can be collected by normal
wardriving.

Our evaluation shows that gradient overcomes the sampling bias that is in-
herent in wardriving measurements. Furthermore, it is more accurate and has
smaller variation than any other algorithm that relies on the distribution of sig-
nal strength in space. Gradient achieves a median AP localization error of 33
meters and reduces the maximum error by 33% compared to the second best,
weighted centroid approach.
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