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ABSTRACT The combination of user-centric network densification and distributed massive multiple-input

multiple-output (MIMO) operation has recently brought along a new paradigm in the wireless communi-

cations arena, referred to as cell-free massive MIMO networking. In these networks, a large number of

distributed access points (APs), coordinated by a central processing unit (CPU), cooperate to coherently

serve a large number of mobile stations (MSs) in the same time/frequency resource. Similar to what has

been traditionally done with conventional cellular networks, cell-free massive MIMO networks will be

dimensioned to provide the required quality of service (QoS) to MSs under heavy traffic load conditions,

and thus they might be underutilized during low traffic load periods, leading to an inefficient use of both

spectral and energy resources. Aiming at the implementation of green cell-free massive MIMO networks,

this paper proposes and analyzes the performance of different AP switch ON/OFF (ASO) strategies designed

to dynamically turn ON/OFF some of the APs based on the number and/or location of the active MSs in

the network. The proposed framework considers line-of-sight (LOS) and non-line-of-sight (NLOS) links

between APs and MSs, the use of different antenna array architectures at the access points (APs), suitably

characterized by array-dependent spatial correlation matrices, and specific power consumption models for

APs, MSs and fronthaul links between the APs and the CPU. Numerical results show that the use of

properly designed ASO strategies in cell-free massive MIMO networks clearly improve the achievable

energy efficiency. Moreover, they also reveal the existing trade-offs among the achievable energy efficiency,

the available network-state information, and the hardware configuration (i.e., number of APs, number of

transmit antennas per AP, and number of MSs).

INDEX TERMS AP ON/OFF switching, green networking, cell-free massive MIMO, zero-forcing

precoding.

I. INTRODUCTION

A. MOTIVATION AND PREVIOUS WORK

Information and communication technologies (ICTs), in gen-

eral, and wireless communication networks, in particular,

have fundamentally and positively changed our way of life.

The massive use of ICTs, specially due to the populariza-

tion of smart phones and tablets, however, has been steadily

increasing the levels of energy consumption, thus signifi-

cantly contributing to the carbon footprint caused by human

activity. In a recent publication [1], Andrae and Edler reported
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that forecasts for 2030 are that, for the worst-case scenario,

ICTs could be responsible for as much as 51% of global

energy electricity consumption and contribute up to 23% of

the global carbon footprint. With increasing awareness of the

potential harmful impact the carbon footprint may have on the

environment, it is critical that engineers fully explore innova-

tive greener networking solutions that can meet the growing

traffic demand while avoiding the most critical worst-case

predictions. Our aim in this paper is to contribute to this goal

by proposing the implementation of green cell-free massive

multiple-input multiple-output (MIMO) networks.

Cell-free massive MIMO networks have been recently

introduced in [2]–[4] as a practical incarnation of the
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network MIMO concept (also known as coordinated

multi-point transmission, distributed MIMO or even cloud

RAN) [5]–[8]. In these networks, amassive number of single-

or multiple-antenna APs, which are distributed across the

coverage area and coordinated by a central processing unit

(CPU), cooperate to coherently serve a large number of

mobile stations (MSs) in the same time/frequency resource.

As in cellular massive MIMO networks [9], channel hard-

ening and favorable propagation conditions are exploited

to provide uniformly good quality of service (QoS) to the

served MSs using simple MIMO linear signal processing

schemes. Inspired by [2]–[4], there has been a great deal of

research activity pushing forward the boundaries of this novel

wireless network paradigm. Buzzi and Andrea [10], propose

a user-centric approach in which each MS is only served by

several APs that are selected based on strongest propagation

gains. Bashar et al. [11] and Femenias and Riera-Palou [12],

consider the use of capacity-constrained fronthaul links in

sub-6 GHz and millimeter-wave frequency bands, respec-

tively. Nayebi et al. [13] and Björnson and Sanguinetti [14],

analyze the performance of a cell-free massive MIMO

network with zero-forcing (ZF) and minimum mean

square error (MMSE) processing, respectively. Particu-

larly related to our work in this paper, Zhang et al. [15],

Alonzo et al. [16], and Bashar et al. [17], following the way

paved by Ngo et al. [4], analyze and optimize the energy effi-

ciency of cell-free massive MIMO networks under different

scenarios, including the presence of hardware impairments,

the use of millimeter-wave frequency bands or the use of

capacity-constrained fronthaul links during the uplink (UL)

payload transmission phase. Unfortunately, however, except

for the Van Chien’s paper, all the aforementioned research

works consider a static network scenario in which the number

of APs is fixed irrespective of the location of MSs and/or

the traffic load they generate, thus obviating the use of

one of the most popular energy sustainable paradigms to

decrease the carbon footprint of cellular networks, the so-

called sleep modes or switch ON/OFF algorithms (see, for

instance, [18]–[21] and references therein). As the cellular

networks are dimensioned to provide the required QoS to

subscribers during the highest load conditions, they might be

underused during less busy periods, leading to an inefficient

use of both spectral and energy resources. Switch ON/OFF

strategies have been traditionally used in these networks to

dynamically turn ON/OFF some of the base stations (BSs)

based on the location and traffic load generated by the served

MSs. User association techniques and cell zooming (also

known as cell breathing) strategies are also necessary in such

cellular scenarios to complement the use of sleep modes (see,

for instance, [22]–[25] and references therein).

B. AIM AND CONTRIBUTIONS

As previously mentioned, and motivated by the above consid-

erations, our main aim in this paper is to address the design

and performance evaluation of green cell-freemassiveMIMO

networks based on the use of access point switch-ON/OFF

(ASO) strategies. The main contributions of our work can be

summarized as follows:
• Mathematically tractable expressions for both the spec-

tral and energy efficiencies of the downlink (DL) andUL

payload data transmission phases of a cell-free massive

MIMO network with any finite number of APs and

MSs are derived. In contrast to most previous works

on this topic, these expressions consider the possibility

that MSs are in line-of-sight (LOS) with respect to some

of the serving APs and in non-line-of-sight (NLOS)

with respect to the other ones. Furthermore, the channel

model contemplates the use of different antenna array

architectures at the APs that can be characterized with

suitable spatial correlation matrices. The power con-

sumption model also considers the power consumed at

the APs, the MSs and the fronthaul links to and from the

CPU. The proposed framework is a non-trivial gener-

alization of previous mathematical models for cell-free

massive MIMO networks in [2]–[4], [13], which consid-

ered exclusively the propagation through NLOS chan-

nels, and also in [26], which contemplated the presence

of a LOS but limiting the study to single-antenna APs,

thus neglecting spatial correlation effects.

• Taking into account that the problem of selecting the

optimal set of APs that must be switched off when serv-

ing a given set of MSs is NP-hard, we propose a collec-

tion of heuristic suboptimal ASO strategies and discuss

their implementation issues as well as their expected

complexity versus performance trade-offs. Remarkably,

two of the proposed ASO schemes can be considered to

provide lower and upper bounds on the energy efficiency

performance improvement any sensible AP sleep mode

may bring along.

• The substantial energy efficiency benefits produced by

the use of ASO strategies are fully quantified by sim-

ulating an extensive set of cell-free massive MIMO

scenarios. The impact of using different ASO strategies

or different antenna configurations at the APs, as well

as the repercussion of having cell-free massive MIMO

networks comprising different numbers of APs and/or

MSs are evaluated. Furthermore, a range of challenging

open issues is outlined.

C. PAPER ORGANIZATION AND NOTATIONAL REMARKS

The remainder of this paper is organized as follows.

In Section II the proposed green cell-free massive MIMO

network is introduced, and different subsections are dedicated

to describe the channel model, the UL training phase, and the

payload transmission phases for both the DL and the UL. The

different performance metrics used in this paper, including

the spectral efficiency, the power consumption model and

the energy efficiency, are fully developed in Section III.

Section IV is devoted to report on the proposed ASO strate-

gies in the context of cell-free massive MIMO. Numerical

results and discussions are provided in Section V and, finally,

concluding remarks are summarized in Section VI.
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Notation: Vectors and matrices are denoted by lower-case

and upper-case boldface symbols. The q-dimensional identity

matrix is represented by Iq. The operator ‖X‖F represents the

Frobenius norm of matrix X , whereas X−1, XT , X∗ and XH

denote its inverse, transpose, conjugate and conjugate trans-

pose (also known as Hermitian), respectively. The operators

diag(x) is used to denote a diagonal matrix with the entries of

vector x on its main diagonal, and blockdiag(X1, . . . ,Xn) is

used to denote a block diagonal matrix comprising matrices

X1, . . ., Xn on its main block diagonal. The expectation

operator is denoted by E{·}. Finally, CN (m,R) denotes a

circularly symmetric complex Gaussian vector distributions

with mean m and covariance R, N (0, σ 2) denotes a real

valued zero-mean Gaussian random variable with standard

deviation σ , and U [a, b] represents a random variable uni-

formly distributed in the range [a, b].

II. SYSTEM MODEL

Let us consider a cell-free massiveMIMO network consisting

ofM randomly distributed APs, each equipped with an array

ofN antennas and connected to a CPU via an infinite-capacity

error-free fronthaul link. Owing to the use of the ASO strat-

egy, each of the APs in the network can be either in active

mode (ON) or in sleep mode (OFF). APs in active and sleep

modes will be indexed by the setsMA = {mA1 , . . . ,mAMA
} and

MS = {mS1 , . . . ,mSMS
}, respectively, with MA ∩ MS = ∅

and MA ∪ MS = {1, . . . ,M}. The CPU coordinates the

communication between the active APs andK geographically

distributed single-antenna MSs in the same time-frequency

resource. DL and UL transmissions between active APs and

MSs are organized in a half-duplex time division duplexing

(TDD) operation whereby each coherence interval is split

into three phases, namely, the UL training phase, the DL

payload data transmission phase and the UL payload data

transmission phase. In the UL training phase, all MSs trans-

mit training pilots allowing the APs to estimate the propa-

gation channels to every MS in the network. Subsequently,

these channel estimates are used to detect the signals trans-

mitted from the MSs in the UL payload data transmission

phase and to compute the precoding filters governing the DL

payload data transmission. Obviously, the combined dura-

tion/bandwidth of the training, DL and UL phases, denoted as

τp, τd and τu, respectively, should not exceed the coherence

time/bandwidth of the channel, denoted as τc, that is, τp +
τd + τu ≤ τc, with all these intervals specified in samples (or

channel uses) on a time-frequency grid.

A. CHANNEL MODEL

As recommended by Björnson and Sanguinetti [14], the typi-

cal three-slope pathloss propagation model used in most pre-

vious research works on cell-free massiveMIMO networking

(see, for instance [2]–[4], [12], [13], [27]) will be replaced

by a simplified version of the third generation partnership

project (3GPP) Urban Microcell model described in [28].

In particular, the link between the mth AP and the kth MS

will be considered to be either in LOS or NLOS, with the

LOS probability being given by

pLOS(dmk ) = min

(

1,
d0

dmk
+
(

1 − d0

dmk

)

e
− dmk

2d0

)

, (1)

where d0 is a reference distance and dmk is the distance

between AP m and MS k . The propagation losses (measured

in dB) characterizing the propagation link between the mth

AP and the kth MS will be modelled as

Lmk = α + 10β log10(dmk ) + χmk , (2)

where χmk ∼ N

(

0, σ 2
χ

)

is the shadow fading compo-

nent, and the values of parameters α, β and σχ depend

on whether the corresponding link is in LOS or NLOS.

The spatial correlation model for the shadow fading expe-

rienced by the different propagation links is described

in [3, (54)-(55)].

The resulting uplink channel vector gmk ∈ C
N×1 from

the kth MS to the mth AP (including both large-scale and

small-scale fading) can then be generically characterized as a

Ricean fading channel consisting of a LOS component on top

of a Rayleigh distributed component modelling the scattered

multipath. That is,

gmk =
√

Kmk

Kmk + 1
hmk +

√

1

Kmk + 1
hmk , (3)

with

hmk = αmka
MS
(

θ
MS

mk,1, φ
MS

mk,1

)

aAP
(

θ
AP

mk,1, φ
AP

mk,1

)

, (4)

and

hmk =
Cmk
∑

c=1

Pmk
∑

p=1

αmk,cpa
MS
(

θMSmk,cp, φ
MS
mk,cp

)

×aAP
(

θAPmk,cp, φ
AP
mk,cp

)

, (5)

where Kmk is the Ricean K -factor, with Kmk = 0 for NLOS

propagation links and 10 log10(Kmk ) ∼ N
(

µK , σ 2
K

)

for LOS

propagation links. The parameter αmk = 10−Lmk/20ejκmk , with
κmk ∼ U [0, 2π ], is used to denote the large-scale com-

plex channel gain of the LOS component, Cmk and Pmk are

the number of contributing scattering clusters of the NLOS

component and the number of propagation paths per cluster,

respectively, αmk,cp is the complex small-scale fading gain

on the pth path of cluster c, aMS
(

θMSmk,cp, φ
MS
mk,cp

)

is the MS

antenna element response at the azimuth and elevation angles

θMSmk,cp and φMSmk,cp, respectively, and aAP
(

θAPmk,cp, φ
AP
mk,cp

)

is

the normalized array response vector of the AP at the azimuth

and elevation angles θAPmk,cp and φAPmk,cp, respectively. As sug-

gested by Akdeniz et al. in [29, Section III.E] (see also [28]),

θMSmk,cp and θAPmk,cp can be generated as wrapped Gaussians

around the cluster central angles θ
MS

mk,c and θ
AP

mk,c with stan-

dard deviation given by the root mean square (rms) azimuth

angular spreads for the cluster. Furthermore, φMSmk,cp and
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TABLE 1. Summary of default simulation parameters.

φAPmk,cp can be generated as Laplacians around the cluster

central angles φ
MS

mk,c and φ
AP

mk,c with scale parameters given

by the rms elevation angular spreads for the cluster. The

azimuth cluster central angles θ
MS

mk,c and θ
AP

mk,c are uniformly

distributed in the range [−π, π] and the elevation cluster

central angles φ
MS

mk,c and φ
AP

mk,c are set to the corresponding

LOS elevation angles. The cluster rms angular spreads are

exponentially distributed with a mean equal to 1/λrms that

depends on whether we are considering the azimuth or ele-

vation directions. The small-scale scattering fading gains are

distributed as

αmk,cp ∼ CN

(

0, γmk,c10
−Lmk/10

)

, (6)

where the cluster c is assumed to contribute to the scatter

fading with a fraction of power given by

γmk,c =
Nγ ′

mk,c

Pmk
∑Cmk

j=1 γ ′
mk,j

, (7)

with

γ ′
mk,j = U

rτ −1
mk,j 10

Zmk,j/10, (8)

Umk,j ∼ U [0, 1], Zmk,j ∼ N (0, ζ 2), and the constants rτ
and ζ 2 being treated as model parameters (see [29, Table I]

or [28, Table 7.3-6]). Using the channel propagation model

just described, the spatial covariance matrix of the scattered

multipath component hmk can be obtained as

Rmk = E

{

hmkh
H
mk

}

= 10−Lmk/10

×
Cmk
∑

c=1

γmk,c

Pmk
∑

p=1

E

{

∣

∣

∣
aMS

(

θMSmk,cp, φ
MS
mk,cp

)∣

∣

∣

2
}

×E

{

aAP
(

θmk,cp, φmk,cp
)

(

aAP
(

θmk,cp, φmk,cp
)

)H
}

.

(9)

B. SMALL-SCALE TRAINING PHASE:

CHANNEL ESTIMATION

Communication in any coherence interval of a TDD-based

massiveMIMO system invariably starts with theMSs sending

the pilot sequences to allow the channel to be estimated at the

APs. Let τp denote the UL training phase duration (measured

in samples on a time-frequency grid) per coherence interval.

During the UL training phase, all K MSs simultaneously

transmit pilot sequences of τp samples to the APs and thus,

the N × τp received UL signal matrix at the mth active AP is

given by

Ypm =
√

τpPp

K
∑

k ′=1

gmk ′ϕTk ′ + Npm, (10)

where Pp is the transmit power of each pilot symbol, ϕk
denotes the τp × 1 training sequence assigned to MS k , with

‖ϕk‖2F = 1, and Npm ∈ C
N×τp is a matrix of independent

identically distributed (iid) zero-mean circularly symmetric

Gaussian random variables with standard deviation σu. Ide-

ally, training sequences should be chosen to be mutually

orthogonal, however, since in most practical scenarios it

holds that K > τp, a given training sequence is assigned

to more than one MS, thus resulting in the so-called pilot

contamination, a widely studied phenomenon in the context

of collocated massive MIMO systems [9], [30], [31].

Considering scenarios where MSs move slowly, it is rea-

sonable to assume that the Ricean K -factors Kmk , the LOS

components hmk , and the scatter fading correlation matri-

ces Rmk change slowly and can be perfectly known at the

mth AP, for all k [26]. Under this assumption, we can

define

y̆pmk =
(

Ypm − E
{

Ypm

})

ϕ∗
k

=
K
∑

k ′=1

√

τpPp

Kmk ′ + 1
hmk ′ϕTk ′ϕ

∗
k + Npmϕ∗

k (11)

ğmk = gmk − E
{

gmk
}

=
√

1

Kmk + 1
hmk , (12)
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and then derive the MMSE estimate for the channel between

the kth MS and the mth active AP as [26], [32]

ĝmk =
√

Kmk

Kmk + 1
hmk

+E

{

y̆pmk ğ
H
mk

} (

E

{

y̆pmk y̆
H
pmk

})−1
y̆pmk

=
√

Kmk

Kmk + 1
hmk +

√

τpPp

Kmk + 1
Rmk9

−1
mk y̆pmk , (13)

where

9mk = τpPp

K
∑

k ′=1

1

Kmk ′ + 1
Rmk ′

∣

∣

∣
ϕHk ′ϕk

∣

∣

∣

2
+ σ 2

u IN . (14)

The channel estimate ĝmk and the MMSE channel estimation

error g̃mk = gmk − ĝmk are uncorrelated random vectors

distributed as

ĝmk ∼ CN

(
√

Kmk

Kmk + 1
hmk ,

τpPpRmk9
−1
mkR

H
mk

(Kmk + 1)2

)

, (15)

and g̃mk ∼ CN (0,Amk), respectively, where

Amk = E

{

g̃mk g̃
H
mk

}

= Rmk

Kmk + 1
−

τpPpRmk9
−1
mkR

H
mk

(Kmk + 1)2
. (16)

C. DOWNLINK PAYLOAD DATA TRANSMISSION

Let us define sd = [sd 1 . . . sdK ]
T as the K × 1 vector of

symbols jointly (cooperatively) transmitted from the active

APs to the MSs, such that E
{

sd s
H
d

}

= IK . Let us also

define

xm = Wd mϒ1/2sd (17)

as the N × 1 vector of signals transmitted from the mth

active AP, with Wd m = [wdm1 . . . wdmK ] ∈ C
N×K

denoting the precoding matrix at the mth active AP, and

ϒ = diag (υ) = diag
(

[υ1 . . . υK ]
T
)

being a K×K diagonal

matrix containing the power control coefficients in its main

diagonal. These power control coefficients must satisfy the

power constraints

Ptxm(υ) = E

{

‖xm‖2F
}

=
K
∑

k=1

υkθmk ≤ Pd , (18)

for all m ∈ MA, where Pd is the maximum average

transmit power available at the APs, and we have used the

definition

θmk = E

{

‖wdmk‖2F
}

. (19)

Using this notation, the signal received by MS k can be

expressed as

yd k =
∑

m∈MA

gTmkxm + nd k , (20)

where nd k ∼ CN (0, σ 2
d ). The vector yd =

[

yd 1 . . . ydK
]T

containing the signals received by the K scheduled MSs in

the network can then be expressed as

yd =
∑

m∈MA

GTmxm + nd = GTWdϒ
1/2sd + nd , (21)

where G = [GT
mA1

. . . GT
mAMA

]T , with Gm =
[

gm1 . . . gmK
]

,

represents the equivalent MIMO channel matrix between

the K MSs and the MA active APs, and Wd =
[WT

d mA1
. . . WT

d mAMA

]T is the joint precoding filter imple-

mented at the CPU. In particular, using the classical ZF

multiuser-MIMO (MU-MIMO) baseband precoder to harness

the spatial multiplexing, we have that

Wd = Ĝ
∗ (
Ĝ
T
Ĝ

∗)−1

(22)

or, equivalently,

Wd m = Ĝ
∗
m

(

Ĝ
T
Ĝ

∗)−1

∀m ∈ M
A, (23)

where we have assumed thatG = Ĝ+G̃ andGm = Ĝm+G̃m.

Consequently, the signal received by the kth MS can be

expressed as

yd k = gTk Ĝ
∗ (
Ĝ
T
Ĝ

∗)−1

ϒ1/2sd + nd k

=
(

ĝ
T
k + g̃Tk

)

Ĝ
∗ (
Ĝ
T
Ĝ

∗)−1

ϒ1/2sd + nd k

= √
υksd k + g̃Tk Ĝ

∗ (
Ĝ
T
Ĝ

∗)−1

ϒ1/2sd + nd k , (24)

where we have defined gk =
[

gT
mA1 k

. . . gT
mAMA

k

]T

. The first

term denotes the useful received signal, the second term con-

tains the interference components due to the use of imperfect

channel state information (CSI) (due to UL pilot contami-

nation and noise), and the third term is the thermal noise

sample.

D. UPLINK PAYLOAD DATA TRANSMISSION

In the UL, the vector of received signals at the output of the

N radio frequency (RF) chains of the mth active AP is given

by

rum =
√

Pu

K
∑

k ′=1

gmk ′
√

ωk ′suk ′ + num

=
√

PuGm�1/2su + num, (25)

where Pu is the maximum average UL transmit power avail-

able at any of the active MSs, su = [su1 . . . suK ]
T denotes

the vector of symbols transmitted by the K active MSs, with

E
{

sus
H
u

}

= IK , � = diag (ω) = diag([ω1 . . . ωK ]
T ),

with 0 ≤ ωk ≤ 1, is a matrix containing the power control

coefficients used at the MSs, and num ∼ CN (0, σ 2
u IN ) is the

vector of additive thermal noise samples. The received vector
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of signals at each of the active APs in the network is for-

warded to the CPU via the UL fronthaul links, where they are

jointly processed using a set of baseband combining vectors.

Assuming the use of ZF MIMO detection, the CPU uses the

detection matrix

Wu =
(

Ĝ
H
Ĝ
)−1

Ĝ
H = WT

d (26)

or, equivalently

Wum =
(

Ĝ
H
Ĝ
)−1

Ĝ
H

m = WT
dm, ∀m ∈ M

A, (27)

to jointly process the vector ru =
[

rTu mA1
. . . rTu mA

MA

]T
and

obtain the vector of detected samples

yu = Wuru =
√

PuWuG�1/2su + ηu

=
√

Pu�
1/2su +

√

PuWuG̃�1/2su + ηu, (28)

where

ηu = Wunu = Wu

[

nTu mA1
. . . nTu mA

MA

]T
. (29)

Again, the first term denotes the useful received signal,

the second term contains the interference terms due to the

use of imperfect CSI, and the third term includes the thermal

noise samples. The detected sample corresponding to the

symbol transmitted by the kth MS can then be obtained

as

yuk =
√

Puω
1/2
k suk +

√

Pu

[

WuG̃�1/2su

]

k
+ ηuk , (30)

where [x]k is used to denote the kth entry of vector x.

III. MODELING PERFORMANCE METRICS

A. SPECTRAL EFFICIENCY

Analysis techniques similar to those applied, for instance,

in [3], [9], [13], [33]–[35], are used in this section to derive

DL and UL spectral efficiencies (also known as achievable

rates). In particular, the sum of the second and third terms

on the right hand side (RHS) of (24), for the DL case,

and (30), for the UL case, are treated as effective noise. The

additive terms constituting the effective noise are, in both

DL and UL cases, mutually uncorrelated, and uncorrelated

with sd k and suk , respectively. Therefore, both the desired

signal and the so-called effective noise are uncorrelated. Now,

recalling the fact that uncorrelated Gaussian noise represents

the worst case, from a capacity point of view, and that the

complex-valued fast fading random variables characterizing

the propagation channels between different pairs of AP-MS

connections are independent, the DL and UL spectral effi-

ciencies (measured in bits per second per Hertz) can be

obtained as follows. The DL sum spectral efficiency is given

by

Sed (υ) =
K
∑

k=1

Sedk (υ) = τd

τc

K
∑

k=1

log2 (1+SINRd k) , (31)

with

SINRd k = υk
∑K

k ′=1 υk ′̟kk ′ + σ 2
d

, (32)

where, using (16), we have that

̟kk ′ =
[

diag
(

E

{

WH
d E

{

g̃∗
k g̃

T
k

}

Wd

})]

k ′

=
[

diag
(

E

{

WH
d A

∗
kWd

})]

k ′
, (33)

with Ak = blockdiag [A1k . . . AMk ]. Analogously, the UL

sum spectral efficiency is given by

Seu(ω) =
K
∑

k=1

Seuk (ω) = τu

τc

K
∑

k=1

log2 (1 + SINRuk) , (34)

with

SINRuk = Puωk

Pu
∑K

k ′=1 ωk ′δkk ′ + σ 2
ηuk

, (35)

where

δkk ′ =
[

diag
(

E

{

G̃
H
wHukwuk G̃

})]

k ′
(36)

with wuk denoting the kth row ofWu, or, equivalently,

δkk ′ =
[

diag
(

E

{

WuE

{

g̃k ′ g̃
H
k ′

}

WH
u

})]

k

=
[

diag
(

E

{

WuAk ′WH
u

})]

k
, (37)

and

σ 2
ηuk

= σ 2
u

[

diag
(

E

{

WuW
H
u

})]

k
. (38)

B. POWER CONSUMPTION MODEL

As the framework developed in this paper is based on the

AP ON/OFF switching strategy, each AP in the network

must be either in active or sleep mode. Furthermore, when

in active mode, a given AP can be either transmitting during

the DL payload data transmission phase or receiving dur-

ing the UL training and payload data transmission phases.

As expected, the power consumed by the mth AP when in the

active mode depends on the radiated power Ptxm during the DL

payload data transmission phase, or on the UL spectral effi-

ciency Seu(ω) during theUL payload data transmission phase.

However, it also depends on parameters such as the effi-

ciency of the power amplifier, the small-signal RF transceiver

power, the baseband power, the feeder loses, the DC-DC

power supply loses, the main supply losses, or the cooling

losses [36]–[40]. In the sleep mode, the AP is in a reduced

power consumption state in which it is not completely turned

off and can then be readily activated. Although the AP is not

radiating or receiving power when in the sleep mode, there

are components such as the power supply, some of the signal

processing blocks, and part of the cooling system that are

still active and thus consuming power. Consequently, the total

power consumption of the mth AP can be approximated by
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a linear model as follows (see, for instance, [36]–[40] and

references therein)

PAPm =



















Ptxm(υ)

αAP
m

+ P
AP,fix
md + NP

AP,chain
md DL Active

BξAPm Seu(ω) + PAP,fixmu + NPAP,chainmu UL Active

P
AP,fix
m sleep + NP

AP,chain
m sleep Sleep,

(39)

where αAP
m is the power amplifier efficiency at the mth AP, B

is the system bandwidth, ξAPm is the traffic-dependent power

consumption coefficient (in Watt per bit/s), P
AP,fix
md and PAP,fixmu

denote, respectively, the DL and UL power consumption fig-

ures that are independent of both the number of RF chains and

the traffic load, P
AP,chain
md and PAP,chainmu model the DL and UL

traffic-independent power consumed by the circuitry related

to each RF chain of the mth AP, respectively and, finally,

P
AP,fix
m sleep and P

AP,chain
m sleep are the RF chain-independent and RF

chain-dependent power consumed by the mth AP when in

sleep mode.

A similar power consumption model can be established for

the fronthaul links connecting the APs to the CPU. In partic-

ular, the power consumed by the mth fronthaul link when in

active mode depends on the amount of traffic it has to convey

and, thus, the total power consumption can be approximated

as [4], [27]

PFHm =











BξFHm Sed (υ) + PFH,fixm DL Active

BξFHm Seu(ω) + PFH,fixm UL Active

P
FH,fix
m sleep Sleep,

(40)

where ξFHm is the traffic-dependent power consumption coef-

ficient (in Watt per bit/s), PFH,fixm is the traffic-independent

power consumption when in active mode, and PFHm sleep
accounts for the power consumed by the mth fronthaul link

when in sleep mode.

The power consumption model for the MSs can also be

approximated as

PMS
k =







BξMS
k Sedk (υ) + P

MS,fix
k d DL

Puωk

αMS
k

+ P
MS,fix
k u UL,

(41)

where, again, αMS
k is the power amplifier efficiency at the kth

MS, ξMS
k is the traffic-dependent power consumption coeffi-

cient (in Watt per bit/s), P
MS,fix
md and PMS,fix

mu model the power

consumed by the internal circuitry of the MS independently

of the average radiated power, and Sedk (ω) denotes the DL

spectral efficiency of the kth MS.

Putting all the pieces together, the total power consumption

of the cell-free massive-MIMO network can be modeled as

PT d (υ) = PfixTd + B

K
∑

k=1

ξMS
k Sedk (υ)

+
∑

m∈MA

(

τd

τc

Ptxm(υ)

αAP
m

+ BξFHm Sed (υ)

)

, (42)

for the DL payload data transmission phase, and as

PT u(ω) = PfixTu +
K
∑

k=1

τu

τc

Puωk

αMS
m

+B
∑

m∈MA

(

ξAPm + ξFHm

)

Seu(ω), (43)

for the UL payload data transmission phase, with

PfixTl = τl

τc

[

K
∑

k=1

P
MS,fix
k l

+
∑

m∈MA

(

PFH,fixm + P
AP,fix
m l + NP

AP,chain
m l

)

+
∑

m∈MS

(

P
FH,fix
m sleep + P

AP,fix
m sleep + NP

AP,chain
m sleep

)



 (44)

where l has been used as a token to represent either the DL

(l = d) or the UL (l = u). As stated by Desset et al. [38],

although this simple linear model is not designed to provide

very accurate absolute figures, it will enable a fair compari-

son among different ON/OFF switching strategies for green

cell-free massive-MIMO networking.

C. ENERGY EFFICIENCY

The energy efficiency during the DL and UL payload data

transmission phases can be expressed as

Eed (υ) = BSed (υ)

PT d (υ)
(45)

and

Eeu(ω) = BSeu(ω)

PT u(ω)
, (46)

respectively. We can also define a weighted energy efficiency

metric as

Ee(υ, ω) = µEed (υ) + (1 − µ)Eeu(ω), (47)

where 0 ≤ µ ≤ 1 is a weighting coefficient allowing for the

control of a trade-off between DL andUL energy efficiencies.

IV. AP SWITCH-ON/OFF STRATEGIES

In the context of green cell-free massive MIMO network-

ing, the ultimate objective of optimal ASO strategies is to

select MA out of M APs in such a way that the resulting

energy efficiency for a given arrangement of MSs is max-

imized. On the one hand, finding such an optimal subset

of APs is an NP-hard problem, thus requiring of the eval-

uation of the performance provided by all possible com-

binations of MA out of M APs. Hence, assuming that the

number of APs in a cell-free massive MIMO network, by its

very nature, is large, this selection will call for the develop-

ment of heuristic suboptimal algorithms. On the other hand,

under ideal conditions, the set of selected APs should be

adapted to scenario variations due, among others, to changes
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in the location of the MSs and/or the geographical dis-

tribution of shadow fading. In particular, Chien et al. [41]

have very recently proposed an energy-efficient cell-free

massive MIMO scheme aiming at minimizing the total

DL power consumption at the APs assuming that some of

them can be turned off. Critically, the proposed strategy

implies solving a computationally-intensive non-convex opti-

mization problem at the rate of change of the large-scale

parameters of the system. In most practical scenarios, how-

ever, these variations occur too quickly so as to allow

the implementation of such high-complexity adaptive selec-

tion schemes. In the following we describe some heuristic

ASO strategies and comment on their possible imple-

mentation issues as well as on their expected complexity

versus performance trade-offs. Starting with a pure ran-

dom selection ASO scheme (Subsection IV-A), described

for lower-bound benchmarking purposes, we then propose

two strategies (Subsections IV-C and IV-D) that are loosely

based on similar techniques used in conventional wireless

networks. Finally, three novel proposals are presented in

Subsections IV-B, IV-E and IV-F that have been specially tai-

lored for the cell-free massive MIMO network deployment

considered in this paper.

A. RANDOM SELECTION ASO

Simple random AP switch-ON/OFF (or random switching)

is probably the most straightforward AP selection scheme.

Using this strategy, each of the available APs is equally likely

to be put in sleep mode and, therefore, the only parameter

to be adjusted when maximizing the energy efficiency of

the network will be the number of APs that must be put in

sleep mode as a function of the number (or spatial density)

of MSs that have to be served. Being completely unaware of

the possible effects switching off a particular APmay have on

the global performance of the network, the random selection

ASO (RS-ASO) strategy is expected to provide a lower bound

on the energy efficiency performance improvement any sen-

sible ASO may bring along.

B. MIXTURE DISCREPANCY-BASED GREEDY ASO

Assuming that the MSs are uniformly distributed on the

coverage area or, equivalently, under a complete ignorance

about the spatial distribution of MSs, keeping the locations

of the set of active APs as uniform as possible seems to

be advantageous in terms of spectral/energy efficiency of a

cell-free massive MIMO network. This is basically because a

uniform spatial distribution ofAPs tends tomatch the uniform

statistical distribution of MSs.

In the field of statistics, discrepancy has gained much

popularity as a tool to measure the deviation between the

empirical and the theoretical uniform distribution (see, for

instance, [42] and references therein). Examples of discrep-

ancies that have been suggested as possible measures of

uniformity are, among many others, the star Lp-discrepancy

(p 6= 2), the star L∞-discrepancy, the generalized, centered

and symmetrical L2-discrepancies, the discrete discrepancy,

the Lee discrepancy or themixture discrepancy. As concluded

by Zhou et al. [43], among all of these suggested measures of

uniformity, the mixture discrepancy they introduce is the one

fulfilling the major quantity of desirable mathematical and

computational properties to construct uniform designs.

For a given set MA of active APs located at positions

P(MA) =
{

pmA1
, . . . , pmAMA

}

, with pm = (pm1, pm2) ∈ R
2,

the corresponding analytical expression of mixture discrep-

ancy can be obtained by using [43, eq. (18), (with n = MA,

s = 2, and xm = pm)]. Hence, using this particular criterion,

among all the sets of active APs with a given cardinality,

the optimal one to serve a set of K MSs uniformly dis-

tributed over the service area would be the one showing the

minimum mixture discrepancy. Furthermore, the optimal set

cardinality (i.e., the optimal number of active APs) would

be the one providing the maximum energy efficiency. Hav-

ing a large number of APs in the network, that is, having

a large M , NP-hardness forbids the implementation of a

brute force algorithm to solve this optimization problem.

Consequently, the iterativemixture discrepancy-based greedy

ASO (MD-ASO) algorithm is proposed that, starting with a

set containing all the APs in the network, in each iteration

switches-off the single AP producing the highest decrease in

the mixture discrepancy metric. Note that, again, the optimal

number of active APs (under the greedy strategy) when serv-

ing a given amount of MSs would be the one providing the

maximum energy efficiency.

C. SPATIAL REGULARITY-BASED GREEDY ASO

Aiming at providing a high energy efficiency while maintain-

ing good user satisfaction, ASO strategies can also increase

the number of APs in sleep mode while keeping the locations

of the active APs as regular as possible. Defining perfect reg-

ularity as the case in which APs are placed on a triangular lat-

tice [44], metrics are needed to quantify the spatial regularity

of the different sets of (potential) active APs. A particularly

interesting metric that was already used by Lagum et al. [45]

to design cell switch-off algorithms is the geometry-based

metric of spatial regularity [46], [47]. Given a set MA of

active APs located at positions P(MA), it is defined as

CD

(

M
A
)

=
σD
(

MA
)

kD µD

(

MA
) , (48)

where µD

(

MA
)

and σD
(

MA
)

are the mean and the standard

deviation of the Delaunay edge lengths of the triangulation

between the points representing the positions in P(MA),

respectively, and kD = 0.492 is a normalization factor ensur-

ing that, on average, the geometry-based metric of spatial

regularity for a Poisson point process is equal to 1 [47]. Note,

also, that CD
(

MA
)

= 0 when the active APs are located on

a perfectly regular triangular lattice. Again, as NP-hardness

forbids the use of brute force algorithms to find the subset

MA showing the highest spatial regularity (i.e., the mini-

mum geometry-based metric of spatial regularity CD(M
A)),

and with a cardinality maximizing the energy efficiency of
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the network, the iterative spatial regularity-based greedy

ASO (SR-ASO) algorithm is proposed that, starting with a

set containing all the APs in the network, in each iteration

switches-off the single AP whose transition to sleep mode

produces the highest increase in the spatial regularity metric

of the remaining active APs. The optimal number of active

APs (under the greedy strategy) when serving a given amount

ofMSs would be, once more, the one providing the maximum

energy efficiency.

D. NEAREST NEIGHBOUR-BASED ASO

Again, under the assumption of a random uniform distribu-

tion of MSs on the coverage area, the distribution shown by

the set of active APs will tend to match that of the MSs if,

at each step, out of the two APs that are nearer to each other,

the one that is nearer to a third one is put in sleep mode. This

strategy, that will be termed as the nearest neighbour-based

ASO (NN-ASO) scheme and was previously used by Lagum

et al. in [45], generates solutions maximizing the minimum

pairwise distance among the set of active APs. The optimal

number of active APs when serving a given amount of MSs

would be the one maximizing the energy efficiency.

E. PROPAGATION LOSSES-AWARE ASO

Assuming a uniform spatial distribution of MSs over the

service area, already described ASO strategies are only able

to adapt the number of active APs and/or the components

of the set of active APs to large-scale variations of traffic

demand (i.e., long-term variations of K ). If, instead, the pro-

posed cell-free massive MIMO network is allowed to use

time-dynamic ASO strategies able to adapt to shorter-term

traffic variations, a new door is open to improve the energy

efficiency while maintaining good service coverage and user

satisfaction. In particular, even though the long-term spatial

distribution ofMSs can be assumed to be uniform, the dynam-

ics of users and shadowing at a shorter time scale give

rise to short-term spatial distributions of users that could

benefit from a distribution of active APs adapted to them.

The propagation losses-awareASO (PL-ASO) strategy, based

on the availability of large-scale propagation losses between

APs and MSs, aims at such an adaptive behaviour by

switching-off those APs showing large propagation losses to

the served MSs. The set MA under the PL-ASO strategy

is comprised of MA active APs that are selected using two

different procedures depending on the particular values ofMA

and K . On the one hand, for those cases in which MA ≥ K ,

the first selected active APs are those exhibiting the minimum

propagation losses to each of the K MSs. Note that in this

first step, the number of APs added to MA is less or equal

than K . In a second step, after removing the already selected

APs from the set of selectable ones, the procedure is repeated.

That is, the algorithm selects (in an ordered manner) the APs,

out of the remaining ones, whose propagation losses to each

of the K MSs is minimum. This procedure is repeated until

the number of selected APs is equal toMA. On the other hand,

for those cases in whichMA < K , use is made of the k-means

clustering method to partition the K large-scale propagation

vectors βk = [β1k . . . βMk ] into MA clusters in which each

propagation vector belongs to the cluster with the nearest

centroid, serving as a representative of the cluster [48]. Now,

using the virtual propagation losses vectors characterizing

the MA centroids, the same selection procedure previously

described is applied to select the MA active APs. Again,

the optimal number of active APs under this criterion would

be the one maximizing the energy efficiency for a given

network load.

F. OPTIMAL ENERGY EFFICIENCY-BASED GREEDY ASO

The only way to obtain an upper bound on the performance

any practical ASO strategy can bring along is to evaluate,

for each possible value of MA, all the available combina-

tions of active APs (i.e.,
(

M
MA

)

sets of active APs) and select

the one providing the maximum energy efficiency. As was

previously mentioned, however, this is an NP-hard problem

of a huge computational complexity. In order to obtain an

approximation to this upper bound, a greedy algorithm can be

applied that, in the first iteration, starts with the M available

APs, evaluates the M possible configurations of (M − 1)

active APs resulting from switching off one of them, and

selects the configuration maximizing the energy efficiency.

In the second iteration, the same procedure is repeated but,

in this case, starting with the (M − 1) APs selected in the

first step in order to greedily choose the best configuration of

(M − 2) active APs. The same operations are repeated in the

following iterations until obtaining the configuration of active

APs maximizing the energy efficiency of the network. This

will be termed as the optimal energy efficiency-based greedy

ASO (OG-ASO) strategy and will be used as a benchmark

against which the performance of the other ASO schemes will

be assessed.

V. NUMERICAL RESULTS

In this section, numerical results are provided to quantita-

tively evaluate the performance of the proposed ASO strate-

gies in terms of its energy efficiency. Replicating the scenario

typically used in most of the relevant literature on this topic

(see, for instance, [2]–[4], [12], [13], [27]), APs and MSs

are uniformly distributed at random within a square coverage

area of size D × D m2. Boundary effects are avoided by

wrapping around this square area at the edges, thus simulating

the effects of operating a network with an infinite coverage

area.

Default parameters used to set-up the simulation sce-

narios under evaluation in the following subsections are

summarized in Table 1 and are inspired by a variety of

prior research works (see, for instance, [3], [14], [27], [28],

[36], [39] and references therein). Furthermore, although

the proposed analytical framework can be applied assuming

any of the power control strategies previously proposed in

the literature (see, for instance, [3], [4], [13]), results pre-

sented in this paper have been obtained using the heuris-

tic solution proposed by Nayebi et al. in [13, eq. (21)]
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FIGURE 1. Impact of the ASO strategy on the DL average energy efficiency, espectral efficiency and power consumption as a function of the
number of active APs.

FIGURE 2. Impact of the ASO strategy on the uplink average energy efficiency, espectral efficiency and power consumption as a function of the
number of active APs.

(i.e., υk = Pd/
(

maxm
∑K

k ′=1 θmk ′
)

for all k) for the DL case,

and the full-power transmission strategy (i.e., ωk = 1 for all

k) for the UL case. Furthermore, the balanced random pilot

assignment scheme has been applied [12], where MSs are

allocated pilot sequences that are sequentially and cyclically

selected from the ordered set of available orthogonal pilots.

A. IMPACT OF THE ASO STRATEGY

Our aim in this subsection is to assess the performance of

the proposed ASO strategies in terms of energy/spectral effi-

ciencies and power consumption. Accordingly, the energy

efficiency, spectral efficiency and power consumption versus

the number of active APs is presented in Figs. 1 and 2

for each of the propounded schemes and for both the DL

(i.e.,µ = 1) and the UL (i.e.,µ = 0), respectively. All results

have been obtained assuming the default system parameters

described in Table 1, and the availability of M = 120 APs

equipped with 2×2 uniform planar arrays (UPAs) of vertical

half-wave dipoles located on a half-wave grid and serving

K = 24 MSs. The first important result to note from these

figures is that, irrespective of the number of active APs in the

network or the ASO strategy under use, the energy efficiency

of the UL is much higher than that provided by the DL.

This is basically due to two main reasons. Firstly, although

both transmission segments show very similar average power

consumption metrics, the fixed power consumption in the UL

is considerably lower than that in the DL. Secondly, the use of

full power transmission in the UL provides a clear advantage,

in terms of spectral efficiency, with respect to the constrained

power control transmission implemented in the DL. Using

a max-min power control approach would lead to almost

identical spectral efficiency performance results for both the
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DL and the UL (see, for instance, results presented in [12])

and, in this case, the energy efficiency advantage shown by

the UL segment would only be due to the lower fixed power

consumption.

Another interesting result disclosed in Figs. 1 and 2 is that

the energy-efficiency achieved by the RS-ASO and OG-ASO

schemes act, respectively, as lower- and upper-bounds on

the performance attained by any of the other proposed ASO

strategies. In fact, the proposed ASO schemes can be clas-

sified in four groups as a function of the system state

information they manage. The RS-ASO scheme would be

the only member in the first group, comprising those ASO

strategies that are completely unaware of the network state

and thus making blind AP switch-off decisions. The ASO

strategies in the second group, comprising the MD-ASO,

the SR-ASO and the NN-ASO schemes, are all based on

the assumption that the MSs are uniformly distributed on the

service coverage area and make only use of very large-scale

system-state information: the geographical location of the

APs. Being only aware of such a poor network-state infor-

mation, it is not surprising that the energy-efficiency per-

formance improvement they may offer with respect to the

pure RS-ASO algorithm is rather meager when compared

to that achieved by the idealistic OG-ASO scheme. Still,

the performance improvements offered by these strategies are

not negligible at all and, furthermore, as it can be observed

in Figs. 1 and 2, the achievable energy-efficiency increases

as more APs are switched-off until it reaches a maximum

that, for this particular number of MSs and irrespective of the

ASO strategy under consideration, is located around MA =
37 active APs for the DL case and MA = 20 active APs

for the UL case. Switching-off a greater number of APs

would produce a worsening of both the energy and spec-

tral efficiencies of the system. Comparing the performance

metrics achieved by these ASO strategies, it is quite evident

that the MD-ASO and NN-ASO schemes behave similarly

and are outperformed by the SR-ASO scheme. The only

ASO strategy in the third group is the PL-ASO scheme that,

based on the knowledge of the large-scale propagation losses

between APs and MSs, dynamically adapts to short-term

variations of the spatial distribution of MS and, as shown

in Figs. 1 and 2, definitely outperforms the ASO strategies

in the first and second groups. Again, the energy efficiency

provided by this strategy increases when switching-off some

of the APs in the cell-free massive MIMO network, and

a maximum is obtained, for this particular scenario, when

MA = 25 active APs for the DL case andMA = 15 for the UL

case. Finally, the fourth group of proposed ASO strategies,

only comprising the OG-ASO scheme, assumes the complete

knowledge of all long-term network-state information nec-

essary to calculate the achievable energy-efficiency, includ-

ing, among others, the channel spatial correlation matrices,

the power control matrices or the power consumptionmetrics.

The energy-efficiency performance gap between this rather

idealistic approach and the much simpler PL-ASO is not

excessively wide but, remarkably, the maximum performance

FIGURE 3. Impact of the ASO strategy on the average (equally) weighted
energy efficiency as a function of the number of active APs.

level is achieved with MA = 19 active APs for the DL case

and MA = 12 for the UL case, that is, with a number of

active APs that is considerably less than the number of MSs

in the service area (recall that the APs are equipped with

2 × 2 UPAs).

Fig. 3 shows the impact of the ASO strategy under use on

the average weighted energy efficiency of a cell-free mas-

sive MIMO network using a DL/UL weighting coefficient

µ = 0.5 (i.e., both the DL and the UL are given the same

importance). Note that, in this case, the DL/UL weighting

operation makes the resulting energy efficiency metric taking

intermediate values lying between those obtained when both

links where dealt separately. Because of that, the number of

active APs optimizing the averageweighted energy efficiency

are also located somewhere in between those resulting from

the pure DL andUL optimizations. Specifically, in this partic-

ular scenario, the optimal number of active APs necessary to

serve K = 24 MSs isMA =26, 25, 24, 24, 23 and 17 APs for

the RS-ASO, NN-ASO, MD-ASO, SR-ASO, PL-ASO and

OG-ASO strategies, respectively.

Among all the proposed ASO strategies, the most adequate

to be implemented in a cell-free massive MIMO scenario,

based on the use of very large-scale network-state informa-

tion, would be the SR-ASO, as it is the one providing the best

performance versus complexity/implementability trade-off.

Hence, convinced that the conclusions drawn by using this

strategy would be qualitatively equivalent to those that could

be drawn by using any of the other ASO schemes, results

presented in the next subsections will be obtained assuming

the use of SR-ASO. For similar reasons, wewill only consider

the optimization of the DL segment (i.e., µ = 1).

B. IMPACT OF THE ANTENNA

CONFIGURATION AT THE APs

A zoomed view of the DL achievable energy efficiency is

plotted in Fig. 4 against the number of active APs in a
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FIGURE 4. Impact of the antenna separation (2 × 2 UPA of vertical
half-wave dipoles) on the average energy efficiency as a function of the
number of active APs.

cell-free massive MIMO network ofM = 120 APs equipped

with 2 × 2 UPAs of vertical half-wave dipoles and serving

K = 24 MSs. In order to evaluate the impact of antenna

separation (i.e., spatial correlation), the distance between the

neighbour vertical half-wave dipoles takes values in the set

{λ/4, λ/2, 3λ/4, λ, 2λ}, where λ is the wavelength of the car-

rier signal. As expected, results show that increasing the dis-

tance between antennas reduces spatial correlation and results

in non negligible energy efficiency increments. Furthermore,

increasing the distance between antennas also reduces the

number of active APs needed to maximize the achievable

energy efficiency. In particular, the optimal number of active

APs goes from MA = 37 for dUPA = λ/4 to MA = 34 for

dUPA = 2λ. Nevertheless, it is worth stressing that, keeping

all the other parameters constant, the marginal increment of

performance produced by each new increment in antenna

separation suffers from the law of diminishing returns and

thus, antenna separations on the order of dUPA = λ seem

to be quite reasonable from the point of view of the energy

efficiency performance versus antenna array size trade-off

and, consequently, this is the default antenna separation that

will be used from this point onwards.

In order to assess the impact of the array antenna config-

uration on the performance of the proposed cell-free mas-

sive MIMO system, the energy efficiency, spectral efficiency

and power consumption versus the number of active APs

is presented in Figs. 5 and 6 for different number of trans-

mit antennas, and assuming the use of either a UPA or a

uniform linear array (ULA) of vertical half-wave dipoles,

respectively. Again, all results have been obtained assuming

the default system parameters described in Table 1, the use

of a RS-ASO strategy, and the availability of M = 120 APs

serving K = 24 MSs. As it can be observed, irrespective of

whether use is made of a UPA or a ULA, both the average

spectral efficiency and the power consumption increase with

the number of transmit antennas. The growth patterns of both

metrics as the number of transmitting antennas increases,

however, are very different. On the one hand, the spectral

efficiency is clearly subject to the law of diminishing returns,

since the larger the number of transmit antennas in the array,

the lower the spectral efficiency increase produced by the

addition of more antennas to the array. On the other hand,

there is a part of the power consumption metric that increases

linearly with the number of transmit antennas constituting the

array. As a consequence of these dissimilar growth patterns,

the average energy efficiency of small arrays can be improved

by increasing the number of transmit antennas but, further

increasing the number of transmit antennas of an already

large array will only slightly increase the average spec-

tral efficiency at the cost of decreasing the average energy

efficiency. Interestingly, however, increasing the number of

transmit antennas reduces the number of activeAPs necessary

FIGURE 5. Impact of the UPA configuration on the DL average energy efficiency, espectral efficiency and power consumption as a function of the
number of active APs.
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FIGURE 6. Impact of the ULA configuration on the DL average energy efficiency, espectral efficiency and power consumption as a function of the
number of active APs.

FIGURE 7. Impact of the ULA configuration on the DL average energy efficiency, espectral efficiency and power consumption as a function of
the number of active APs.

TABLE 2. Impact of antenna configuration.

to maximize the average spectral efficiency for that specific

configuration. In particular, for the scenario under considera-

tion (i.e., RS-ASO, µ = 1,M = 120 APs and K = 24 MSs),

the optimal average energy efficiency E∗
ed (υ) and optimal

number of active APs M∗
A are summarized in Table 2.

C. IMPACT OF THE NUMBER OF APs

AND MSs IN THE NETWORK

As shown in Fig. 7, increasing either the number of APs or

the number of MSs in the network results in an increase in

both the average spectral efficiency and the average power

consumption. The increments induced on these performance

metrics, however, given their relative magnitudes, produce

completely different effects on the average energy efficiency

of the network. In particular, it can be observed that, for

given numbers of active APs and MSs, having more APs

in the network (i.e., a larger M value) results in average

power consumption increments that are larger than those

experienced by the average spectral efficiency and, as a con-

sequence, the average energy efficiency decreases. On the

contrary, for fixed numbers of both available and active APs,

increasing the number of MSs translates into a small increase

21800 VOLUME 8, 2020



G. Femenias et al.: AP Switch ON/OFF Strategies for Green Cell-Free Massive MIMO Networking

in power consumption and a considerable improvement of

spectral efficiency, thus resulting in a substantial amelioration

of the average energy efficiency of the network. Therefore,

the conclusion seems quite obvious, if high energy efficiency

is to be achieved, it is very important that the number of both

the available and active APs be appropriately adapted to the

number of MSs that have to be serviced.

Another interesting result worth mentioning is that

the optimal number of active APs, M∗
A , increases with

both the number of available APs and the number of MSs

in the network. In particular, in an scenario with K = 24

MSs and M = 80, 120 or 160 APs, the optimal number

of active APs is equal to M∗
A = 30, 34 or 36, respectively,

whereas in an scenario with M = 120 APs and K = 16,

24 or 32 MSs, the optimal number of active APs is equal to

M∗
A = 32, 34 or 37, respectively.

VI. CONCLUSION

A novel analytical framework for the performance analysis of

green cell-free massive MIMO networks has been introduced

in this paper. The proposed framework considers the use

of different ASO strategies designed to dynamically turn

ON/OFF some of the APs based on the number of active

MSs (i.e., traffic load) in the network. In particular, six ASO

strategies have been proposed: the pure random selection

scheme, denoted as RS-ASO, three selection strategies aim-

ing at keeping the locations of the set of active APs as

uniform as possible, denoted as MD-ASO, NN-ASO and

SR-ASO, a selection strategy that exploits the availability of

time-dynamic information about short-term traffic variations,

denoted as PL-ASO and, finally, a greedy optimal selection

strategy, denoted as OG-ASO. Generalizing the system mod-

els described in most previous research works on this topic,

the proposed analytical framework considers that MSs can

be in LOS with respect to some of the serving APs and in

NLOS with respect to the other ones. Furthermore, a channel

model contemplating the use of different antenna array con-

figurations at the APs has been applied. Additionally, a real-

istic power consumption model has been proposed for the

cell-free massive MIMO architecture that takes into account

the power consumed at the APs, the MSs and the fronthaul

links to and from the CPU. Numerical results have shown

that, irrespective of the number of active MSs in the network

or the ASO strategy under use, the energy efficiency of the

UL is higher than that provided by the DL. Furthermore,

they also reveal that the energy-efficiency achieved by the

RS-ASO and OG-ASO schemes act, respectively, as lower-

and upper-bounds on the performance attained by any of

the other proposed ASO strategies. Among all the proposed

ASO strategies, the most adequate to be implemented in a

cell-free massive MIMO scenario, based on the use of very

large-scale network-state information, would be the SR-ASO,

as it is the one providing the best performance versus com-

plexity/implementability trade-off. Moreover, increasing the

number of transmit antennas of small antenna arrays can

serve to improve the energy efficiency of the network but,

further increasing the number of transmit antennas of an

already large array will only slightly increase the average

spectral efficiency at the cost of decreasing the average

energy efficiency. Interestingly, however, for any particular

antenna configuration, increasing the number of transmit

antennas reduces the number of active APs necessary to

maximize the average spectral efficiency. Finally, it is worth

mentioning that the energy efficiency of a cell-free massive

MIMO network can only be maximized whenever both the

number of available APs and the number of active APs are

suitably adapted to the number of served MSs.

As for the specific research directions in the future, there

are many open issues still remaining, including, among many

others, the implementation of more sophisticated ASO strate-

gies, the consideration of non-uniform long-term user dis-

tributions, the evaluation of more intricate power control

strategies, the study of the impact that the use of millimeter

wave frequency bands may produce on the achievable energy

efficiency, the consideration of finite-capacity fronthaul links

between theAPs and the CPU, or the assessment of scalability

aspects related to the green nature of the proposed approach.
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