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    Abstract- Opportunistic user access scheduling enhances the 
capacity of wireless networks by exploiting the multi user diversity. 
When frame aggregation is used, opportunistic schemes are no 
longer optimal, since users with high capacity links are frequently 
served, causing small queue sizes and low throughput. Recently, we 
have proposed schedulers that take queue and channel conditions 
into account jointly, to maximize the instantaneous throughput. In 
this paper, we extend this work to design a scheduler that performs 
block scheduling for maximizing network  throughput over 
multiple transmission sequences. This scheduler makes use of the 
estimated evolution of the aggregation process by queueing theory 
and determines users’ temporal access proportions using an 
approach based on the water-filling principle. Through detailed 
simulations, we show that our new algorithm with block scheduling 
offers further improvement in throughput over the previous 
schedulers, along with better fairness.  

  Keywords- Wireless LANs, opportunistic scheduling, queuing 
theory, scheduling and statistical multiplexing 

I. INTRODUCTION 

Multiple Input Multiple Output (MIMO) systems 
significantly improve the quality, and hence the data rate of 
wireless links, by utilizing multiple antennas at the transmitter 
and receiver ends. The emerging new standards for wireless 
local area networks (WLANs), defined by the IEEE 802.11, 
specifically 802.11n task group provision physical layer data 
rates exceeding 200 Mbps with the realization of MIMO 
technology. However, the actual throughput to be experienced 
by the WLAN users is considerably lower than the promised 
physical (PHY) layer data rates. MAC efficiency is enhanced via 
the method of frame aggregation [1][2], where multiple MAC 
layer protocol data units are transmitted in one physical frame. 
This reduces the relative percentage of the time loss due to 
packet overhead and MAC coordination, as proposed by the new 
IEEE 802.11e MAC specification and the draft standard of 
802.11n [3].  

In multi user communication systems, such as WLANs, 
scheduling is an essential element determining which user 
should transmit or receive data in a given time interval. 
Opportunistic scheduling algorithms maximize system 
throughput by making use of the channel variations and multi 
user diversity [4-6]. In spatially greedy scheduling schemes, 
named as Maximum Rate Scheduling (MRS), the selection 
metric is the channel capacity of the user, which prefers the user 
with the best channel conditions to transmit at a given time 

instant [4]. In Proportional Fair Queuing (PFQ), the user with 
the best channel capacity relative to its own average capacity is 
selected [6]. The main aim of PFQ is to maximize the 
throughput while satisfying fair resource allocation. If the users 
of all channels deviate from their mean capacities in similar 
ways, all users are to access the medium for similar time 
durations.     

In [7], we have proposed a queue-aware scheduling method, 
Aggregate Opportunistic Scheduling (AOS), where we extend 
the opportunistic approach by considering both the queue and 
channel states of the users. Instead of channel capacity, AOS 
selects the user that maximizes the instantaneous throughput, 
which is a function of aggregate, i.e., queue size and channel 
data rate, i.e., capacity. Through simulations, it has been shown 
that the performance of capacity based opportunistic algorithms, 
MRS and PFQ, is suboptimal with frame aggregation, while the 
AOS algorithm significantly improves the throughput and 
fairness. However, selecting the user that maximizes the 
instantaneous throughput only for a specific transmission 
opportunity (TXOP) can prevent transmitting with higher 
efficiencies in the subsequent TXOPs, reducing the overall 
throughput in the long term. In this paper, we propose a new 
scheduler which performs block scheduling by considering the 
statistical evolution of the user queues so as to maximize the 
throughput over a longer time scale. In order to estimate the 
throughput in the long term, 802.11n MAC frame aggregation 
and evolution of the queue states are modeled by extending the 
bulk service model from queuing theory [8]. and determine the 
optimal temporal access proportions of users such that total 
system throughput is maximized. In this paper, we apply a 
water-filling like approach to obtain the optimal access 
proportions, propose an iterative method for computation of 
these proportions and a method for realizing them We name this 
scheduler as, Predictive Scheduling with Time-domain Water-
filling (P-WF), and through simulations, we compare P-WF with 
our previous scheduler, AOS [7], opportunistic MRS [4] and 
PFQ [6], and Longest Queue (LQ) [3] algorithm, which is a non-
opportunistic scheme that selects users based on queue size. P-
WF promises to offer highest throughput with lower delay and 
better fairness. 

The rest of the paper is organized as follows: In Section II, 
we present the system model including air interface, MAC 
framework and queuing formulation. In Section III, we present 



the proposed scheduling scheme including time proportion 
assignment using the queuing model and station ordering. 
Section IV presents our simulation model and results, and 
Section V involves our conclusions. 

II. SYSTEM AND QUEUING MODEL 

2.1 Physical Layer 
We consider the downlink of a MIMO wireless cellular 

system that consists of a single access point (AP) 
communicating with multiple WLAN users. The system is a 
closed-loop MIMO OFDM system such that the mobile users 
measure their channel states and send them as feedback to the 
AP. Based on the channel state, link capacities are calculated 
and 802.11n data rates are assigned at the AP according to 
available capacity 1 . The properties of the fading wireless 
channel are modeled in the channel matrix H, considering large-
scale path loss, shadowing and small scale multi-path fading 
effects. In this paper, the log distance path loss model and the 
Channel B fading channel model defined by the Task Group n 
(TGn) are considered. The fading characteristics between 
individual antenna pairs are spatially correlated and the 
correlation matrices depend on the angular spread. Further 
details of the channel model can be found in [10]. Due to low 
speeds of WLAN users, coherence time is large enough so that 
channel fading is slow, i.e. the channel is assumed stationary 
within one transmission opportunity. 

 
 

Figure 1: Example aggregate frame transmission 

2.2 MAC Framework 
We consider a time division system where only one user is served 

at a given time period, limited by a duration called transmission 
opportunity (TXOP). As defined by 802.11n draft standard, within a 
TXOP, a two-way handshake with frame aggregation can be performed 
as shown in Fig. 1 [3]. Initiator Aggregation Control (IAC) and 
Responder Aggregation Control (RAC) are RTS/CTS-like reservation 

                                                 
1 In MIMO-OFDM based systems, the channel capacity is calculated by 
partitioning the system into multiple sub-channels that correspond to 
different sub-carriers as follows [9]: 
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messages, which also involve training sequences to help 
(MIMO) channel estimation and data rate selection. After 
IAC/RAC exchange, a number of data packets are aggregated in 
one frame and an acknowledgement is requested in the end via 
the Block ACK Request (BLAR) packet. The destination station 
replies with a Block ACK (BLACK) packet that contains the 
reception status of packets in the aggregation. The data packets 
are transmitted at the selected transmission rate, while the 
control packets (IAC, RAC, BLAR and BLACK) are transmitted 
at the basic rate, so that all stations can decode these packets. 
The inter frame spacing (DIFS, SIFS) values are as in the 802.11 
specification. The throughput Si for the ith TXOP can be 
calculated as the data payload transmitted per transmission 
opportunity, 
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Ai is the aggregate size at transmission opportunity i; LP, LIAC, LRAC, 
LBLACK, LBLAR are the length of the data, reservation, ACK and ACK 
request packets; LMH is the MAC header in bits; TPLCP is training 
duration; τ is the one way propagation delay; r0 is the basic rate and ri is 
the selected data rate during data transmission. 

At each TXOP, the AP transmits to a selected station using 
frame aggregation. Station selection is to be done according to 
one of the scheduling algorithms. 

2.3 Queuing Model  
     In this section, we devise a queuing model for aggregate 
frame transmissions by extending the bulk service model in [8]. 
In the bulk service model, the packets are served collectively in 
groups and incoming packets are enqueued as shown in Fig. 2. 
Packets arrive in a Poisson fashion with an average rate of λ. All 
of the packets in the queue are served together if the number of 
packets is less than the bulk size, L. If the queue length exceeds 
L, only the first L packets are served. The bulk service rate, µ, is 
defined as the rate of serving bulks, which is assumed constant 
for all states [8]. This assumption implies that the service rate in 
terms of bits per second is increased in a proportional manner 
with the bulk size. This is actually not valid for transmissions 
over a physical link, since the channel data rate is unchanged 
irrespective of the bulk size. Moreover, realistic aggregate frame 
transmissions MAC and PHY overhead are also taken into 
account. 

                
Figure 2: Bulk service system 

The service rate, µj, for queing model of aggregate transmission, 
in packets/sec is obtained as: 

bulk: up to L packets 
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where j is the number of packets involved in the aggregation; µ 
is the rate of serving bulks; Loverhead  accounts for the total 
overhead including PHY ad MAC headers; TIFS  is the sum of 
interframe durations; r is the channel data rate for the current 
TXOP. This rate is determined according to the channel 
conditions which vary over time due to small scale fading.  

Fig.3 depicts the Markov chain representation of this 
queuing model of aggregate frame transmissions, defining the 
state as the number of packets in the queue. Packets arrive one-
by-one at rate λ and they are served at rate µj (Eq.2). Next, we 
derive the state probabilities to calculate, i.e., predict, the 
average queue size and throughput values. 

 
Figure 3: Markov-chain representation of aggregate frame transmission 

The balance equations of the above system can be obtained to 
solve for the steady state probabilities of each state, i.e., p1 p2, ..., 
pL, as follows:         
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Converting the balance equations into the alternative form by 
taking the z-transform, we obtain P(z) in rational form, 
P(z)=N(z)/D(z):  
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The global sum of probabilities should be equal to 1, requiring 
P(1)=1 to be satisfied. Since both  N(1)=0 and D(1)=0, we need 
to utilize the L’Hospital rule. As such, we require that     
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The next step is to obtain state probabilities by taking the 
inverse transform of  P(z). The fact that the bulk service rates 
are state-dependent has caused the order of N(z) to be greater 
than the order of D(z), so P(z) cannot be simplified. We take an 

alternative approach as follows: Similar to the bulk service 
model solution in [8], out of the (L+1) roots of D(z), (L-1) roots 
are located within the unit circle.  Due to the fact that the z-
transform of a probability distribution is analytical inside the 
unit circle, P(z) should be bounded, which implies that (L-1) 
zeros of P(z) must also be the roots of the numerator N(z). N(z) 
must also vanish at each of the (L-1) roots of D(z) inside the unit 
circle. This constraint results in a set of (L-1) equations. 
Including the equation provided by Eq. (7), we obtain L 
equations for probabilities p1, p2, ..., pL. Eq. (3) provides the 
solution for p0. The set of equations is solved via numerical 
computations in MATLAB, obtaining the steady-state 
probabilities of the system for all the states up to the aggregation 
limit L.  
    Next, we find the expected aggregate size and expected 
throughput by weighted averaging using calculated state 
probabilities, as follows: 
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Throughput is a function of aggregate size. The average 
throughput can be calculated by considering state probabilities 
of the aggregate size, as follows: 
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where S(Aj) is the throghput achieved with aggregate size Aj as 
given in (1). With this analysis, it has been observed that the  
throughput values are equal to the applied load until the load 
reaches the maximum service rate, which is the service rate for 
the maximum aggregate size. When the load exceeds the 
maximum service rate, throughput is saturated at that value. 

III. PREDICTIVE SCHEDULING WITH TIME WATER-FILLING 
In this section, we utilize the queuing model of aggregate 

transmissions for designing a new scheduler, Predictive 
Scheduling with Time-domain Water-filling (P-WF). P-WF 
maximizes the total network throughput over a long time scale, 
as opposed to the previous schedulers [4-7] that consider the 
upcoming transmission opportunity only. Over the scheduling 
duration, the temporal access proportion of each user is varied 
with an effort to maximize the total throughput.   

The devised queuing model provides us the average 
expected aggregate size and throughput, given the service rate 
and applied load for a single queue (user). Considering the 
multiuser scenario with time-division multiplexed traffic, the 
input parameters for the queuing model are assigned as: The 
downlink load per user is modified by dividing it by the user’s 
access proportion in time (πn Є [0, 1]) , to obtain the effective 
load,  and the service rate is determined by the data rate of the 
served user’s link. The aggregate size and throughput values are 
calculated through (8) and (9) for each user, and the total 
network throughput is obtained as the weighted average of the 
individual throughput values,  
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πn is the temporal proportion of access for user n, and N is the 
total number of users. The throughput maximization problem is 
described as: 
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    In this work, the aim is to maximize the overall throughput 
over a sequence of transmissions via scheduling.In order to 
maximize the total throughput, we perform a search by varying 
proportion values for all users, i.e., the proportion vector 

1 2( , ,..., )Nπ π π π=  and computing Stotal. P-WF aims to maximize 
the total throughput by applying the principle of water-filling, 
commonly used in information theory, to the time proportions πn 
to find proportions that maximize the problem defined in (11). 
We call this method as “time-domain waterfilling”. The principle 
of waterfilling is commonly used in the field of  information 
theory. In waterfilling problems, the aim is to maximize a 
weighted average with a constraint. An example formulation is 
to find the optimal (x1 ,x2, ... xN) in order to 
         

1
max ( )

N

i i
i

xβ γ
=

+∑  with the constraint 
1

1
N

i
i

x
=

=∑                (12) 

The waterfilling solution to the problem is given as  
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where (θ)+ denotes max(θ,0). Some modes may be unused. 
By comparing (11) with (12), we can exploit the mathermatical 
analogy between these equations. Even though both the xi and 
time proportions are weighting factors, (12)  also includes an 
additive term which is crucial for the remaining of the 
waterfilling analysis. In order to achieve a full analogy between 
the equation pairs, we add a constant to each term in the 
summation of (10) : 
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    Maximizing S’ is equivalent to maximizing Stotal , so the 
waterfilling solution is given as: 
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    We can not compute πn  values directly, since Sn depends on 
πn. In order to overcome this coupling in the waterfilling terms, 
we apply an iterative procedure to πn values.  
   According to our queueing model results, we can express Sn in 
terms of the per-user load λn, time access proportions πn, 
supported data rate rn and MAC overhead as follows: 
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where S(L) is the maximum throughput offered by using data 
rate rn , which is equal to the throughput that can be achived with 
the highest aggregate size, L allowed.  
   Our iterative time-domain waterfilling algorithm can be 
described as follows: 
      i. First,initial proportions 0

nπ is initialized as 1/N for n=1...N. 
      ii. For iteration i=1,2,..I, access proportions are calculated 
using the formula                                 
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 The threshold ς is also evaluated for each iteration, using the 
constraint 
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After a finite number of iterations, the access proportions πn 
converge and are determined. These proportions indicate 
transmission durations of the users relative to the total 
transmission sequence in which scheduling is applied. 

* ** * * * * *
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Where the average aggeragate size, *
iA ,  are calculated from the 

analytical model, taking into account the data rates and effective 
load values, 0 *e

n n nλ λ π=  for each served user.  
The next step in scheduling is to realize a sequence of 

transmissions over all users so as to ensure the allocation of the 
optimal proportions. In order to define the transmission 
sequence, we assign each user a turn number, which indicates 
the number of times the user will be given access throughout the 
total scheduling duration. The turn number is determined in two 
steps. First, the ratio of the access proportion of each user to the 
transmission duration of serving that user once is found by, 
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where Tn is the transmission duration of serving user n once and 
Toverhead refers to the overhead terms in (1). Next, the lowest turn 
number of the served users is determined, and the turn numbers 
of other stations are scaled with respect to the minimum. In 
other words,  
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The transmission sequence is determined as the ascending order 
of calculated turn numbers, and scheduling is performed by 
assigning transmissions starting with the smallest turn number. 

IV. PERFORMANCE ANALYSIS 



We have evaluated the performance of P-WF in comparison 
with the aforementioned scheduling disciplines via simulations. 
The simulations have been carried out in the OPNET simulation 
environment, modeling the wireless channel, physical layer 
parameters, 802.11 MAC layer with 802.11n enhancements and 
compared scheduling algorithms. In the wireless channel, the 
log-distance path loss is modeled with path loss exponent of 2 
within a distance of 5 meters from the transmitter and 3.5 for 
distances larger than 5 meters. Log-normal shadowing term is 
taken as 3 dB up to 5 meters and 5 dB afterwards. For the fading 
model, the Channel B model developed by TGnSync group for 
small office environments and non line-of-sight conditions is 
implemented with an rms delay spread of 15 ns and Doppler 
frequency of 5 Hz. In the physical layer, a 2x2 MIMO 
configuration is assumed. OFDM parameters such as guard 
interval, number of subcarriers etc. are chosen according to the 
802.11n specifications in [3]. IEEE 802.11n data rates are 
adaptively selected from the set 
{24,36,48,72,96,108,144,192,216} Mbps according to the 
instantaneous channel conditions. The basic rate, i.e. the 
common rate for control packet transmission is selected as 24 
Mbps. Finally, some of the MAC related parameters of the 
simulation model are given in Table I. The maximum number of 
packets allowed in frame aggregation, L, is assumed as 63. The 
downlink traffic is modeled by fixed size (1024 bytes) packets 
that arrive due to the Poisson distribution. We assumed similar 
load levels for all stations. In our simulations, we used 
topologies with an AP and 12 stations distributed in an area with 
a radius of 25 m from the AP.   

We first evaluate the scheduling algorithms under varying 
load, changing the network load between 50 Mbps and 200 
Mbps. Our results in terms of network throughput can be seen in 
Fig. 4. For all scheduling disciplines, the throughput and load is 
about the same as long as the total load is below the “network 
service rate”, which depends on the physical medium- i.e. 
maximum data rates that can be supported, and the MAC 
efficiency. 

The LQ algorithm outperforms MRS using frame 
aggregation since with MRS, stations with good channel states 
are served more frequently without filling their queues, leading 
to low aggregate sizes and reduced throughput by (1). When the 
arrival rate exceeds the network service rate, the total 
throughputs of the scheduling algorithms start to deviate from 
each other.  

TABLE I 
SOME MAC RELATED PARAMETERS  

Parameter Value 
SIFS      16 µ sec= 16 X 10-6 sec. 
DIFS      34 µ sec= 34 X 10-6 sec. 
PLCP overhead   44.8 µ sec= 448 X 10-7 sec. 
TIAC  11.2 µ sec = 112 X 10-7 sec. 
TRAC    8.7 µ sec = 87 X 10-7 sec. 
TBLACK  48.7 µ sec = 487 X 10-7 sec. 

TBLAR       9 µ sec = 90 X 10-7 sec. 
P-WF algorithm significantly outperforms all opportunistic 

algorithms, by 50 % over PFQ [4], 39 % over MRS [3] and 4% 
over AOS [1], and  by 25 % over non-opportunistic LQ [2].  

In Fig. 5 delay performance of the schedulers is presented,  
where the sample mean of average delays experienced by each 
user is plotted as a function of increasing load. The simulations 
have been carried out for 5 seconds. MRS performs poorly since 
some users may never be selected due to poor channel 
conditions and low link capacity. Delay performance of AOS is 
similar to PFQ and LQ, since despite offering higher throughput, 
AOS may also cause some users to starve.  

In order to evaluate fairness, we employ our measure of 
unfairness, which is the ratio of the standard deviation of station 
throughputs to the mean value of station throughput, UF=σ/Sav. 
The fairness performance of the algorithms under varying load 
can be seen in Fig. 6. The queue based LQ algorithm performs 
best in terms of fairness, since it does not consider the channel 
conditions. Likewise, the MRS algorithm is poorest, since it 
takes only the channel conditions into account. AOS 
significantly improves MRS since both channel and queue states 
are considered; P-WF improves fairness of our previous 
algorithm,  AOS, approaching the performance of PFQ.  
Finally, we investigate the performances of the scheduling 
approaches with different topologies. In Fig. 7, the total 
throughputs for all algorithms are depicted for five different 
uniformly distributed topologies. The aggregate load is set as 
200 Mbps, the maximum aggregation size is again 63. Our 
results indicate that the relative performances of all the 
algorithms are similar to previous results for the different 
topologies. P-WF consistently outperforms other algorithms 
since it can avoid low capacity users if necessary. 

V. CONCLUSIONS 

      In this paper, we propose a new scheduling algorithm, which 
exploits multi user channel diversity and queue diversity to 
maximize the throughput of WLANs. A queuing model is 
developed for frame aggregation mode of next generation 
WLANs, and later utilized in throughput maximization. An 
optimization approach is also proposed for the scheduler. 
Through detailed simulations, we have shown that P-WF 
significantly outperforms the existing schedulers MRS, PFQ and 
LQ, and offers better fairness and delay performance as 
compared to AOS, justifying the concept that selecting the user 
which maximizes the instantaneous scheduling metric may not 
provide maximum performance throughout the entire time 
duration. 
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Figure 4: Performance of schedulers with varying load 

 
Figure 5: Mean user delay vs load. 

 
Figure 6: Fairness performance of proposed and existing schedulers 

 
 

 
Figure 7: Performance of the schedulers with different topologies 

 
 

  


