
 Open access Journal Article DOI:10.1145/3149001

Access-Time-Aware Cache Algorithms — Source link

Giovanni Neglia, Damiano Carra, Mingdong Feng, Vaishnav Janardhan ...+2 more authors

Institutions: French Institute for Research in Computer Science and Automation, University of Verona,
Akamai Technologies, Institut Eurécom

Published on: 21 Nov 2017

Topics: Cache algorithms, Cache, Smart Cache, Cache pollution and Cache invalidation

Related papers:

 Hierarchical Web caching systems: modeling, design and experimental results

 A Unified Approach to the Performance Analysis of Caching Systems

 Asymptotic miss ratios over independent references

 A versatile and accurate approximation for LRU cache performance

 Enhancing in-network caching by coupling cache placement, replacement and location

Share this paper:

View more about this paper here: https://typeset.io/papers/access-time-aware-cache-algorithms-
1tdmokr1yy

https://typeset.io/
https://www.doi.org/10.1145/3149001
https://typeset.io/papers/access-time-aware-cache-algorithms-1tdmokr1yy
https://typeset.io/authors/giovanni-neglia-41fonn8st7
https://typeset.io/authors/damiano-carra-2x7h7f0w6v
https://typeset.io/authors/mingdong-feng-21tm2zh11d
https://typeset.io/authors/vaishnav-janardhan-4lcyrkpt1w
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/institutions/university-of-verona-1weos2of
https://typeset.io/institutions/akamai-technologies-2z9tpaho
https://typeset.io/institutions/institut-eurecom-3kze8l46
https://typeset.io/topics/cache-algorithms-u99b01nk
https://typeset.io/topics/cache-1i1l9v6x
https://typeset.io/topics/smart-cache-2nbqtadk
https://typeset.io/topics/cache-pollution-ntf1qyqg
https://typeset.io/topics/cache-invalidation-1fzr21ij
https://typeset.io/papers/hierarchical-web-caching-systems-modeling-design-and-29whmnlxld
https://typeset.io/papers/a-unified-approach-to-the-performance-analysis-of-caching-xcqiaddhk4
https://typeset.io/papers/asymptotic-miss-ratios-over-independent-references-c8l2qusyrq
https://typeset.io/papers/a-versatile-and-accurate-approximation-for-lru-cache-1rf7qt4uhq
https://typeset.io/papers/enhancing-in-network-caching-by-coupling-cache-placement-yceyw711xf
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/access-time-aware-cache-algorithms-1tdmokr1yy
https://twitter.com/intent/tweet?text=Access-Time-Aware%20Cache%20Algorithms&url=https://typeset.io/papers/access-time-aware-cache-algorithms-1tdmokr1yy
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/access-time-aware-cache-algorithms-1tdmokr1yy
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/access-time-aware-cache-algorithms-1tdmokr1yy
https://typeset.io/papers/access-time-aware-cache-algorithms-1tdmokr1yy

HAL Id: hal-01956285
https://hal.inria.fr/hal-01956285

Submitted on 15 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Access-Time-Aware Cache Algorithms
Giovanni Neglia, Damiano Carra, Mingdong Feng, Vaishnav Janardhan,

Pietro Michiardi, Dimitra Tsigkari

To cite this version:
Giovanni Neglia, Damiano Carra, Mingdong Feng, Vaishnav Janardhan, Pietro Michiardi, et al..
Access-Time-Aware Cache Algorithms. ACM Transactions on Modeling and Performance Evaluation
of Computing Systems, ACM, 2017, 2 (4), pp.1-29. ฀10.1145/3149001฀. ฀hal-01956285฀

https://hal.inria.fr/hal-01956285
https://hal.archives-ouvertes.fr

1

Access-time aware cache algorithms
Giovanni Neglia∗, Damiano Carra†, Mingdong Feng‡, Vaishnav Janardhan‡,

Pietro Michiardi§ and Dimitra Tsigkari∗

∗Université Côte d’Azur, Inria, {giovanni.neglia, dimitra.tsigkari}@inria.fr
†University of Verona, damiano.carra@univr.it

‡Akamai Technologies, {mfeng, vjanardh}@akamai.com
§Eurecom, pietro.michiardi@eurecom.fr

Abstract—Most of the caching algorithms are oblivious to
requests’ timescale, but caching systems are capacity constrained
and, in practical cases, the hit rate may be limited by the
cache’s impossibility to serve requests fast enough. In particular,
the hard-disk access time can be the key factor capping cache
performance. In this paper, we present a new cache replacement
policy that takes advantage of a hierarchical caching architecture,
and in particular of access-time difference between memory and
disk. Our policy is optimal when requests follow the independent
reference model, and significantly reduces the hard-disk load, as
shown also by our realistic, trace-driven evaluation. Moreover,
we show that our policy can be considered in a more general
context, since it can be easily adapted to minimize any retrieval
cost, as far as costs add over cache misses.

I. INTRODUCTION

The hit probability is a well-known key metric for caching

systems: this is the probability that a generic request for a

given content will be served by the cache. Most of the existing

literature implicitly assumes that a hit occurs if the content is

stored in the cache at the moment of the request. In practice,

however, in real caching systems the hit rate is often limited by

the speed at which the cache can serve requests. In particular,

Hard-Disk Drive (HDD) access times can be the key factor

capping cache performance.

As an illustrative example, Figure 1 shows the percentage

of CPU and HDD utilization, as reported by the operating

system, over two days in the life of a generic caching server.

As the amount of requests varies during the day, the resource

utilization of the caching server varies as well: during peak

hours, HDD utilization can exceed 95%. Such loads may cause

the inability to serve a request even if the content is actually

cached in the HDD, generating what we call “spurious misses.”

In case of a pool of cache servers, a solution based on dynamic

load balancing may alleviate this problem by offloading the

requests to another server. Nevertheless, this solution has its

own drawbacks, because the rerouted queries are likely to

generate misses at the new cache.

In this paper, we study if and how the RAM can be used to

alleviate the HDD load, so that the cache can serve a higher

rate of requests before query-rerouting becomes necessary.

The idea to take advantage of the RAM is not ground-

breaking. Modern cache servers usually operate as hierarchical

caches, where the most recently requested contents are stored

also in the RAM: upon arrival of a new request, content is first

looked up in the RAM; if not found, the lookup mechanism

targets the HDD. Hence, the RAM “shields” the HDD from

most of the requests. This RAM cache is often also called the

“Hot Object Cache” using Squid web proxy terminology.

Fig. 1. Graph showing the CPU and HDD utilization percentage of a generic
caching server.

The question we ask in this paper is: what is the optimal

way to use the RAM? I.e., which content should be dupli-

cated in the RAM to minimize the load on the HDD? We

show that, if content popularities are known, the problem

can be formulated as a knapsack problem. More importantly,

we design a new dynamic replacement policy that, without

requiring popularity information to be known, can implicitly

solve our minimization problem. Our policy is a variant of

q-LRU [1]: in q-LRU, after a cache miss, the content is stored

in the cache with probability q and, if space is needed, the

least recently used contents are evicted. We call our policy

qi-LRU, because we use a different probability qi for each

content i. The value qi depends on the content size and takes

into account the time needed to retrieve the content from the

HDD. Simulation results on real content request traces from

the Akamai’s Content Delivery Network (CDN) [2] show that

our policy achieves more than 80% load reduction on the HDD

with an improvement between 10% and 20% in comparison

to standard LRU.

While our paper is motivated by the specific problem to

reduce the load on the HDD to avoid spurious misses, we

observe that similar issues arise in any hierarchical storage

system, where we want to use efficiently the fastest storage

layers to minimize the overall retrieval time. In this sense,

the possible future replacement of HDD by Solid State Drives

2

(SSD)1 would not make our study obsolete. Moreover, our

results do not depend on the specific function we are trying to

minimize, but any retrieval cost represents a valid choice, as

long as it is additive over different misses. For example, our

policy qi-LRU could be adapted to minimize the cache miss

ratio, the traffic from upstream caches, etc.

The paper is organized as follows. In Section II we for-

malize the problem and illustrate the underlying assumptions.

In Section III we present the policy qi-LRU and prove its

asymptotic optimality. We evaluate its performance under real-

world traces in Section IV, and we show preliminary test

results in Section V. In Section VI we discuss how qi-LRU

can be adapted to solve a variety of different cost minimization

problems by simply changing the expression of the probabil-

ities qi. Related works are discussed in Section VII.

This article extends the previous conference version [3] in

several respects: (i) all the proofs are included in appendices A,

A, A, (ii) additional experimental results validate our model

in Section IV, and (iii) additional results has been added in

Section V, (iv) the applicability of qi-LRU to the general

retrieval cost minimization problem is shown in Section VI,

and (v) the related work section has been extended.

II. MODEL

A. Hard Disk Service Time

Our study relies on some assumptions about the load im-

posed on the HDD by a set of requests. Consider a single file-

read request for content i of size si. We call service time the

time the HDD works just to provide content i to the operating

system. Our first assumption is that the service time is a

function only of content size si. We denote it as T (si).
2 The

second assumption is that service times are additive, i.e. let A
be a set of contents, the total time the HDD works to provide

the contents in A is equal to
∑

i∈A T (si), independently of

the specific time instants at which the requests are issued.

Note that we are not assuming any specific service discipline

for this set of requests: they could be served sequentially

(e.g. in a FIFO or LIFO way) or in parallel (e.g. according

to a generalized processor sharing).3 What we require is that

concurrent object requests do not interfere by increasing (or

reducing) the total HDD service time. Our experiments in

Section IV show that this assumption is a reasonable one and

the model predicts very well the HDD load.

The analytical results we provide in Section III, which is the

main contribution of our work, do not depend on a particular

structure of the function T (si). Here, we describe a specific

form based on past research on HDD I/O throughput [4][5],

and on our performance study of disk access time observed

in caching servers. We will refer to this specific form later to

clarify some properties of the optimal policy. Furthermore, we

will use it in our experiments in Section IV.

1Note that, SSDs are not going to completely replace HDDs in the near
future for large caches, because of their higher cost and the limited number
of rewrites they can tolerate.

2If the service time is affected by significant random effects, then T (si)
can be interpreted as the expected service time for a content of size si.

3The specific service discipline would clearly have an effect on the time
needed to retrieve a specific content.

TABLE I
SUMMARY OF THE VARIABLES USED FOR T (si)

Variable Meaning Typical Value

si Size of object i -

σ Average seek time 3.7·10−3 s

ρ Average rotation time 3.0·10−3 s

b Block size 2.0 MB

σr Seek time for read 3.14·10−9 s/MB

µ Transfer bandwidth 157 MB/s

φ Controller Overhead 0.5·10−3 s

Considering the mechanical structure of the HDD, every

time a new read needs to be done, we have to wait for the

reading arm to move across the cylinders, and for the platter to

rotate on its axis. We call these two contributions the average

seek time and average rotation time, and we denote them by σ
and ρ respectively. Each file is divided into blocks, whose size

b is a configuration parameter. If we read a file whose size is

bigger than a block, then we need to wait for the average seek

time and the average rotation time for each block.

Once the reading head has reached the beginning of a block,

the time it takes to read the data depends on the transfer

speed µ. Moreover, while reading a file, the reading arm

needs to move across tracks and cylinders, so we need to

add a contribution due to the seek time for read, σr, which

depends on the size of the file. A last contribution is due to

the controller overhead, φ, that introduces a constant delay.

Overall, the function that estimates the cost of reading a

file from the hard disk is given by the following equation (see

Table I for a summary of the variables used):

T (si) = (σ + ρ)

⌈

si
b

⌉

+

(

1

µ
+ σr

)

si + φ. (1)

Based on our experience on real-life production systems,

the last column of Table I shows the values of the different

variables for a 10’000 RPM hard drive.

We have validated Equation (1) through an extensive mea-

surement campaign for two different hard disk drives (10’000

RPM and 7’200 RPM). The results are shown in Figure 2.

In the figure, we actually plot the quantity T (si)/si: in

Section III, we will illustrate the key role played by this ratio.

The estimated value of T (si)/si has discontinuity points at the

multiples of the block size b: in fact, as soon as the size of an

object exceeds one of such values, the service time increases

by an additional average seek time and an additional average

rotation time. The points in the figures represent the output

of our measurement campaign for a representative subset of

sizes (in particular, for sizes close to the multiples of block

size b, where the discontinuities occur). Each point is the

average value for a given size over multiple reads. From the

experiments, we conclude that the function T (si) shown in

Equation (1) is able to accurately estimate the cost of reading

a file from the HDD. Moreover, in Section IV we compare the

HDD load over time, measured as
∑

i∈A T (si) over intervals

of 30 seconds, with the actual load recorded by a real server

(the details about the experimental setup and the traces are in

Section IV): the results show a very good match between the

load derived from the model and the actual load (see Fig. 8).

3

 0

 0.01

 0.02

 0.03

 0.04

 0 1 2 3 4 5

10’000 RPM

T
(s

i)
/s

i
(s

/M
B

)

Size (MB)

Estimated
Measured

 0 1 2 3 4 5

7’200 RPM

Size (MB)

Estimated
Measured

Fig. 2. Graph of the function T (si)/si.

B. Query Request Process

Let N = {1, 2, . . . N} denote the set of contents. For

mathematical tractability, as done in most of the works in the

literature (see Section VII), we assume that the requests follow

the popular Independent Reference Model (IRM), where con-

tents requests are independently drawn according to constant

probabilities (see for example [6]). In particular, we consider

the time-continuous version of the IRM: requests for content

i ∈ N arrive according to a Poisson process with rate λi and

the Poisson processes for different contents are independent.

While the optimality results for our policy qi-LRU are derived

under such assumption, significant performance improvements

are obtained also considering real request traces (see Sec-

tion IV).

C. Problem Formulation

In general, the optimal operation of a hierarchical cache

system would require to jointly manage the different storage

units, and in particular to avoid to duplicate contents across

multiple units. On the contrary, in the case of a RAM-

HDD system, the problem is usually decoupled: the HDD

caching policy is selected in order to maximize the main cache

performance metric (e.g. hit ratio/rate), while a subset of the

contents stored in the HDD can be duplicated in the RAM to

optimize some other performance metric (e.g. the response

time). The reason for duplicating contents in the RAM is

twofold. First, contents present only in the RAM would be

lost if the caching server is rebooted. Second, the global cache

hit ratio/rate would not be significantly improved because the

RAM accounts for a small percentage of the total storage

available at the server. A consequence of such decoupling is

that, at any time, the RAM stores a subset of the contents

stored in the HDD, denoted by MR and MH respectively.4

In our work, we consider the same decoupling principle. As a

consequence, our policy is agnostic to the replacement policy

implemented at the HDD (LRU, FIFO, Random, . . .).

We now look at how the RAM reduces the HDD load. An

incoming request can be for a content not present in the HDD

(nor in the RAM because we consider MR ⊂ MH). In this

case, the content will be retrieved by some other server in

4Although it is theoretically possible that a content stored in the RAM and
in the HDD may be evicted by the HDD earlier than by the RAM, these events
can be neglected in practical settings. For example in the scenario considered
in Section IV typical cache eviction times are a few minutes for the RAM
and a few days for the HDD for all the cache policies considered.

the CDN or by the authoritative content provider, and then

stored or not in the HDD depending on the specific HDD cache

policy. Note that the choice of the contents to be duplicated in

the RAM plays no role here. Read/write operations can occur

(e.g. to store the new content in the HDD), but they are not

affected by the RAM replacement policy, that is the focus of

this paper. We ignore then the corresponding costs. On the

contrary, if an incoming request is for a content present in the

HDD, the expected HDD service time depends on the set of

contents MR stored in the RAM. It is indeed equal to

∑

i∈MH\MR

λi
∑

j∈N λj
T (si) =

∑

i∈MH

λi
∑

j∈N λj
T (si)

−
∑

i∈MR

λi
∑

j∈N λj
T (si), (2)

because, under IRM, λi/
∑

j∈N λj is the probability that the

next request is for content i, and the request will be served

by the HDD only if content i is not duplicated in the RAM,

i.e. only if i /∈ MR.

Our purpose is to minimize the HDD service time under the

constraint on the RAM size. This is equivalent to maximize

the second term in Equation (2). By removing the constant
∑

j∈N λj , we obtain then that the optimal possible choice for

the subset MR in a a RAM of capacity C is the solution of

the following maximization problem:

maximize
MR⊂N

∑

i∈MR

λiT (si)

subject to
∑

i∈MR

si ≤ C.
(3)

This is a knapsack problem, where λiT (si) is the value

of content/item i and si its weight. The knapsack problem

is NP-hard. A natural, and historically the first, relaxation of

the knapsack problem is the fractional knapsack problem (also

called continuous knapsack problem). In this case, we accept

fractional amounts of the contents to be stored in the RAM.

Let hi ∈ [0, 1] be the fraction of content i to be put in the

RAM, the fractional problem corresponding to problem (3) is:

maximize
h1,...hN

N
∑

i=1

λihiT (si)

subject to

N
∑

i=1

hisi = C.

(4)

From an algorithmic point of view, the following greedy

algorithm is optimal for the fractional knapsack problem.

Assume that all the items are sorted in decreasing order

with respect to the profit per unit of size (i.e. λiT (si)/si ≥
λjT (sj)/sj for i ≤ j). The algorithm finds the biggest index

c for which the sum
∑c

i=1 si does not exceed the memory

capacity. Finally, it stores the first c contents in the knapsack

(in the RAM) as well as a fractional part of the content

c + 1 so that the RAM is filled up to its capacity. A simple

variant of this greedy algorithm guarantees a 1
2 -approximation

factor for the original knapsack problem [7, Theorem 2.5.4],

but the greedy algorithm itself is a very good approximation

4

algorithm for common instances of knapsack problems, as

it can be justified by its good expected performance under

random inputs [7, Section 14.4].

From a networking point of view, if we interpret hi as the

probability that content i is in the RAM,5 then we recognize

that the constraint in problem (4) corresponds to the usual

constraint considered under the cache characteristic time ap-

proximation (CTA), first proposed in [8] and later rediscovered

in [9]. Under CTA, the effect of the finite cache size is taken

into account by imposing the expected cache occupancy for

an unbounded TTL-cache [10] to have the form:

N
∑

i=1

hisi = C. (5)

The last remark connects our problem to the recent work

in [11], where the authors use CTA to find optimal cache

policies to solve the following problem:

maximize
h1,...hN

N
∑

i=1

Ui(hi)

subject to

N
∑

i=1

hisi = C,

(6)

where each Ui(hi) quantifies the utility of a cache hit for

content i.6 Results in [11] do not help us solve our problem (4)

because their approach requires the functions Ui(hi) to be (i)

known and (ii) strictly concave in hi. On the contrary, in our

case, content popularities (λi) are unknown7 and, even if they

were known, the functions Ui(hi) would be λihiT (si) and

then linear in hi. Besides, deriving the cache policy that solves

a given optimization problem, [11] also “reverse-engineers”

existing policies (like LRU) to find which optimization prob-

lem they are implicitly solving. In Section III, we use a similar

approach to study our policy.

After this general analysis of the problem, we are ready to

introduce in the next section a new caching policy qi-LRU that

aims to solve problem (4), i.e. to store in the RAM the contents

with the largest values λiT (si)/si without the knowledge of

content popularities λi, for i = 1, . . . N .

III. THE qi-LRU POLICY

We start introducing our policy as a heuristic justified by

an analogy with LRU.

Under IRM and the characteristic time approximation, if

popularities λi are known, minimizing the miss throughput at

5Since the PASTA property holds under the IRM model, the occupancy
probability of content i (i.e. the fraction of time during which content i is in
the cache) and its hit probability (i.e. the probability that a request for content
i finds the content in the cache) are equal.

6The work in [11] actually assumes that all the contents have the same
size, but their analysis can be easily extended to heterogenous sizes, as we
do in Section III-B.

7For this case the authors of [11] suggest to simply replace the unknown
request rates with online estimates, but popularity estimation for dynamic
contents is still an open research topic (see e.g. [12], [13]) and in Sec. V of
[14] we show that it can be tricky even under the stationary IRM.

a cache of capacity C corresponds to solving the following

linear problem:

maximize
h1,...hN

N
∑

i=1

λihisi

subject to

N
∑

i=1

hisi = C

(7)

The optimal solution is analogous to what discussed for

problem (4): set hit probabilities to one for the k most popular

contents, a hit probability smaller than one for the (k + 1)-th
most popular content, and hit probabilities to zero for all the

other contents. The value of k is determined by the RAM size.

Now, it is well known that, from a practical perspective, the

traditional LRU policy behaves extremely well, despite content

popularity dynamics. LRU is a good heuristic for problem (7):

it implicitly selects and stores in the cache the contents with

the largest values of λi, even when popularities λi are actually

unknown.

Recall that our purpose is to store the contents with the

largest values λiT (si)/si: then, the analogy between the two

problems suggests us to bias LRU in order to store more often

the contents with the largest values of T (si)/si. A possible

way is the following: upon a cache miss, the newly requested

content i is cached with probability qi, which is an increasing

function in T (si)/si. Specifically, we define qi as follows:

qi = e
−β

si
T (si) , i ∈ N , (8)

where β > 0 is a constant parameter.8 In practical cases, as

discussed in Section IV, we set β such that qi ≥ qmin for

every i ∈ N , so that any content is likely to be stored in the

cache after 1/qmin queries on average.

Our policy has then the same behaviour of the q-LRU policy,

but the probability q is not fixed, it is instead chosen depending

on the size of the content as indicated in Equation (8). For this

reason, we denote our policy by qi-LRU.

With reference to Figure 2, the policy qi-LRU would store

with higher probability the smallest contents as well as the

contents whose size is slightly larger than a multiple of the

block size b. Note that the policy qi-LRU does not depend on

the model described above for the HDD service time, but it

requires the ratio T (s)/s to exhibit some variability (otherwise

we would have the usual q-LRU).

Until now we have provided some intuitive justification for

the policy qi-LRU. This reasoning reflects how we historically

conceived it. The reader may now want more theoretically

grounded support to our claim that qi-LRU is a good heuristic

for problem (4). In what follows we show that qi-LRU

is asymptotically optimal when β diverges in two different

ways. We first prove in Section III-A that qi-LRU asymptot-

ically stores in a cache the contents with the largest values

λiT (si)/si, as the optimal greedy algorithm for problem (4)

does. This would be sufficient to our purpose, but we find

8The reader may wonder why we have chosen this particular relation and
not simply qi proportional to T (si)/si. The choice was originally motivated
by the fact that proportionality leads to very small qi values for some contents.
Our analysis below shows that Equation (8) is a sensible choice.

5

interesting to establish a connection between qi-LRU and the

cache utility maximization problem introduced in [11]. For

this reason, in Section III-B, we reverse-engineer the policy qi-
LRU and derive the utility function it is implicitly maximizing

as a function of β. We then let again β diverge and show

that the utility maximization problem converges to a problem

whose optimal solution corresponds to store the contents with

the largest values λiT (si)/si.

A. Asymptotic qi-LRU hit probabilities

In [1] it is proven that, under the assumptions of the IRM

traffic model, the usual q-LRU policy tends to the policy that

statically stores in the cache the most popular contents when

q converges to 0. We generalize their approach to study the

qi-LRU policy when β diverges (and then qi converges to

0, for all i). In doing so, we extend their result to the case

when contents have heterogeneous sizes and we address some

technical details that are missing in the proof in [1].9

Let us sort contents in a decreasing order of
λiT (si)

si
assum-

ing, in addition, that
λiT (si)

si
6= λjT (sj)

sj
for every i 6= j.

Note that the hit probability hi associated to the content i
for the qi-LRU policy is given by the following formula (see

[1])

hi(β, τc) =
qi(β)(1− e−λiτc)

e−λiτc + qi(β)(1− e−λiτc)
, (9)

where τc is the eviction time that, under CTA [8], [9], is

assumed to be a constant independent of the selected content

i.
Now, by exploiting the constraint:

C =
∑

i

sihi(β, τc), (10)

it is possible to express τc as an increasing function of β
and prove that limβ→∞ τc(β) = ∞. This result follows [1],

but, for the sake of completeness, we present it extensively in

Appendix A.

We can now replace qi = e
−β

si
T (si) in Equation (9) and

express the hit probability as a function of β only, as follows:

hi(β) =
1− e−λiτc(β)

e
τc(β)

si
T (si)

(

β
τc(β)

−λi
T (si)

si

)

+ 1− e−λiτc(β)

. (11)

Let us imagine to start filling the cache with contents sorted

as defined above. Let c denote the last content we can put in

the cache before the capacity constraint is violated10 i.e.

c = max

{

k
∣

∣

∣

k
∑

i=1

si ≤ C

}

.

9The proof in [1, Appendix A] does not deal carefully with the cases when
the accumulation points of β/τc(β) coincides with λkT (sk)/sk for some
value of k (we are using our notation). In these cases some indeterminate limit
forms arise and the analysis becomes more complex. Moreover, the proof is
very short and its final steps are quite cryptic. We developed our analysis
independently from [1], that was not available at the time we submitted the
conference version of this paper [3]. The corresponding conference version
[15] did not actually prove this result, but it rather proved that there exist two
constants k1 and k2 with k1 ≤ k2 such that the most popular k1 contents
are stored with probability one and the least popular N − k2 contents with
probability 0. The two constants were not estimated and it was unknown what
is the asymptotic behaviour of the hit probabilities for the k2 − k1 contents
with intermediate popularity.

10We consider the practical case where s1 < C <
∑

N

i=1
si.

We distinguish two cases: the first c contents fill exactly the

cache (i.e.
∑c

i=1 si = C), or they leave some spare capacity,

but not enough to fit the content c + 1. Next, we prove that

qi-LRU is asymptotically optimal in the second case. The first

case requires a more complex machinery that we develop in

Appendix A.

Consider then that
∑c

i=1 si < C <
∑c+1

i=1 si. As an

intermediate step we are going to prove by contradiction that

Lemma III.1. If
∑c

i=1 si < C <
∑c+1

i=1 si, it holds:

lim
β→∞

β

τc(β)
= λc+1

T (sc+1)

sc+1
. (12)

Proof. Suppose that this is not the case. Then, there exists a

sequence βn that diverges and a number ǫ > 0 such that for

all n ∈ N

either
βn

τc(βn)
≤

λc+1T (sc+1)

sc+1
− ǫ (13)

or
βn

τc(βn)
≥

λc+1T (sc+1)

sc+1
+ ǫ. (14)

If inequality (13) holds, then for all i ≤ c+ 1,

βn

τc(βn)
−

λiT (si)

si
≤

βn

τc(βn)
−

λc+1T (sc+1)

sc+1
≤ −ǫ

From Equation (11), it follows immediately that

lim
βn→∞

hi(βn) = 1, ∀i ≤ c+ 1,

but then it would be

lim
n→∞

c+1
∑

i=1

hi(βn)si =

c+1
∑

i=1

si > C

contradicting the constraint (10). In a similar way, it is possible

to show that inequality (14) leads also to a contradiction and

then Equation (12) holds.

Because of the Lemma III.1 and of Equation (11), we can

immediately conclude that, when β diverges, hi(β) converges

to 1, for i ≤ c, and to 0, for i > c + 1. Because of the

constraint (10), it holds that:

lim
β→∞

hc+1(β) =
C − limβ→∞

∑

i 6=c+1 hisi

sc+1
=

C −
∑

i≤c si

sc+1
.

The same asymptotic behavior for the hit probabilities

holds when
∑c

i=1 si = C, as it is proven in Appendix A.

In particular, when
∑c

i=1 si = C, hc+1(β) converges to

(C −
∑c

i=1 si)/sc+1 = 0. We can then conclude that:

Proposition III.2. When the parameter β diverges, the hit

probabilities for the qi-LRU policy converge to the solution of

the fractional knapsack problem (4), i.e.

lim
β→∞

hi(β) =











1, for i ≤ c,

(C −
∑c

i=1 si)/sc+1, for i = c+ 1,

0, for i > c+ 1.

Then, the qi-LRU policy asymptotically minimizes the load

on the hard-disk.

6

0.0 0.2 0.4 0.6 0.8 1.0

h

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

U
(h
)

q=0.01
q=0.1
q=0.5
q=1.0

Fig. 3. Utility Function of q-LRU when λisi = 1

B. Reverse-Engineering qi-LRU

In [11], the authors show that existing policies can be

thought as implicitly solving the utility maximization prob-

lem (6) for a particular choice of the utility functions Ui(hi).
In particular, they show which utility functions correspond to

policies like LRU and FIFO. In what follows, we “reverse-

engineer” the qi-LRU policy and we show in a different

way that it solves the fractional knapsack problem. More

specifically, we use the results for strictly convex utilities

in [11] for the limit case of linear utility functions. We proceed

similarly to what is done in [11], extending their approach to

the case where content sizes are heterogeneous (see Appendix

A). We show that the utility function for content i can be

expressed as:11

Ui(hi) = −λisi

∫ 1−hi

0

dx

ln
(

1 + 1−x
qix

) , (15)

that is defined for hi ∈ (0, 1] and qi 6= 0. Each function Ui(.) is

increasing and concave. Moreover, Ui(hi) < 0 for hi ∈ (0, 1),
Ui(1) = 0 and limhi→0 Ui(hi) = −∞. Figure III-B shows the

utility function for different values of qi and λisi = 1.

We are interested now in studying the asymptotic behavior

of the utility functions Ui(hi) when β diverges, and thus qi
converges to zero. We say that f(x) is equivalent to g(x)
when x converges to 0 if limx→0 f(x)/g(x) = 1, and we

write f(x) ∼ g(x). The following result holds.

Lemma III.3. For hi ∈ (0, 1], when qi converges to 0,

Ui(hi) = −λisi

∫ 1−hi

0

dx

ln
(

1 + 1−x
qix

) ∼ −
λisi(1− hi)

ln(1/qi)
.

Proof. First, we note that the following inequalities are true

for every δ > 0:

∫ 1−hi

0

dx

ln
(

1 + 1−x
qix

) ≥

∫ 1−hi

qδi

dx

ln
(

1 + 1−x
qix

)

≥

∫ 1−hi

qδi

dx

ln
(

1 +
1−qδi
qδ+1
i

) ≥
1− hi − qδi

ln
(

1 +
1−qδi
qδ+1
i

) ,

11As already observed in [11], the utility function we can derive from an
existing policy is not unique. For example an affine transformation aU() + b
with a > 0 of the function in (15) is also a valid utility function for qi-LRU.

where the second inequality follows from the fact that the

integrand is an increasing function of x.12

Similarly, it holds

∫ 1−hi

0

dx

ln
(

1 + 1−x
qix

) ≤
1− hi

ln
(

1 + hi

qi(1−hi)

) . (16)

Asymptotically, when qi converges to zero, the lower bound

in (??) is equivalent to 1−hi

(1+δ) ln(1/qi)
, and the upper bound

in (16) is equivalent to 1−hi

ln(1/qi)
for hi > 0. We obtain the

following (asymptotic) inequalities when qi converges to 0

1− hi

(1 + δ) ln(1/qi)
≤

∫ 1−hi

0

dx

ln
(

1 + 1−x
qix

) ≤
1− hi

ln(1/qi)
, (17)

for every δ > 0 (when q converges to 0, then qδi < 1 − hi

asymptotically). Thus, when qi converges to 0, we get

∫ 1−hi

0

dx

ln
(

1 + 1−x
qix

) ∼
1− hi

ln(1/qi)
, (18)

since, otherwise, we could find an ε > 0 and a sequence qi,n
converging to 0 such that for large n

∫ 1−hi

0

dx

ln
(

1 + 1−x
qi,nx

) ≤ (1− ε)
1− hi

ln(1/qi,n)
.

But, this would contradict the left-hand inequality in (17)

which is valid for every δ > 0.

The thesis follows immediately from the expression of the

utility function (15) and from (18).

We consider qi = e
−β

si
T (si) . Lemma III.3 allows us to

conclude that

Ui(hi) ∼ −
λiT (si)(1− hi)

β
, when β → ∞,

and then the utility functions are asymptotically linear. Note

that the maximization problem (6) is over the hit probabilities

hi and the solution of the problem will be the same even

if the functions Ui(.) are multiplied by a positive constant.

We conclude that, when β diverges, the problem (6) can be

formulated as follows

maximize
h1,...hn

N
∑

i=1

λihiT (si)

subject to

N
∑

i=1

hisi = C

which is exactly the formulation of the fractional knapsack

problem.

12Note that the inequalities hold both if qδ
i
≤ (1−hi)and if qδ

i
> (1−hi).

7

IV. EXPERIMENTS

In this section we evaluate the performance of our qi-LRU

policy. Here we take a numerical perspective, and design

a trace-driven simulator that can reproduce the behavior of

several caching policies, which we compare against qi-LRU.

We have used both synthetic traces generated according to

the IRM and real traces collected at two vantage points of

the Akamai network [2]. We proved that qi-LRU is optimal

under the IRM and indeed our experiments not only confirm

it but also show significant improvement in comparison to

other replacement policies. For this reason, in this section we

focus mainly on the results obtained using real traces. In the

following, we describe our experimental methodology, show

the characteristics of the real traces we use, and present the

results of our evaluation.

A. Methodology and Performance indexes

The comparative analysis of different caching policies re-

quires an environment where it is possible to reproduce exactly

the same conditions for all the different policies. To do so,

we adopt a trace-driven simulation approach, which allows

us to control the initial conditions of the system, explore the

parameter space and perform a sensitivity analysis, for all

eviction policies.

Our simulator reproduces two memory types: the main

memory (RAM) and the hard disk (HDD). Each object is

stored in the HDD according to the LRU policy. For the RAM

we consider 3 different policies: LRU, SIZE and qi-LRU. They

all evict the least recently requested content, if space is needed,

but they adopt different criteria to decide if storing a new

content after a miss:

• LRU always stores it;

• SIZE stores it if 1) its size is below a given threshold T ,

or 2) it has been requested at least N times, including

once during the previous M hours;

• qi-LRU stores it with probability qi, as explained in the

previous sections.

So, in addition to comparing qi-LRU to the traditional LRU

policy, we also consider the SIZE policy since small objects

are the ones that have a bigger impact on the HDD, in terms

of their service time per byte T (si)/si (see also Figure 2). We

therefore prioritize small objects, and we store objects bigger

than the threshold T (as the policy LRU-THOLD in [16]) only

after they have been requested for at least N times.13 The SIZE

policy can thus be seen as a first attempt to decrease the impact

of small objects on the HDD, and ultimately reduce the strain

on HDD resources. With the qi-LRU policy, we aim at the

same goal, but modulate the probability to store an object in

RAM as a function of its size, and thus service time.

Note that the hit ratio of the whole cache depends only on

the size of the HDD and its replacement policy (LRU). The

RAM replacement policy does not affect the global hit ratio. In

what follows we focus rather on the total disk service time:

13[17] shows significant increase of the hit ratio as well as decrease of
the number of disk-write operations for N = 2. Similar improvements are
observed also in [18].

TABLE II
TRACES: BASIC INFORMATION

30 days 5 days

Number of requests received 2.22 · 109 4.17 · 108

Number of distinct objects 113.15 M 13.27 M

Cumulative size 59.45 TB 2.53 TB

Cumulative size of objects
requested at least twice 20.36 TB 1.50 TB

this is the sum of the T (si) of all the objects served by the

HDD. Smaller disk service times indicate lower pressure on

the disk.

We show the results for a system with 4 GB RAM and 3 TB

HDD. We have tried many different values for the RAM size

up to 30 GB, and the qualitative results are similar. For the

SIZE policy, we have extensively explored the parameter space

(threshold T , number of requests N , and number of hours M)

finding similar qualitative results. As a representative set of

results, we show here the case with T = 256 KB, N = 5 and

M = 1 hour. For the qi-LRU policy, the default value of the

constant β is chosen such that min
i∈N

qi = 0.1 (see Equation (8)).

B. Trace characteristics

We consider two traces with different durations and col-

lected from two different vantage points. The first trace has

been collected for 30 days in May 2015, while the second

trace for 5 days at the beginning of November 2015. Table II

shows the basic characteristics of the traces.

Figure 4 shows the number of requests for each object,

sorted by rank (in terms of popularity), for both traces. For

the 30-day trace, there are 25-30 highly requested objects

(almost 25% of the requests are for those few objects), but the

cumulative size of these objects is less than 8 MB. Since they

are extremely popular objects, any policy we consider stores

them in RAM, so they are not responsible for the different

performance we observe for the different policies.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

N
u

m
b

er
 o

f
re

q
u

es
ts

Object popularity

30 days
5 days

Fig. 4. Number of requests per object (ordered by rank).

Figure 5 shows an alternative version of the information

related to the number of requests. In particular, the left hand

side of Fig. 5 provides the CDF of the requests versus the

percentage of the contents (objects are sorted from the most

popular to the least popular). We can see that the 10% (resp.

20%) most popular objects are responsible for 90% (resp.

8

95%) of the requests. The right hand side of Fig. 5 shows the

CDF of the object aggregate service time, i.e., the time needed

to retrieve the content from the HDD upon all its requests.

From the service time viewpoint, we can see that 20% of the

objects are responsible for 90% of HDD load. Given that a

fraction of the objects accounts for most of the load on the

HDD, one may wonder if the LRU policy is sufficient to select

the best subset of objects such that the load on the HDD is

minimal. We show in Sect. IV-D that this is not the case.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

C
D

F
 o

f
th

e
re

q
u

es
ts

% of the objects

30 days
5 days

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

C
D

F
 o

f
th

e
se

rv
ic

e
ti

m
e

% of the objects

30 days
5 days

Fig. 5. CDF of the requests for the different objects (left), and the service
time for the different objects (right). In both cases, objects are ranked by
popularity.

Next, we study the relation between the size and the number

of requests of each object. In Figure 6, for each object, we plot

a point that corresponds to its size (y-axis) and the number

of requests (x-axis). For the 30-day trace, the plot does not

include the 30 most popular objects. We notice that the 5-day

trace contains only a few objects smaller than 1 kB.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
3

10
4

10
5

10
6

10
7

30 days

O
b
je

ct
 s

iz
e

(b
y
te

s)

Number of requests

10
3

10
4

10
5

10
6

10
7

5 days

Number of requests

Fig. 6. Size vs Number of requests. For ease of representation, we consider
the objects with at least 1000 requests (for the 30-day trace, we do not include
the 30 most popular objects).

This is also shown in Figure 7, where we plot the empirical

Cumulative Distribution Function (CDF) for the size of the

requested objects (without aggregating requests for the same

object). The 30-day trace contains a lot of requests for small

objects, while the 5-day trace contains requests for larger

objects (e.g., see the 90-th percentile). In the 30-day trace

we have then a larger variability of the ratio T (s)/s (see

Figure 2) and we expect qi-LRU to be able to differentiate

more among the different contents and then achieve more

significant improvement, as it is confirmed by our results

below.

C. Simulator validation

The evaluation of our scheme is based on trace-driven

simulation so we can have full control of the experimental

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9

C
D

F
 o

f
th

e
re

q
u

es
ts

Object size (bytes)

30 days
5 days

Fig. 7. Given an object size, the CDF shows the cumulative fraction of the
requests up to that object size (for the 30-day trace, we do not include the 30
most popular objects).

settings. One may ask if this approach is sufficiently accurate

in reproducing the actual systems. We have already shown that

the HDD model used in our simulator is very accurate (see

Sect. II-A and in particular Fig. 2). We now show how the

performance indexes captured by our simulator are equivalent

to the ones recorded by a production machine.

Along with the 5-day trace, we have a machine performance

trace where, every 30 seconds, two main performance indexes

are recorded by the machine that has received the requests:

the machine disk load and the amount of data served. The

machine where these indexes have been collected used a LRU

policy. We then have instructed our simulator to produce,

given the 5-day trace as input, a performance trace as output

to be compared with the machine performance trace: every

30 seconds, the simulator writes (i) the sum of the T (si) of

the objects served from the HDD, which can be used as an

indication of the disk load, and (ii) the bytes served (RAM

and HDD) – both indexes are computed in each 30-second

interval, we do not take averages from the beginning.

The comparison of the two performance traces, generated

by the simulator and by the machine, when we consider the

bytes served, is straightforward, since the byte served are given

by the request arrival pattern that are recorded on the request

trace, and they are necessarily the same. The comparison is

instead extremely interesting when we consider the load on

the HDD since (i) it further confirms the model of the HDD

we used and (ii) it validates the design of the simulator, where

we have focused on the basic behavior of the cache, without

modeling the complex operations of the Operating System

(OS). In other words, even if the cache run on a machine

managed by an OS, the impact of the OS management is not

significant.

Figure 8 shows that indeed our simulator is able to repro-

duce the same disk utilization over time as recorded on the

real machine. Note that we recorded the sum of the T (si),
so, in order to be able to compare with the output of the real

machine, we need to normalize the values: in particular, we

use the highest value observed in the output. We performed

this normalization for the output of the real machine as well.

In this way, the range of both outputs is between 0 and 1.

The figure shows a small portion of the trace, but both traces

overlap for the whole duration.

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 66 68 70 72 74

N
o

rm
a
li

z
e
d

 d
is

k
 u

ti
li

z
a
ti

o
n

Time (hours)

simulation
measurements

Fig. 8. Machine normalized disk load: comparison between the output
recorded by the real machine and the output produced by our simulator.

D. Comparative analysis of the eviction policies

Tables III and IV summarize the aggregate results for the

two traces we consider in our study. For the hit ratio, we see

that the qi-LRU policy can serve more requests from the RAM.

On the other hand, the overall number of bytes served by RAM

is smaller: this means that the RAM is biased towards storing

small, very popular objects, as expected. The last column

shows the gain, in percentage, in disk service time between

each policy and LRU, which we take as a de-facto reference

(e.g., -10% for policy “x” means that its disk service time

is 10% smaller than for LRU). This is the main performance

metric we are interested in. For the 30-day trace, the qi-LRU

policy improves by 23% the disk service time, over the LRU

policy. For the 5-day trace, the improvement of qi-LRU over

LRU is smaller, topping at a bit more than 7%. The reason

behind this result relates to the object size distribution in the

trace: as shown in Figure 7, the trace contains objects starting

from 1 kB, while, for the 30-day trace, 20% of the requests

are for objects smaller than 1 kB. The impact of these objects

on the overall T (si) is significant.

TABLE III
RESULTS FOR THE 30-DAY TRACE WITH 4 GB RAM.

bytes service ∆ (%)
% reqs served time w.r.t. LRU

LRU RAM 73.06 509 TB 4907 h -
HDD 26.94 157 TB 1663 h -

SIZE RAM 76.38 512 TB 5055 h + 3.02%
HDD 23.62 154 TB 1515 h -8.90%

qi-LRU RAM 84.27 489 TB 5294 h +7.89%

HDD 15.73 177 TB 1276 h -23.27%

TABLE IV
RESULTS FOR THE 5-DAY TRACE WITH 4 GB RAM.

bytes service ∆ (%)
% reqs served time w.r.t. LRU

LRU RAM 79.61 159 TB 1058 h -
HDD 20.39 23 TB 219 h -

SIZE RAM 80.31 160 TB 1064 h + 0.57%
HDD 19.69 22 TB 213 h -2.74%

qi-LRU RAM 84.72 149 TB 1074 h +1.51%

HDD 15.28 33 TB 203 h -7.31%

Next, we take a closer look at our policy, qi-LRU, in

comparison to the reference LRU policy. We now consider

the contribution to the overall hit ratio of each object, to

understand their importance to cache performance. For the

30-day trace, we sorted the objects according to their rank

(in terms of popularity) and their size, and plot the difference

between LRU hit ratio and qi-LRU hit ratio. Figure 9 shows

that both policies store the same 1000 most popular objects;

then, the qi-LRU policy gains in hit ratio for medium-popular

objects. Switching now to object size, both policies store the

same set of small objects, while qi-LRU gains hit ratio with

the medium-size objects.

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

H
it

 r
at

io
 (

d
if

fe
re

n
ce

)

Obj popularity

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

10
1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9

H
it

 r
at

io
 (

d
if

fe
re

n
ce

)

Obj size (bytes)

Fig. 9. Difference between hit ratios when objects are ordered by popularity
(left) and by size (right) for the 30-day trace.

Figure 10 considers the contribution to the disk service time

of each object (ordered by rank or by size) and shows the

difference between qi-LRU and LRU. Clearly, medium popular

objects and medium size objects contribute the most to the

savings in the service time that our policy achieves.

-400

-350

-300

-250

-200

-150

-100

-50

 0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

S
er

v
ic

e
ti

m
e

d
if

fe
re

n
ce

 (
h
o
u
rs

)

Obj popularity

-400

-350

-300

-250

-200

-150

-100

-50

 0

10
1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9

S
er

v
ic

e
ti

m
e

d
if

fe
re

n
ce

 (
h
o
u
rs

)

Obj size (bytes)

Fig. 10. Difference between service time (served by the RAM) when objects
are ordered by rank (left) and by size (right) for the 30-day trace.

These results have been obtained using the two traces from

Akamai network. In order to explore the effect of popularity

skewness on the qi-LRU performance, we resort to IRM syn-

thetic traces. In particular we generate objects with sizes drawn

from a Pareto distribution with shape equal to 0.4 (roughly

fitting the empirical distribution found in the 30-day traces).

The catalogue is 10 million objects, and we have 2 billion

requests (2×109). The objects are requested according to their

popularities, which are independently distributed according

to a Zipf distribution with different typical values of the

parameter α = 0.6 . . . 1.2 (see [19]).

We considered a 3TB HDD and different values for the

RAM (10 GB, 20 GB and 30 GB), but the results are similar.

We observe that the global hit rate of the cache is the same

under LRU and under qi-LRU for any size of HDD and RAM,

because the contents stored in both cases in the HDD are

exactly the same. Table V summarizes the performance of the

RAM cache for the 10 GB case.

10

TABLE V
RESULTS WITH DIFFERENT SKEWNESS USING ZIPF DISTRIBUTION FOR

THE POPULARITY OF THE OBJECTS.

LRU: % reqs qi-LRU: % reqs % service time
Alpha served by RAM served by RAM saved from HDD

0.6 2.52 57.51 14.38

0.8 17.22 65.88 20.39

1.0 54.85 84.19 29.27

1.2 87.19 96.30 37.57

Smaller values of α correspond to more homogeneous

popularities (heavier distribution tails). In this situation LRU

fails to store the most popular contents achieving a very low

hit rate and consequently a high load on the HDD. qi-LRU

performs much better in terms of the hit rate (more than 10

times larger than what LRU achieves for α = 0.6), and

it reduces correspondingly the HDD service time, even if

the relative improvement is only 14% because the reference

point is the large HDD load for LRU. As the distribution

tail becomes lighter (i.e., α increases) the RAM serves more

contents for both policies. While the hit rate gap reduces, the

relative service time saving increases, because now savings are

compared with a smaller reference point.

E. Sensitivity analysis

Next, we study the behavior of qi-LRU as a function of

the parameter β, but we plot the results for the parameter

qmin = min
i∈N

qi, that is easier to interpret, being the minimum

probability according to which a content is stored in the RAM.

Figure 11 provides two different views. On the left-hand

side, it shows the percentage of HDD service time offloaded

to the RAM by qi-LRU, both under the 30-day trace and

a synthetic IRM trace generated using the same empirical

distributions for object size and popularity as in the 30-day

trace. As expected, under IRM, the improvement from qi-LRU

increases as qmin decreases, i.e. as β increases. Interestingly,

the HDD benefits even more under the 30-day trace, with

more than 80% of the service offloaded to the RAM. This

is due to the temporal locality effect (see e.g. [20]), i.e. to

the fact that requests typically occur in bursts and then the

RAM is more likely to be able to serve the content for a new

request than it would be under the IRM model. We observe

also that the performance of qi-LRU are not very sensitive to

the parameter qmin (and then to β), a feature very desirable

for practical purposes. The right-hand side of Figure 11 shows

the relative improvement of qi-LRU in comparison to LRU

(calculated as difference of the HDD service time under

LRU and under qi-LRU, divided by the HDD service time

under LRU). While qi-LRU performs better and better as qmin

decreases with the IRM request pattern, the gain reduces when

qmin approaches 0 (β diverges) with the 30-day trace. This is

due also to temporal locality: when the probabilities qi are very

small, many contents with limited lifetime have no chance

to be stored in the RAM by qi-LRU and they need to be

served by the HDD. Despite this effect, qi-LRU policy still

outperforms LRU over a large set of parameter values and

obtain improvements larger than 20% for 0.02 < qmin < 0.4.

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4

% saved from the HDD

p
er

ce
n

ta
g

e

q min

traces
IRM

 0 0.1 0.2 0.3 0.4

% improvement over LRU

q min

traces
IRM

Fig. 11. Sensitivity analysis to the value of qmin.

V. AKAMAI: PRELIMINARY RESULTS

In this section we evaluate the performance of our qi-LRU

policy in deployed infrastructure. The evaluation of a new

scheme in such a scenario is not simple, since the deployed

infrastructure is much more complex than an isolated machine

fed with a trace, and the performance comparison with or

without the qi-LRU policy is not straightforward.

A. Experimental settings

Akamai network consists of hundreds of thousands ma-

chines for scalability reasons. The Akamai Mapping system

directs the user request to a specific machine, based on factors

including locality, load changes, machine failures etc [2]. The

traffic on any two machines are not exactly the same at any

time. For this reason, the comparison between two machines,

one with the qi-LRU policy enabled, and the other with the

default Akamai policy, is not simple.

In our case, we decide to consider a set of machines in two

different periods, first with a reference caching policy, and

then with the qi-LRU policy enabled.

As for performance comparison, the data that is possible to

collect from a production machine do not include the more

granular metrics that we used to evaluate our solution in

Sect. IV. In particular, when a request is served by the RAM,

the system does not record what might have been the HDD

service time, i.e., the time that it would take if the request

were served by the HDD. Instead, the system records the load

on the HDD, the requests served, the total bytes served by the

RAM and by the HDD.

The preliminary results we show consider a set of servers

in USA. Due to the complexity of introducing a new policy

in a deployed infrastructure, we defer to an extended version

of this work the definition of a more accurate measurement

campaign, to further substantiate the intuition we obtain with

our preliminary deployment results.

B. Results

Figure 12 shows two aggregated performance indexes

recorded at machines, when the qi-LRU policy is not enabled

and when it is enabled. To avoid effects due to weekly patterns,

the observation period was one week, and here we show the

first significant four days.

The left-hand side of the figure shows the normalized disk

utilization - the normalization factor is the highest value

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80 90

N
o

rm
al

iz
ed

 d
is

k
 u

ti
li

za
ti

o
n

Time (hours)

qi-LRU not enabled
qi-LRU enabled

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

R
eq

u
es

ts
 s

er
v

ed
 b

y
 R

A
M

 (
%

)

Time (hours)

qi-LRU not enabled
qi-LRU enabled

Fig. 12. Results from deployed infrastructure: Normalized disk utilization
(left) and percentage of requests served by the RAM (right).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Normalized disk utilization

qi-LRU not enabled
qi-LRU enabled

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Requests served by RAM (%)

qi-LRU not enabled
qi-LRU enabled

Fig. 13. Results from deployed infrastructure: CDF of the normalized disk
load (left) and the percentage of requests served by the RAM (right), when
qi-LRU policy is enabled and not enabled.

observed during the whole observation period. As we noted

in Sect IV-C, the service time and the disk utilization are

highly correlated, therefore we can take such a measure as an

indication of the service time. The figure shows that the disk

utilization is equivalent when the qi-LRU policy is enabled or

not. This is also confirmed in Figure 13 (left-hand side) that

shows the corresponding CDF. The result is due to the fact

that such a metric is used by the Akamai Mapping system to

decide when rebalancing the load. In other words, our policy

does have an impact on the disk load, but the Mapping system

compensates the diminished load by rebalancing the requests.

The benefits of the qi-LRU policy, therefore, can be seen if

we consider the requests served by the RAM. The right-hand

side of Figure 12 compares time evolution of the percentage

of requests served by RAM when the qi-LRU policy is

not enabled and when it is enabled. The right-hand side of

Figure 13 shows the corresponding CDF. On average, when

the qi-LRU policy is enabled, machines are able to serve 10%

more of the requests from the RAM, which is a desirable effect

we have observed also in the simulation results. The two peaks

occurring after 35 and 53 hours depend on the specific traffic

patterns that take place when the disk load is not high, and

therefore they are not representative of the average behaviour.

In summary, the preliminary results indicates that our qi-
LRU policy is indeed able to alleviate the stress on the disk

by exploiting in a more efficient way the RAM.

VI. EXTENSION TO OTHER PERFORMANCE METRICS

We designed our policy qi-LRU to solve the following

specific problem: minimize the expected HDD load to reduce

the number of spurious misses. To this purpose, we have

considered that a miss for content i generates a cost ci for

the HDD equal to the time the HDD needs to retrieve content

i, ci = T (si). We observe that our theoretical results in

Sections III do not depend on the specific structure of the

function T (si). It follows that if we choose

qi = e
−β

si
ci , ∀i ∈ N , (19)

the policy qi-LRU is solving—in the sense explained in the

Section III—the following general problem:

maximize
M⊂N

∑

i∈M

λici

subject to
∑

i∈M

si ≤ C.
(20)

The policy stores in the cache the set of contents M∗, solution

of problem (20). By reverting the reasoning in Section II-C,

we can conclude that this set also minimizes the expression

∑

i∈N\M

λi
∑

j∈N λj
ci =

∑

i∈M

λi
∑

j∈N λj
ci −

∑

i∈M

λi
∑

j∈N λj
ci,

i.e. the expected cost generated by a miss.

Hence, the policy qi-LRU is able to minimize any retrieval

cost as far as i) the cost is additive over different misses, ii) the

cost ci of a miss is known by the cache, so that it is possible

to compute the probabilities qi, according to Equation (19).

We provide a few examples of meaningful performance

metrics qi-LRU could optimize. If ci = 1, the goal is to

minimize the cache miss ratio. If ci = si, the goal is to

minimize the traffic from upstream servers/caches. In these

cases, the computation of the probabilities qi does not pose any

problem. It is also possible to minimize the expected retrieval

time if the cost of an object is indeed its retrieval time from

the server. In this case, ci may not be immediately available

to the cache, but the cache can maintain some estimates for

the retrieval times of the most requested objects or use some

approximate function for such costs (e.g. on the basis of the

url). Similar considerations hold for other metrics like ISP/AS

operational costs, or damage to flash memories in hierarchical

caches, whose minimization is the aim of the caching policies

proposed respectively in [21], [22]) and in [23].

VII. RELATED WORK

Cache replacement policies have been the subject of many

studies, both theoretical and experimental. We focus here on

the more analytical studies, which are closer to our contribu-

tion. Moreover, our policy is explicitly designed to mitigate the

burden on the HDD, a goal not considered in most previous

experimental works, despite its practical importance.

Most of the theoretical work in the past has focused on the

characterization of the performance of LRU, RANDOM, and

FIFO [9][24][15][25]. All these works do not assume different

levels of caches, where one level replicates the content stored

in the other level to decrease the overall response delay.

Moreover, they do not aim to design optimal caching policies.

Some papers have proposed heuristic cache policies with

different optimization goals, like minimizing the ISP/AS op-

erational costs [21], [22] or the damage to flash memories in

hierarchical caches [23]. Their solutions are tailored to the

specific problem considered and do not apply to reducing

12

the HDD load. The qi-LRU policy, instead, can be applied

to different problems as shown in Section VI.

Closer to our application is [26], that considers a 2-level

hierarchy, with the content stored in the SSD and DRAM. The

authors design a policy which decreases the response time by

pre-fetching the content from SSD to DRAM. To this aim,

they focus on a specific type of content, videos divided into

chunks, for which the requests are strongly correlated, and a

request for a chunk can be used to foresee future requests

for other chunks of the same content. In our work, instead,

we provide a model for the qi-LRU policy which does not

assume any correlation on the requests arrivals, but prioritize

the content that imposes a high burden on the HDD.

The problem of minimizing the time-average retrieval cost

has been studied under the name of File Caching problem [27],

when the sequence of content requests is unpredictable. In this

case no algorithm can provide absolute worst-case guarantees

and it is then standard to perform a competitive analysis of

cache policies [28], [29], [30]. Our work considers instead that

the request sequence exhibits some regularity and in particular

contents have different popularities.

The idea to probabilistically differentiate content manage-

ment according to the ratio ci/si had already been considered

in [31], where, upon a hit, content i is moved to the front

of the queue with some probability q̃i. The authors of [32]

prove that, under Zipf’s law for popularities, the asymptotic

hit ratio is optimized when the probabilities q̃i are chosen to be

inversely proportional to document sizes. More recently, the

use of size-aware policies to optimize the hit ratio has also

been advocated by [33].

The most related work to ours is the cache optimization

framework in [11], that we have widely discussed through

the paper. We stress again here the two main differences: we

do not assume content popularities to be known (nor to be

explicitly estimated) and the utility functions are linear.

In [14] a subset of the authors study the general framework

of caching policies maximizing linear utilities. That paper

builds on a few elements presented here: i) finding the optimal

set of contents is a knapsack problem and ii) the idea to use

a biased version of q-LRU. The paper focuses on time-variant

policies, that can converge with probability one to the optimal

set of contents. It proposes DynqLRU, a dynamic version of

qi-LRU, and discusses how such policy can be adapted to a

scenario where popularities may vary over time.

VIII. CONCLUSION

Caches represent a crucial component of the Internet archi-

tecture: decreasing the response time is one of the primary

objectives of the providers operating such caches. This ob-

jective can be pursued by exploiting the RAM of the cache

server, while keeping most of the contents in the HDD.

In this paper, we presented a new cache replacement policy

that takes advantage of the access-time difference in the RAM

and in the HDD to reduce the load on the HDD, so that to

improve the overall cache efficiency for a capacity constrained

storage systems. Our policy, called qi-LRU, is a variant of

q-LRU, where we assign a different probability qi to each

content based on its size.

We proved that qi-LRU is asymptotically optimal, and we

provided an extensive trace-driven evaluation that showed

between 10% and 20% reduction on the load of the HDD with

respect to the LRU policy. Moreover, the preliminary results

from Akamai production environment shows that our policy

is able to increase the percentage of requests served by the

RAM (for a given disk load).

Finally, the policy qi-LRU can be adapted to solve any

retrieval cost minimization problem, when the retrieval costs

are additive over different misses.

This work was partially supported by the Italian National

Group for Scientific Computation (GNCS-INDAM).

APPENDIX A

PROOF OF limβ→∞ τC(β) = ∞

We define the function f as follows:

f(τC , β) =

N
∑

i=1

sihi =

N
∑

i=1

si(e
λiτC − 1)

e
β

si
T (si) + eλiτC − 1

. (21)

As we discussed in Section III-A, CTA implies that

f(τC , β) = C.

We will prove that limβ→∞ τC = +∞. We differentiate the

formula (21) with respect to β and τC and we obtain

∂f

∂τC
=

∑

i

siλie
λiτC+β

si
T (si)

(e
β

si
T (si) + eλiτC − 1)2

∂f

∂β
=

∑

i

−s2i e
β

si
T (si) (eλiτC − 1)

T (si)(e
β

si
T (si) + eλiτC − 1)2

.

The first partial derivative is strictly positive while the second

is negative for all the values β > 0 and τC > 0 and, therefore,

by the implicit function theorem, τC can be expressed locally

as a C1 function of β and

∂τC
∂β

= −
∂f/∂β

∂f/∂τC
> 0.

This is true in some open set (whose existence is assured by the

theorem) containing the points (τC , β) that verify f(τC , β) =
C. So, τC is an increasing function with respect to β and the

limit limβ→∞ τC(β) exists.

We prove by contradiction that the limit is equal to +∞.

Suppose that limβ→∞ τC(β) < ∞, then, by (21), we get

limβ→∞ f(τC(β), β) = 0. This would contradict the fact that

f(τC , β) = C and therefore we conclude that limβ→∞ τC =
+∞.

APPENDIX B

WHEN CONTENTS FILL EXACTLY THE CACHE

In this section, we study the case where
∑c

i=1 si = C. Note

that the results up to Lemma A.3 (included) are general, i.e,

they do not make any assumption on
∑c

i=1 si, while the rest

of the section focuses on the case where
∑c

i=1 si = C.

We start introducing some additional notation. Remember

that contents are labeled according to the reverse order of the

values λi
T (si)
si

. Given a point y, we denote by r(y) the largest

index such that λi
T (si)
si

is larger than y (or 0 if all the values

13

are smaller), and by l(y) the smallest index i such that λi
T (si)
si

is smaller than y (or N + 1 if all the values are larger), i.e.

we have

r(y) = max

(

{

0
}

∪

{

k = 1, . . . N
∣

∣

∣
λk

T (sk)

sk
> y

})

,

l(y) = min

(

{

N + 1
}

∪

{

k = 1, . . . N
∣

∣

∣
λk

T (sk)

sk
< y

})

.

We recall here the definition of a cluster value [34, Exercise

5.10.11], that allows us to express more synthetically some of

the following results.14

Definition B.1. Given a function f : A → R, where A ⊂ R,

and x0 ∈ [−∞,+∞] an accumulation point of A, we say

that y∗ ∈ R is a cluster value of f(x) at x0 if it exists a

sequence xn ∈ A − {x0} such that limn→∞ xn = x0 and

limn→∞ f(xn) = y∗. We also say that f(x) has a cluster

value y∗ at x0.

In what follows we only consider cluster values at +∞. For

the sake of conciseness, we will omit to specify “at +∞.”

We start establishing some connections between the asymp-

totic behaviour of β
τc(β)

and hi(β) in terms of their cluster

values.

Lemma B.1. If y∗ is a cluster value of
β

τc(β)
, then it exists

a diverging sequence βn such that, for all i ≤ r(y∗), hi(βn)
converges to 1 and, for all j ≥ l(y∗), hj(βn) converges to 0.

Proof. From the definition of a cluster value, it exists a

diverging sequence βn such that limn→∞ βn/τc(βn) = y∗.

For each i ≤ r(y∗), it holds

lim
n→∞

(

βn

τc(βn)
− λi

T (si)

si

)

= y∗ − λi
T (si)

si
< 0.

Since limβ→∞ τc(β) = ∞, it holds

lim
n→∞

τc(βn)

(

βn

τc(βn)
− λi

T (si)

si

)

= −∞.

From Equation (11), it follows that

lim
n→∞

hi(βn) = 1.

The reasoning for j ≥ l(y∗) is analogous.

A consequence of Lemma A.1 is that if y∗ is a cluster value

of β/τc(β), then 1 is a cluster value of hj(β) for all j ≤ r(y∗)
and 0 is a cluster value of hj(β) for all j ≥ l(y∗).

We can derive results about the convergence of the hit

probabilities if we know bounds for the cluster values of

β/τc(β).

Lemma B.2. If the set of cluster values of β/τc(β) is a subset

of the interval [a, b], then, when β diverges, hi(β) converges

to 1, for i < r(b), and to 0, for i > l(a).

Proof. For all ǫ > 0, it exists a βǫ such that, for all β > βǫ,

β

τc(β)
< b+ ǫ

14It is also referred to as a cluster point or a limit point (in analogy to the
corresponding concept for a sequence).

and
β

τc(β)
− λi

T (si)

si
< b− λi

T (si)

si
+ ǫ.

For i < r(b), it is λiT (si)/si > b and we can choose ǫ
sufficiently small so that the left term is bounded away from

0 by a negative constant for large β

β

τc(β)
− λi

T (si)

si
< −δ < 0.

From Equation (11), it follows that, for large β,

1 ≥ hi(β) ≥
1− e−λiτc(β)

e
−τc(β)

si
T (si)

δ
+ 1− e−λiτc(β)

and then hi(β) converges to 1 when β diverges.

The other result can be proven following a similar reason-

ing.

The constraint on the expected cache’s occupancy under the

Che’s model leads to the following result:

Lemma B.3. If y∗ is a cluster value of
β

τc(β)
, then

r(y∗)
∑

i=1

si ≤ C ≤

l(y∗)−1
∑

i=1

si.

Proof. Consider the following inequalities that are true for any

value of β:

r(y∗)
∑

i=1

hisi ≤
N
∑

i=1

hisi ≤

l(y∗)−1
∑

i=1

si +

N
∑

i=l(y∗)

hisi.

Because of Equation (5), the middle term is equal to C for all

β, then:

r(y∗)
∑

i=1

hisi ≤ C ≤

l(y∗)−1
∑

i=1

si +

N
∑

i=l(y∗)

hisi.

Finally, Lemma A.1 leads to conclude that the terms hi in the

left (resp. right) sum can be made simultaneously arbitrarily

close to 1 (resp. 0).

From now on we consider that
∑c

i=1 si = C. Bounds for

the cluster values of β/τc(β) easily follow from Lemma A.3.

Lemma B.4. All the cluster values of
β

τc(β)
are in the interval

[

λc+1
T (sc+1)

sc+1
, λc

T (sc)

sc

]

.

Proof. We prove it by contradiction. Let y∗ be a cluster value

of β
τc(β)

and assume that y∗ < λc+1T (sc+1)/sc+1. Then, it

would be r(y∗) ≥ c+ 1, leading to

C <

c+1
∑

i=1

si ≤

r(y∗)
∑

i=1

si ≤ C,

where the first inequality follows from the definition of c and

the second inequality from Lemma A.3.

If we assume that y∗ > λcT (sc)/sc we arrive also to a

contradiction.

14

Proposition B.5. If
∑c

i=1 si = C, then

lim
β→∞

hi(β) =

{

1, for i ≤ c,

0, for i > c+ 1.

Proof. We first observe that, from Lemma A.2 and

Lemma A.4, it immediately follows that hi(β) converges to 1
for i < c and to 0 for i > c + 1. We need to consider only

i = c and i = c+ 1.

We prove that hc+1(β) converges to 0. Let us assume that

it is not the case, then hc+1(β) has a cluster value h∗ > 0.

Because of Lemmas A.2 and A.4 this implies that β/τc(β) has

a cluster value in λc+1T (sc+1)/sc+1. But from Lemma A.1

it follows that it exists a diverging sequence βn such that

limn→∞ hi(βn) = 1, for all i ≤ c. Then, for each ǫ > 0,

it exists an nǫ, such that for n ≥ nǫ,

C =

N
∑

i=1

hi(βn)si ≥

c+1
∑

i=1

hi(βn)si ≥ C + h∗sc+1 − ǫ,

leading to a contradiction.

We have shown that hc+1(β) converges to 0. Because
∑N

i=1 hisi = C, it follows that

hc(β) =
C −

∑

i 6=c hi(β)si

sc

converges to 1.

APPENDIX C

THE LANGRANGE METHOD FOR THE UTILITY

MAXIMIZATION PROBLEM

In this appendix, we study qi-LRU in the cache utility

maximization framework introduced in [11]. We derive the

corresponding utility functions that appear in the maximization

problem (6).

We look for increasing, continuously differentiable, and

strictly concave functions Ui(.). Moreover, we look for the

following functional dependency

Ui(hi) = λisiU0(hi, qi),

where U0 is increasing and concave in hi. In what follows we

will consider si, λi and qi to be constant parameters, so that

Ui and U0(hi, qi) are only functions of hi.

The Lagrange function associated to problem (6) is

L(h, α) =
N
∑

i=1

(

Ui(hi)− αhisi

)

+ αC,

where h is the vector of the hit probabilities and α is the

Lagrange multiplier associated to the constraint.

Under qi-LRU (for finite β > 0) the hit probabilities hi

are in (0, 1), because every content has some chance to be

stored and no content is guaranteed to be stored. Then, if the

hit probabilities of qi-LRU are the solutions of problem (6)

for a given choice of the functions Ui(.), they belong to the

interior part of the definition set of the concave problem (6).

The hit probabilities can then be obtained by equating to 0 the

Lagrangian derivatives:

∂L

∂hi
=

dUi

dhi
− αsi = 0.

Therefore, from the above equation we get15

hi = U
′−1
i (αsi).

Taking into account the specific functional dependency in

Equation (A), it holds:

hi = U
′−1
0

(

α

λi
, qi

)

.

We equate the expression above to that in Equation (9) and

we obtain

1− e−λiτC

1
qi
e−λiτC + 1− e−λiτC

= U
′−1
0

(

α

λi
, qi

)

.

The expressions on the LHS and the RHS depend on λi

respectively through the products λiτC and λi/α. It follows

that we should consider α proportional to 1/τC , in particular

we choose:

α =
1

τC
.

By substituting the above equation into the formula of hi

(as given in (9)), we obtain

hi =
qi(1− e−

λi
α)

e−
λi
α + qi(1− e−

λi
α)

. (22)

Next, we solve (22) with respect to α and we get

α =
λi

ln
(

1 + hi

qi(1−hi)

) .

Finally, by replacing this expression for α in the

equationU ′
i(hi) = αsi

U ′
i(hi) =

λisi

ln
(

1 + hi

qi(1−hi)

) . (23)

By integrating (23) we obtain, for hi ∈ (0, 1],

Ui(hi) = −λisi

∫ 1

hi

dx

ln
(

1 + x
qi(1−x)

)

= −λisi

∫ 1−hi

0

dx

ln
(

1 + 1−x
qix

) .

The function is well defined for hi ∈ (0, 1], since

∫ 1

hi

dx

ln
(

1 + x
qi(1−x)

) ≤

∫ 1

hi

dx

ln
(

1 + x
qi

)

≤ qi

∫ 1+ 1
qi

1+
hi
qi

dy

ln y
< ∞.

For hi → 0+, the integral diverges.

15The existence of the inverse functions of U ′

i
(·) follows from the assump-

tion that Ui(·) are strictly concave.

15

REFERENCES

[1] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to the
performance analysis of caching systems,” ACM Trans. Model. Perform.

Eval. Comput. Syst., vol. 1, no. 3, pp. 12:1–12:28, May 2016.

[2] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai Network: A
Platform for High-performance Internet Applications,” SIGOPS Oper.

Syst. Rev., vol. 44, no. 3, pp. 2–19, Aug. 2010.

[3] G. Neglia, D. Carra, M. D. Feng, V. Janardhan, P. Michiardi, and
D. Tsigkari, “Access-time aware cache algorithms,” in Proc. of ITC-28,
September 2016.

[4] R. Barve, E. Shriver, P. B. Gibbons, B. K. Hillyer, Y. Matias, and J. S.
Vitter, “Modeling and Optimizing I/O Throughput of Multiple Disks on
a Bus,” in Proceedings of the 1999 ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer Systems, ser.
SIGMETRICS ’99. New York, NY, USA: ACM, 1999, pp. 83–92.

[5] S. W. Ng, “Advances in Disk Technology: Performance Issues,” IEEE

Computer, vol. 31, pp. 75–81, 1998.

[6] E. G. Coffman and P. J. Denning, Operating systems

theory, ser. Prentice-Hall series in automatic computation.
Englewood Cliffs: Prentice-Hall, 1973. [Online]. Available:
http://opac.inria.fr/record=b1079172

[7] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack problems. Berlin
Heidelberg: Springer, 2004.

[8] R. Fagin, “Asymptotic miss ratios over independent references,” Journal

of Computer and System Sciences, vol. 14, no. 2, pp. 222 – 250, 1977.

[9] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web caching systems:
modeling, design and experimental results,” Selected Areas in Commu-

nications, IEEE Journal on, vol. 20, no. 7, pp. 1305–1314, Sep 2002.

[10] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Performance evalu-
ation of hierarchical TTL-based cache networks,” Computer Networks,
vol. 65, pp. 212 – 231, 2014.

[11] M. Dehghan, L. Massoulié, D. Towsley, D. Menasche, and Y. C. Tay,
“A utility optimization approach to network cache design,” in IEEE

INFOCOM 2016 - The 35th Annual IEEE International Conference on

Computer Communications, April 2016, pp. 1–9.

[12] M. Leconte, G. Paschos, L. Gkatzikis, M. Draief, S. Vassilaras, and
S. Chouvardas, “Placing dynamic content in caches with small popula-
tion,” in Proc. of IEEE INFOCOM 2016, 2016.

[13] S. Li, J. Xu, M. van der Schaar, and W. Li, “Popularity-driven content
caching,” in Proc. of IEEE INFOCOM 2016, 2016.

[14] G. Neglia, D. Carra, and P. Michiardi, “Cache policies for linear
utility maximization,” in Proc. of the IEEE International Conference

on Computer Communications (INFOCOM 2017), May 2017.

[15] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the
performance analysis of caching systems,” in IEEE INFOCOM 2014 -

IEEE Conference on Computer Communications, April 2014, pp. 2040–
2048.

[16] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, and E. A. Fox,
“Caching Proxies: Limitations and Potentials,” in Proceedings of the

Fourth International WWW Conference, Boston,MA, December 1995.

[17] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets
in content delivery,” SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 3, pp. 52–66, Jul. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2805789.2805800

[18] M. Z. Shafiq, A. R. Khakpour, and A. X. Liu, “Characterizing caching
workload of a large commercial content delivery network,” in Computer

Communications, IEEE INFOCOM 2016-The 35th Annual IEEE Inter-

national Conference on. IEEE, 2016, pp. 1–9.

[19] C. Fricker, P. Robert, J. Roberts, and N. Sbihi, “Impact of traffic mix
on caching performance in a content-centric network,” in Proc. of IEEE

INFOCOM 2012, 2012.

[20] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and
S. Niccolini, “Temporal Locality in Today’s Content Caching: Why It
Matters and How to Model It,” SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 5, pp. 5–12, Nov. 2013.

[21] A. Araldo, D. Rossi, and F. Martignon, “Cost-aware caching: Caching
more (costly items) for less (isps operational expenditures),” IEEE

Transactions on Parallel and Distributed Systems, vol. 27, no. 5, pp.
1316–1330, May 2016.

[22] V. Pacifici and G. Dán, “Coordinated selfish distributed caching for peer-
ing content-centric networks,” IEEE/ACM Transactions on Networking,
vol. PP, no. 99, pp. 1–12, 2016.

[23] S. Shukla and A. A. Abouzeid, “On designing optimal memory damage
aware caching policies for content-centric networks,” in 14th Interna-

tional Symposium on Modeling and Optimization in Mobile, Ad Hoc,

and Wireless Networks, WiOpt 2016, 2016, pp. 163–170.

[24] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate
approximation for lru cache performance,” in Proceedings of the

24th International Teletraffic Congress, ser. ITC ’12. International
Teletraffic Congress, 2012, pp. 8:1–8:8. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2414276.2414286

[25] G. Bianchi, A. Detti, A. Caponi, and N. Blefari Melazzi, “Check before
storing: What is the performance price of content integrity verification
in LRU caching?” ACM SIGCOMM Computer Communication Review,
vol. 43, no. 3, pp. 59–67, 2013.

[26] G. Rossini, D. Rossi, M. Garetto, and E. Leonardi, “Multi-Terabyte and
multi-Gbps information centric routers,” in INFOCOM, 2014 Proceed-

ings IEEE, 2014, pp. 181–189.
[27] N. E. Young, Encyclopedia of Algorithms. Boston, MA: Springer US,

2008, ch. Online Paging and Caching, pp. 601–604.
[28] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E.

Young, “Competitive paging algorithms,” Journal of Algorithms, vol. 12,
pp. 685–699, 1991.

[29] N. Buchbinder and J. Naor, Online Primal-Dual Algorithms for Covering

and Packing Problems. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 689–701.

[30] P. Cao and S. Irani, “Cost-aware www proxy caching
algorithms,” in Proceedings of the USENIX Symposium on

Internet Technologies and Systems on USENIX Symposium on

Internet Technologies and Systems, ser. USITS’97. Berkeley, CA,
USA: USENIX Association, 1997, pp. 18–18. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267279.1267297

[31] D. Starobinski and D. Tse, “Probabilistic methods for web caching,”
Performance Evaluation, vol. 46, no. 2-3, pp. 125–137, 2001.

[32] P. R. Jelenkovic and A. Radovanovic, “Optimizing LRU Caching for
Variable Document Sizes,” Comb. Probab. Comput., vol. 13, no. 4-5,
pp. 627–643, Jul. 2004.

[33] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “Adaptsize:
Orchestrating the hot object memory cache in a content delivery net-
work,” in 14th USENIX Symposium on Networked Systems Design and

Implementation (NSDI’17, 2017.
[34] B. S. Thomson, J. B. Bruckner, and A. M. Bruckner, Elementary Real

Analysis. Prentice-Hall, 2001.

