Access to Formally Ni(I) States in a Heterobimetallic NiZn System

Christopher Uyeda and Jonas C. Peters*

Supporting Information

S1. General Procedures and Physical Methods 2
S2. Synthetic Procedures and Characterization Data 3
S3. NMR, IR, and UV-Vis Spectra 7
S4. Cyclic Voltammogram for $\left[\mathrm{Ni}^{\left.\left({ }^{\mathrm{Me}} \mathbf{d o p n}\right) \mathbf{Z n}\left(\mathrm{Me}_{3} \mathbf{T A C N}\right)(\mathrm{MeCN})\right]\left(\mathrm{ClO}_{4}\right)_{2}, ~}\right.$ 19
S5. UV-Vis Stability Studies of Complexes 5 and 6 Toward Protonolysis 20
S6. NMR Studies of Reactions with TEMPO 21
S7. Crystallographic Details 23
S8. Calculated Geometries 33

S1. General Procedures and Physical Methods

The synthesis of complexes $\mathbf{5}, 6,7, \mathbf{8}$, and $\mathbf{1 0}$ were conducted under ambient atmosphere without protection from oxygen or water. All other manipulations were carried out using standard Schlenk or glovebox techniques under an N_{2} atmosphere. Unless noted otherwise, reagents were purchased from commercial vendors and used without further purification. $\left[\mathrm{Ni}\left({ }^{\mathrm{Me}}\right.\right.$ doenH $\left.)\right] \mathrm{ClO}_{4},\left[\mathrm{Ni}\left({ }^{\mathrm{Me}}\right.\right.$ dopnH$\left.)\right] \mathrm{ClO}_{4},{ }^{1}$ and $\mathrm{Me}_{3} \mathrm{TACN}^{2}$ were prepared according to previously reported procedures. Dry and degassed solvents were purged with argon and passed through a column of activated alumina (S. G. Waters, Nashua, NH).

Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc., degassed, and stored over 3-Å molecular sieves prior to use. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded using Varian 300 MHz and 400 MHz instruments at room temperature and reported in ppm relative to tetramethylsilane, using the residual solvent resonances as an internal reference. Multiplicities are indicated as s (singlet), d (doublet), and t (triplet).

Elemental analyses were performed by Midwest Microlabs, LLC., Indianapolis, IN. IR measurements were performed using a Bruker Alpha spectrometer equipped with a diamond ATR. X-band EPR spectra were obtained on a Bruker EMX spectrometer and simulated using Easyspin. Electrochemical measurements were carried out in a glovebox under an N_{2} atmosphere in a single-compartment cell and were recorded with a CH Instruments 630-C Electrochemistry Analyzer using a CHI Version 8.09 software package. UV-Vis measurements were acquired on a Cary 50 UV/Vis Spectrophotometer using a $1-\mathrm{cm}$ two-window quartz cuvette.

Nickel K-edge data were collected through the Molecular Observatory at the Stanford Synchrotron Radiation Lightsource (SSRL) on beamline 12-2, with the ring operating at 3 GeV and 350 mA . A double-crystal monochromator was used for energy selection and data were measured in fluorescence mode. Data collected in 1 eV increments with a 2.0 s exposure time were averaged over four runs and merged with an additional four runs collected at a 0.5 eV offset.

Crystallographic Details. X-ray diffraction studies were carried out at the Beckman Institute Crystallography Facility on a Brüker KAPPA APEX II or Brüker SMART 1000 diffractometer and solved using SHELX v. 6.14. The crystals were mounted on a glass fiber with Paratone-N oil. Data was collected at 100 K using Mo $\mathrm{K} \alpha(\lambda=0.71073 \AA$) radiation and solved using SHELXS and refined against $F 2$ on all data by full-matrix least squares with SHELXL. X-ray quality crystals were grown as described in the experimental procedures.

Computational Methods. Geometry optimizations were performed using the Gaussian03 package. ${ }^{3}$ The B3LYP exchange-correlation functional was employed with a $6-31 \mathrm{G}(\mathrm{d})$ basis set. A full frequency calculation was performed on each structure in order to verify the absence of negative vibrational frequencies. Molecular orbital and spin density isosurfaces are displayed at isovalues of 0.04 and 0.004 respectively.

[^0]
S2. Synthetic Procedures and Characterization Data

$\left[\mathbf{N i}\left({ }^{\mathrm{Me}} \mathbf{d o e n}\right) \mathbf{Z n}\left(\mathbf{M e}_{\mathbf{3}} \mathbf{T A C N}\right)(\mathbf{M e C N})\right]\left(\mathbf{C l O}_{\mathbf{4}}\right)_{\mathbf{2}} \mathbf{(5)} .376 .8 \mathrm{mg}$ of $\mathrm{Me}_{3} \mathbf{T A C N}(2.2 \mathrm{mmol}, 1.1 \mathrm{eq})$ was dissolved in 250 mL of MeOH .819 .3 mg of $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2}(2.2 \mathrm{mmol}, 1.1 \mathrm{eq})$ was added followed by 766.8 mg of $\left[\mathrm{Ni}\left({ }^{\mathrm{Me}}\right.\right.$ doenH$\left.)\right] \mathrm{ClO}_{4}(2.0$ $\mathrm{mmol}, 1.0 \mathrm{eq}) .5 \mathrm{~mL}$ of $\mathrm{Et}_{3} \mathrm{~N}$ was added, causing the solution to turn dark red in color, and the heterogeneous reaction mixture was stirred at ambient temperature for 24 h during which time the reaction became homogeneous. The mixture was concentrated under reduced pressure, the residue was redissolved in MeCN , and the solution was reconcentrated to a dark red oil. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through celite in order to remove a dark brown precipitate. The filtrate was concentrated, and the product was purified by successively redissolving the material in 10 mL of acetonitrile, precipitating the product with $200 \mathrm{~mL}^{\text {of }} \mathrm{Et}_{2} \mathrm{O}$, and decanting the solution away from the precipitated material. 1.380 g of 5 ($1.82 \mathrm{mmol}, 91 \%$ yield) was isolated as a red solid. Single crystals suitable for XRD were obtained by diffusion of $\mathrm{Et}_{2} \mathrm{O}$ vapor into a concentrated solution in acetonitrile. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=3.85(\mathrm{~s}, 4 \mathrm{H}), 2.74(\mathrm{~s}$, $12 \mathrm{H}), 2.51(\mathrm{~s}, 9 \mathrm{H}), 2.15(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=178.7,159.0,55.2,53.9,47.3,17.5,12.6$. UVVis (MeCN, nm \{cm $\left.{ }^{-1} \mathrm{M}^{-1}\right\}: 258\{22,000\}, 309\{8400\}, 382\{\mathrm{sh}\}, 406\{\mathrm{sh}\}, 422\{3200\}, 470\{\mathrm{sh}\}$, 530 \{sh\}. ESI-MS $m / z: 616.2,618.2,620.1\left[\mathrm{Ni}\left({ }^{\mathrm{Me}} \text { doen }\right) \mathrm{Zn}\left(\mathrm{Me}_{3} \mathrm{TACN}\right)\left(\mathrm{ClO}_{4}\right)\right]^{+}$. Anal. Cald for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{NiO}_{10} \mathrm{Zn}: \mathrm{C}, 33.20 ; \mathrm{H}, 5.31 ; \mathrm{N}$, 14.75; Found: C, 33.37; H, 5.21; N, 14.68.

$\left[\mathbf{N i}\left({ }^{\mathbf{M e}} \mathbf{d o p n}\right) \mathbf{Z n}\left(\mathbf{M e}_{\mathbf{3}} \mathbf{T A C N}\right)(\mathbf{M e C N})\right]\left(\mathbf{C l O}_{\mathbf{4}}\right)_{\mathbf{2}} \mathbf{(6)} .188 .4 \mathrm{mg}$ of $\mathrm{Me}_{3} \mathrm{TACN}(1.1 \mathrm{mmol}, 1.1 \mathrm{eq})$ was dissolved in 100 mL MeOH .409 .6 mg of $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2}(1.1 \mathrm{mmol}, 1.1 \mathrm{eq})$ was added followed by 397.4 mg of $\left[\mathrm{Ni}\left({ }^{\mathrm{Me}}\right.\right.$ dopnH$\left.)\right] \mathrm{ClO}_{4}(1.0$ mmol, 1.0 eq). 2 mL of $\mathrm{Et}_{3} \mathrm{~N}$ was added, and the reaction mixture was stirred at reflux for 2 h . The mixture was cooled to room temperature and concentrated to dryness under reduced pressure. The residue was redissolved in a minimal amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the mixture was filtered through a plug of celite to remove any insoluble dark brown material. The filtrate was concentrated. The residue was redissolved in a minimal quanitity of MeCN , and layering of $\mathrm{Et}_{2} \mathrm{O}$ yielded 502.1 mg of red-orange crystals ($0.65 \mathrm{mmol}, 65 \%$ yield) suitable for XRD. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=3.22-3.11(\mathrm{~m}, 4 \mathrm{H}), 2.76$ (s, 13 H), 2.48 (s, 9 H), 2.17 (s, 6 H), $2.14(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=178.9,157.0,53.5,49.1,46.8$, 28.2, 17.6, 12.9. UV-Vis (MeCN, $\mathrm{nm}\left\{\mathrm{cm}^{-1} \mathrm{M}^{-1}\right\}: 252\{17,100\}, 320\{6100\}, 384\{3300\}, 405\{3500\}, 460\{\mathrm{sh}\}, 520$ \{sh\}. ESI-MS m/z: 630.0, 632.0, $634.0\left[\mathrm{Ni}\left({ }^{\mathrm{Me}} \text { dopn }\right) \mathrm{Zn}\left(\mathrm{Me}_{3} \mathrm{TACN}\right)\left(\mathrm{ClO}_{4}\right)\right]^{+}$. Anal. Cald for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{NiO}_{10} \mathrm{Zn}: \mathrm{C}$, 34.16; H, 5.47; N, 14.48; Found: C, 33.96; H, 5.54; N, 14.27.

$\left[(\mu-\mathbf{O A c}) \mathbf{N i}\left({ }^{\text {Me }} \mathbf{d o e n}\right) \mathbf{Z n}\left(\mathbf{M e}_{3} \mathbf{T A C N}\right)\right] \mathbf{C l O}_{4}(7) .38 .0 \mathrm{mg}$ of $\mathbf{5}(0.05 \mathrm{mmol}, 1.0 \mathrm{eq})$ was dissolved in $500 \mu \mathrm{~L}$ of MeCN. 18.1 mg of $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right][\mathrm{OAc}](0.06 \mathrm{mmol}, 1.2 \mathrm{eq})$ was added as a solution in $500 \mu \mathrm{~L}$ of MeCN . Upon addition, the initially red solution immediately turned dark-brown in color. Diffusion of $\mathrm{Et}_{2} \mathrm{O}$ vapor into the reaction mixture produced 26.4 mg of 7
as dark brown crystals $\left(0.39 \mathrm{mmol}, 78 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=3.91(\mathrm{~s}, 4 \mathrm{H}), 2.89-2.60(\mathrm{~m}, 12 \mathrm{H}), 2.44$ (s, 9 H$), 2.00(\mathrm{~s}, 6 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=178.6,172.3,154.2,55.5$, 53.9, 47.3, 26.2, 16.6, 12.0. Anal. Cald for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{ClN}_{7} \mathrm{NiO}_{8} \mathrm{Zn}: \mathrm{C}, 37.19$; H, 5.95; N, 14.46; Found: C, 37.50; H, 5.94; N, 14.50.

$\left[\left(\mu-\mathbf{N O}_{2}\right) \mathbf{N i}\left({ }^{\mathbf{M e}} \mathbf{d o e n}\right) \mathbf{Z n}\left(\mathbf{M e}_{\mathbf{3}} \mathbf{T A C N}\right)\right] \mathbf{C l O}_{\mathbf{4}}(\mathbf{8}) .38 .0 \mathrm{mg}$ of $\mathbf{5}(0.05 \mathrm{mmol}, 1.0 \mathrm{eq})$ was dissolved in $500 \mu \mathrm{~L}$ of MeCN. 17.3 mg of $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{NO}_{2}\right](0.06 \mathrm{mmol}, 1.2 \mathrm{eq})$ was added as a solution in $500 \mu \mathrm{~L}$ of MeCN . Upon addition, the initially red solution immediately turned dark in color. Diffusion of $\mathrm{Et}_{2} \mathrm{O}$ vapor into the reaction mixture produced 28.9 mg of $\mathbf{8}$ as dark brown crystals ($0.43 \mathrm{mmol}, 87 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=3.96(\mathrm{~s}, 4 \mathrm{H}), 2.93-2.68(\mathrm{~m}, 13 \mathrm{H}), 2.45(\mathrm{~s}, 9$ H), 2.03 (s, 6 H), $1.89(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=174.4,154.6,55.9,54.0,47.2,16.9$, 12.0. Anal. Cald for $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{ClN}_{8} \mathrm{NiO}_{8} \mathrm{Zn}$: C, 34.31; H, 5.61; N, 16.85; Found: C, $35.92 ; \mathrm{H}, 5.81$; N, 16.56. ${ }^{4}$

(9). 76.0 mg of $5(0.1 \mathrm{mmol}, 1.0 \mathrm{eq})$ and 11.2 mg of $\mathrm{KO} t-\mathrm{Bu}(0.1 \mathrm{mmol}, 1.0 \mathrm{eq})$ were taken up in 2 mL of MeCN . The dark green mixture was stirred at room temperature, and after 30 min , the mixture was concentrated to dryness under vacuum. The residue was taken up in THF, and filtered through a short plug of celite. Darkly colored crystals form from the filtrate upon standing at room temperature for 24 h . The solution was decanted, and the solid material was washed with two $1-\mathrm{mL}$ portions of THF and two $5-\mathrm{mL}$ portions of $\mathrm{Et}_{2} \mathrm{O}$. After drying under reduced pressure, 26.4 mg of 9 was isolated as a green powder $(0.043 \mathrm{mmol}, 43 \%$ yield). Combustion analysis was consistent with a composition lacking associated solvent molecules. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=4.01(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{t}, J=5.9$ $\mathrm{Hz}, 2 \mathrm{H}), 2.79-2.62(\mathrm{~m}, 14 \mathrm{H}), 2.56(\mathrm{~s}, 10 \mathrm{H}), 2.01(\mathrm{t}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=170.1,160.3,157.9,154.9,82.6,56.6,53.9,53.7,47.6,16.3,12.3,11.9 . \mathrm{UV}-\mathrm{Vis}\left(\mathrm{THF}, \mathrm{nm}\left\{\mathrm{cm}^{-1}\right.\right.$ $\left.\mathrm{M}^{-1}\right\}: 255\{30,000\}, 315\{\mathrm{sh}\}, 385\{\mathrm{sh}\}, 355\{5100\}, 453\{3700\}, 586\{2600\}$. Anal. Cald for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{ClN}_{7} \mathrm{NiO}_{6} \mathrm{Zn}: \mathrm{C}$, 36.92; H, 5.87; N, 15.86; Found: C 36.94, H 5.85, N 15.78.

$\left[\mathbf{N i}\left({ }^{\mathbf{T M F}}\right.\right.$ doen $) \mathbf{Z n}\left(\mathbf{M e}_{3}\right.$-tacn $\left.)(\mathbf{M e C N})\right]\left(\mathbf{B P h}_{4}\right)_{2} \mathbf{(1 0) .} 439.8 \mathrm{mg}$ of the ${ }^{\mathrm{TMF}}$ doenH $_{2}$ ligand ${ }^{5}(1.2 \mathrm{mmol}, 1.2 \mathrm{eq})$ and 365.7 mg of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ were stirred in 20 mL of EtOH at room temperature. Over the course of 2 h , a homogeneous red-orange

[^1]solution was formed. This solution was then added to mixture of 239.7 mg of $\mathrm{Me}_{3} \mathrm{TACN}(1.4 \mathrm{mmol}, 1.4 \mathrm{eq})$ and 521.3 mg of $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ in 50 mL of $\mathrm{MeCN} .280 \mu \mathrm{~L}$ of $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{mmol}, 2.0 \mathrm{eq})$ was added dropwise, and the color of the solution was observed to darken. 1.6427 g of $\mathrm{NaBPh}_{4}(4.8 \mathrm{mmol}, 4.8 \mathrm{eq})$ was added, and the reaction mixture was stirred at room temperature for 2 h . The crude mixture was concentrated to a $5-\mathrm{mL}$ total volume under reduced pressure, and 100 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added. The cloudy, brown solution was decanted away from the red precipitate, which was then washed with several portions of $\mathrm{Et}_{2} \mathrm{O}$. A minimal amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to the precipitate in order to dissolve the red material. The mixture was filtered through a medium-porosity glass frit in order to remove the colorless insoluble material, and the filtrate was concentrated to dryness under reduced pressure. The residue was redissolved in 2 mL of MeCN and allowed to stand at room temperature for 12 h , during which time red crystals separated from solution. The solution was then decanted away from the red crystals, and the crystals were washed with three $5-\mathrm{mL}$ portions of $9: 1 \mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}$ followed by one 5mL portion of $\mathrm{Et}_{2} \mathrm{O}$. Single crystals of the mono-perchlorate mono-tetraphenylborate salt, suitable for XRD, were obtained by slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ vapor into a MeCN solution. The $\mathrm{ClO}_{4}{ }^{-}$was exchanged for $\mathrm{BPh}_{4}{ }^{-}$by briefly sonication a mixture of the mono-perchlorate mono-tetraphenylborate salt and 344 mg of NaBPh_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and filtering the mixture through a short celite plug. 442.3 mg of $\mathbf{1 0}$ ($0.33 \mathrm{mmol}, 33 \%$ yield) was obtained as red-orange crystals after by $\mathrm{Et}_{2} \mathrm{O}$ vapor diffusion into a concentrated MeCN solution. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=7.27(\mathrm{~m}, 16 \mathrm{H}), 6.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 16 \mathrm{H}), 6.89-$ $6.79(\mathrm{~m}, 8 \mathrm{H}), 3.80(\mathrm{~s}, 4 \mathrm{H}), 2.81-2.62(\mathrm{~m}, 12 \mathrm{H}), 2.51(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{CN}) \mathrm{d}=$ $186.6,168.6,165.3\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{B}-\mathrm{C}}=49.5 \mathrm{~Hz}\right), 137.1,127.1,127.1,127.0,127.0,123.2,78.6,77.8,54.2,53.9,47.6,26.4,26.1$. UV-Vis (MeCN, $\mathrm{nm}\left\{\mathrm{cm}^{-1} \mathrm{M}^{-1}\right\}: 262\{29,000\}, 290\{\mathrm{sh}\}, 329\{8000\}, 417\{3000\}, 443\{3200\}, 510\{\mathrm{sh}\}, 560\{\mathrm{sh}\}$. Anal. Cald for $\mathrm{C}_{77} \mathrm{H}_{92} \mathrm{~B}_{2} \mathrm{~N}_{8} \mathrm{NiO}_{4} \mathrm{Zn}$: C, 69.05; H, 6.92; N, 8.37. Found: C, 69.05; H, 6.97; N, 8.42.

$\left[\mathbf{N i}\left({ }^{\mathbf{T M F}} \mathbf{d o e n}\right) \mathbf{Z n}\left(\mathbf{M e}_{3} \mathbf{T A C N}\right)\right] \mathbf{B P h}_{4}(\mathbf{1 1}) .107 \mathrm{mg}$ of $\mathbf{1 0}(1.0 \mathrm{eq}, 0.08 \mathrm{mmol})$ and 21.2 mg of $\mathrm{Cp}_{2} \mathrm{Co}(1.4 \mathrm{eq}, 0.112 \mathrm{mmol})$ were taken up in 4 mL of THF and stirred at room temperature for 30 min . During this time, the orange-red solid material dissolved, and the solution turned dark green with concomitant formation of a colorless precipitate. 8 mL of pentane was added to precipitate the product, and the mixture was filtered through a short plug of celite. The green solid material was dissolved and eluted through the celite plug with six 1-mL portions of THF. Concentration under reduced pressure yielded 63.6 mg of $\mathbf{1 1}(0.065 \mathrm{mmol}, 81 \%)$ as a green-brown plate-like polycrystalline solid. Single crystals suitable for XRD were obtained by diffusion of pentane vapor into a THF solution at room temperature. Single crystals of the THF adduct were obtained by diffusion of pentane vapor into a THF solution at $-30^{\circ} \mathrm{C}$. UV-Vis (THF): $380\{$ sh $\}, 470\{2800\}, 542\{1000\}$, $623\{1100\}$. Anal. Cald for $\mathrm{C}_{51} \mathrm{H}_{69} \mathrm{BN}_{7} \mathrm{NiO}_{4} \mathrm{Zn}: \mathrm{C}, 62.57 ; \mathrm{H}, 7.10 ; \mathrm{N}, 10.01$. Found: C, 62.25; H, 7.12; N, 9.91.

$\left.\left[\left(\mathbf{P P h}_{3}\right) \mathbf{N i}{ }^{\mathbf{T M F}} \mathbf{d o e n}\right) \mathbf{Z n}\left(\mathbf{M e}_{\mathbf{3}} \mathbf{T A C N}\right)\right] \mathbf{B P h} \mathbf{4}_{\mathbf{4}} \mathbf{(1 2)} .40 .2 \mathrm{mg}$ of $\mathbf{1 0}(0.03 \mathrm{mmol}, 1.0 \mathrm{eq}), 9.4 \mathrm{mg}$ of $\mathrm{PPh}_{3}(1.4 \mathrm{eq})$, and 7.9 mg of $\mathrm{Cp}_{2} \mathrm{Co}$ (0.0361 .2 eq) were taken up in 2 mL of THF and stirred at room temperature for 30 min . During this time, the orange-red solid material dissolved, and the solution turned dark green-blue with concomitant formation of a colorless precipitate. 8 mL of pentane were added to precipitate the product, and the mixture was filtered through a short plug of

[^2] 61% yield) was isolated as a white solid.
celite. The green solid material was dissolved and eluted through the celite plug with three 1-mL portions of THF. After drying under reduced pressure, 32.1 mg of dark green-blue needles $(0.026 \mathrm{mmol}, 86 \%$ yield) were isolated. Single crystals suitable for XRD were obtained by diffusion of pentane vapor into a THF solution of $\mathbf{1 2}$ at $-30^{\circ} \mathrm{C}$. UV-Vis: $267\{28,000\}$, $380\{\operatorname{sh}\}, 434\{2000\}, 634\{1300\}$. Anal. Cald for $\mathrm{C}_{69} \mathrm{H}_{84} \mathrm{BN}_{7} \mathrm{NiO}_{4} \mathrm{PZn}: \mathrm{C}, 66.76 ; \mathrm{H}, 6.82 ; \mathrm{N}, 7.90$. Found: C, 65.91; H, 6.71; N, 8.04.

S3. NMR, IR, and UV-Vis Spectra

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$

ATR-IR (solid)

(6)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$

(7)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathbf{C N}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{3} \mathbf{C N}\right)$

ATR-IR (solid)

(8)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(\mathbf{C D}_{3} \mathbf{C N}\right)$

ATR-IR (solid)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$

UV-Vis (MeCN)

ATR-IR (solid)

${ }^{\mathbf{1}} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$

UV-Vis (MeCN)

ATR-IR (solid)

UV-Vis (THF)

ATR-IR (solid)

UV-Vis (THF)

ATR-IR (solid)

S4. Cyclic Voltammogram for $\left.\left[\mathrm{Ni}^{(\mathrm{Me}} \mathbf{d o p n}\right) \mathbf{Z n}\left(\mathrm{Me}_{3} \mathbf{T A C N}\right)(\mathrm{MeCN})\right]\left(\mathrm{ClO}_{4}\right)_{2}$

$0.5 \mathrm{mM}\left[\mathrm{Ni}\left({ }^{\mathrm{Me}}\right.\right.$ dopn $\left.) \mathrm{Zn}\left(\mathrm{Me}_{3} \mathrm{TACN}\right)(\mathrm{MeCN})\right]\left(\mathrm{ClO}_{4}\right)_{2}(6)$ in $\mathrm{MeCN} ; 0.1 \mathrm{M}\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{ClO}_{4}\right]$ supporting electrolyte; $100 \mathrm{mV} / \mathrm{s}$ scan rate; glassy carbon working electrode; internally referenced to the $\mathrm{Fc} / \mathrm{Fc}^{+}$redox couple at +0.38 V vs. SCE.

S5. UV-Vis Stability Studies of Complexes 5 and 6 Toward Protonolysis

(black, solid) $\left[\mathrm{Ni}\left({ }^{\mathrm{Me}}\right.\right.$ dopnH) $] \mathrm{ClO}_{4}$ (red, solid) $\left[\mathrm{Ni}\left({ }^{\mathrm{Me}}\right.\right.$ dopn $\left.) \mathrm{Zn}\left(\mathrm{Me}_{3} \mathrm{TACN}\right)(\mathrm{MeCN})\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (red, dotted) $\left[\mathrm{Ni}\left({ }^{\mathrm{Me}}\right.\right.$ dopn $\left.) \mathrm{Zn}\left(\mathrm{Me}_{3} \mathrm{TACN}\right)(\mathrm{MeCN})\right]\left(\mathrm{ClO}_{4}\right)_{2}+10$ eq AcOH

(black, solid) $\left[\mathrm{Ni}\left({ }^{\mathrm{Me}}\right.\right.$ doenH $\left.)\right] \mathrm{ClO}_{4}$ (red, solid) $\left[\mathrm{Ni}\left({ }^{\text {Me }}\right.\right.$ doen $\left.) \mathrm{Zn}\left(\mathrm{Me}_{3} \mathrm{TACN}\right)(\mathrm{MeCN})\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (red, dotted) $\left[\mathrm{Ni}\left({ }^{\mathrm{Me}}\right.\right.$ doen $\left.) \mathrm{Zn}\left(\mathrm{Me}_{3} \mathrm{TACN}\right)(\mathrm{MeCN})\right]\left(\mathrm{ClO}_{4}\right)_{2}+10$ eq AcOH

S6. NMR Studies of Reactions with TEMPO

15.1 mg of complex $5(0.02 \mathrm{mmol}, 1.0 \mathrm{eq}), 4.5 \mathrm{mg}$ of $\mathrm{Cp}_{2} \mathrm{Co}(0.024 \mathrm{mmol}, 1.2 \mathrm{eq})$, and 1.4 mg of ferrocene $(0.0075 \mathrm{mmol}$, 0.376 eq) were taken up in 1 mL of $\mathrm{CD}_{3} \mathrm{CN}$ and mixed for 5 min , producing a homogeneous dark green solution. The yield of the diamagnetic enamide product was determined to be 71% by integration against the ferrocene standard.
${ }^{1} \mathrm{H}$ NMR Spectrum (crude reaction mixture, $\mathrm{CD}_{3} \mathrm{CN}$)

15.1 mg of complex $5(0.02 \mathrm{mmol}, 1.0 \mathrm{eq}), 4.5 \mathrm{mg}$ of $\mathrm{Cp}_{2} \mathrm{Co}(0.024 \mathrm{mmol}, 1.2 \mathrm{eq}), 3.1 \mathrm{mg}$ of TEMPO ($0.02 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 1.8 mg of ferrocene ($0.010 \mathrm{mmol}, 0.484 \mathrm{eq}$) were taken up in 1 mL of $\mathrm{CD}_{3} \mathrm{CN}$ and mixed for 5 min , producing a homogeneous dark green solution. The yield of the diamagnetic enamide product was determined to be 95% by integration against the ferrocene standard.
${ }^{1} \mathrm{H}$ NMR Spectrum (crude reaction mixture, TEMPO, $\mathrm{CD}_{3} \mathrm{CN}$)

19.6 mg of complex $10(0.02 \mathrm{mmol}, 1.0 \mathrm{eq})$ and 12.5 mg of TEMPO ($0.08 \mathrm{mmol}, 4.0 \mathrm{eq}$) were mixed in 1 mL of $\mathrm{CD}_{3} \mathrm{CN}$ for 1 h during which time a modest color change to a lighter shade of green was observed. The crude reaction mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR. After concentrating the reaction mixture to dryness under reduced pressure, the residue was washed with several portions of $\mathrm{Et}_{2} \mathrm{O}$ in order to remove TEMPO-H and unreacted TEMPO. The product mixture was analyzed by ${ }^{1} H$ NMR, and the yields of the cyclopropane-containing products were determined by integration against the tetraphenylborate anion resonances.
${ }^{1} \mathrm{H}$ NMR Spectrum (crude reaction mixture, $\mathrm{CD}_{3} \mathrm{CN}$)

${ }^{1} \mathrm{H}$ NMR Spectrum (purified product, $\mathrm{CD}_{3} \mathrm{CN}$)

S7. Crystallographic Details

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
$\left[\mathrm{Ni}\left({ }^{\mathrm{Me}}\right.\right.$ doenH $\left.)\right] \mathrm{ClO}_{4}$
$\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{NiO}_{6}$
383.44

100(2)
monoclinic
P21/n
7.3309(2)
16.9368(5)
12.1796(4)
90.00
$\alpha{ }^{\circ} \quad 90.00$
$\beta /^{\circ} \quad 95.4410(10)$
$\gamma{ }^{\circ} \quad 90.00$
Volume/Å3 1505.43(8)
Z
4
pcalcmg/mm3 1.692
$\mathrm{m} / \mathrm{mm}-1 \quad 1.500$
F(000)
Crystal size/mm3
2Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F2
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e Å-3
792.0
$0.29 \times 0.22 \times 0.20$
4.14 to 90.76°
$-14 \leq \mathrm{h} \leq 14,-33 \leq \mathrm{k} \leq 33,-24 \leq 1 \leq 24$
77236
$12451[\mathrm{R}($ int $)=0.0497$]
12451/0/207
1.056
$\mathrm{R} 1=0.0386, \mathrm{wR} 2=0.0808$
$\mathrm{R} 1=0.0632, \mathrm{wR} 2=0.0907$
0.89/-0.55

Identification code	$\left[\mathrm{Ni}\left({ }^{\mathrm{Me}}\right.\right.$ doen $\left.) \mathrm{Zn}\left(\mathrm{Me}_{3} \mathrm{TACN}\right)(\mathrm{MeCN})\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 1 / 2 \mathrm{MeCN}$
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~N}_{8.5} \mathrm{NiO}_{10} \mathrm{Zn}$
Formula weight	778.61
Temperature/K	100(2)
Crystal system	monoclinic
Space group	P21/n
a/Å	11.5005(4)
b/Å	20.8961(7)
c/Å	14.2514(4)
$\alpha /{ }^{\circ}$	90.00
$\beta /{ }^{\circ}$	109.6370(10)
$\gamma /{ }^{\circ}$	90.00
Volume/Å3	3225.65(18)
Z	4
pcalcmg/mm3	1.603
$\mathrm{m} / \mathrm{mm}-1$	1.557
F(000)	1614.0
Crystal size/mm3	$0.36 \times 0.34 \times 0.29$
2Θ range for data collection	3.6 to 74.96°
Index ranges	$-19 \leq \mathrm{h} \leq 19,-35 \leq \mathrm{k} \leq 35,-23 \leq 1 \leq 24$
Reflections collected	138960
Independent reflections	$16269[\mathrm{R}(\mathrm{int})=0.0509]$
Data/restraints/parameters	16269/0/507
Goodness-of-fit on F2	1.020
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R} 1=0.0564, \mathrm{wR} 2=0.1403$
Final R indexes [all data]	$\mathrm{R} 1=0.0955, \mathrm{wR} 2=0.1662$
Largest diff. peak/hole / e \AA-3	1.48/-0.69

Identification code	$\left[\mathrm{Ni}\left({ }^{\mathrm{Me}} \mathrm{dopn}\right) \mathrm{Zn}\left(\mathrm{Me}_{3} \mathrm{TACN}\right)(\mathrm{MeCN})\right]\left(\mathrm{ClO}_{4}\right)_{2}$
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{NiO}_{10} \mathrm{Zn}$
Formula weight	773.62
Temperature/K	100(2)
Crystal system	monoclinic
Space group	P21/n
a/Å	11.5533(5)
b/Å	22.0368(8)
c/Å	12.9726(5)
$\alpha /{ }^{\circ}$	90.00
$\beta /{ }^{\circ}$	104.810(2)
$\gamma /{ }^{\circ}$	90.00
Volume/Å3	3193.1(2)
Z	4
¢calcmg/mm3	1.609
$\mathrm{m} / \mathrm{mm}-1$	1.572
F(000)	1608.0
Crystal size/mm3	$0.36 \times 0.26 \times 0.25$
2Θ range for data collection	3.74 to 78.42°
Index ranges	$-20 \leq \mathrm{h} \leq 19,-38 \leq \mathrm{k} \leq 38,-22 \leq 1 \leq 22$
Reflections collected	126335
Independent reflections	$18185[\mathrm{R}(\mathrm{int})=0.0350]$
Data/restraints/parameters	18185/0/442
Goodness-of-fit on F2	1.131
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R} 1=0.0686, \mathrm{wR} 2=0.1802$
Final R indexes [all data]	$\mathrm{R} 1=0.0900, \mathrm{wR} 2=0.1924$
Largest diff. peak/hole / e \AA-3	3.03/-1.10

Identification code	$\left[(\mu-\mathrm{OAc}) \mathrm{Ni}\left({ }^{\text {Me }} \text { doen }\right) \mathrm{Zn}\left(\mathrm{Me}_{3} \mathrm{TACN}\right)\right]^{\text {ClO}} 4$
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{ClN}_{7} \mathrm{NiO}_{8} \mathrm{Zn}$
Formula weight	678.13
Temperature/K	100(2)
Crystal system	monoclinic
Space group	C2/c
a/Å	18.853(4)
b/Å	18.337(4)
c/A	16.409(3)
$\alpha /{ }^{\circ}$	90.00
$\beta /{ }^{\circ}$	90.05(3)
$\gamma /{ }^{\circ}$	90.00
Volume/Å3	5673(2)
Z	8
¢calcmg/mm3	1.588
$\mathrm{m} / \mathrm{mm}-1$	1.660
F(000)	2832.0
Crystal size/mm3	$0.44 \times 0.35 \times 0.05$
2Θ range for data collection	3.1 to 58.26°
Index ranges	$-24 \leq \mathrm{h} \leq 25,-24 \leq \mathrm{k} \leq 24,-22 \leq 1 \leq 22$
Reflections collected	51719
Independent reflections	7185[R(int) $=0.0440]$
Data/restraints/parameters	7185/0/454
Goodness-of-fit on F2	1.038
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R} 1=0.0474, \mathrm{wR} 2=0.0998$
Final R indexes [all data]	$\mathrm{R} 1=0.0711, \mathrm{wR} 2=0.1142$
Largest diff. peak/hole / e A - 3	2.05/-1.45

Identification code	$2\left[\left(\mu-\mathrm{NO}_{2}\right) \mathrm{Ni}\left({ }^{\mathrm{Me}}\right.\right.$ doen $\left.) \mathrm{Zn}\left(\mathrm{Me}_{3} \mathrm{TACN}\right)\right] \mathrm{ClO}_{4}$
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{ClN}_{8} \mathrm{NiO}_{8} \mathrm{Zn}$
Formula weight	665.10
Temperature/K	100(2)
Crystal system	triclinic
Space group	P1
a/Å	8.5274(4)
b/Å	12.4106(5)
c/Å	13.0776(5)
$\alpha /{ }^{\circ}$	98.7540(10)
$\beta /{ }^{\circ}$	96.0040(10)
$\gamma /{ }^{\circ}$	90.074(2)
Volume/Å3	1360.17(10)
Z	2
¢calcmg/mm3	1.624
$\mathrm{m} / \mathrm{mm}-1$	1.730
$\mathrm{F}(000)$	692.0
Crystal size/mm3	$0.44 \times 0.22 \times 0.14$
2Θ range for data collection	3.16 to 66.38°
Index ranges	$-12 \leq \mathrm{h} \leq 13,-19 \leq \mathrm{k} \leq 19,-20 \leq 1 \leq 20$
Reflections collected	42058
Independent reflections	$19253[\mathrm{R}(\mathrm{int})=0.0380]$
Data/restraints/parameters	19253/3/699
Goodness-of-fit on F2	1.063
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R} 1=0.0493, \mathrm{wR} 2=0.1084$
Final R indexes [all data]	$\mathrm{R} 1=0.0687, \mathrm{wR} 2=0.1169$
Largest diff. peak/hole / e Å-3	1.12/-0.51
Flack parameter	0.467(9)

Identification code	$\left[\mathrm{Ni}\left({ }^{\mathrm{TMF}}\right.\right.$ doen $\left.) \mathrm{Zn}\left(\mathrm{Me}_{3} \mathrm{TACN}\right)(\mathrm{MeCN})\right]\left(\mathrm{BPh}_{4}\right)\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{MeCN}$
Empirical formula	$\mathrm{C}_{110} \mathrm{H}_{150} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{18} \mathrm{Ni}_{2} \mathrm{O}_{16} \mathrm{Zn}_{2}$
Formula weight	2321.16
Temperature/K	100(2)
Crystal system	triclinic
Space group	P-1
a/Å	11.7327(7)
b/Å	15.5512(9)
c/Å	17.9328(10)
$\alpha /{ }^{\circ}$	67.784(3)
$\beta /{ }^{\circ}$	71.146(3)
$\gamma /{ }^{\circ}$	77.960(3)
Volume/Å3	2852.6(3)
Z	1
¢calcmg/mm3	1.351
$\mathrm{m} / \mathrm{mm}-1$	0.857
$\mathrm{F}(000)$	1224.0
Crystal size/mm3	$0.38 \times 0.34 \times 0.11$
2Θ range for data collection	3.68 to 91.72°
Index ranges	$-23 \leq \mathrm{h} \leq 23,-30 \leq \mathrm{k} \leq 31,-36 \leq 1 \leq 35$
Reflections collected	342149
Independent reflections	$48552[\mathrm{R}(\mathrm{int})=0.0679]$
Data/restraints/parameters	48552/0/753
Goodness-of-fit on F2	0.908
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R} 1=0.0326, \mathrm{wR} 2=0.0782$
Final R indexes [all data]	$\mathrm{R} 1=0.0645, \mathrm{wR} 2=0.0830$
Largest diff. peak/hole / e \AA - 3	0.84/-0.79

Identification code	$2\left[\mathrm{Ni}\left({ }^{\text {TMF }}\right.\right.$ doen) $\left.\mathrm{Zn}\left(\mathrm{Me}_{3} \mathrm{TACN}\right)(\mathrm{THF})\right] \mathrm{BPh}_{4} \cdot 3 \mathrm{THF}$
Empirical formula	$\mathrm{C}_{122} \mathrm{H}_{178} \mathrm{~B}_{2} \mathrm{~N}_{14} \mathrm{Ni}_{2} \mathrm{O}_{13} \mathrm{Zn}_{2}$
Formula weight	2318.56
Temperature/K	100(2)
Crystal system	triclinic
Space group	P-1
a/Å	11.9784(8)
b/Å	19.7901(14)
c/Å	26.2940(18)
$\alpha /{ }^{\circ}$	104.912(4)
$\beta /{ }^{\circ}$	91.396(4)
$\gamma /{ }^{\circ}$	98.300(4)
Volume/Å3	5947.7(7)
Z	2
¢calcmg/mm3	1.295
$\mathrm{m} / \mathrm{mm}-1$	0.776
F(000)	2476.0
Crystal size/mm3	$0.42 \times 0.19 \times 0.08$
2Θ range for data collection	3 to 71.5°
Index ranges	$-19 \leq \mathrm{h} \leq 19,-32 \leq \mathrm{k} \leq 32,-41 \leq 1 \leq 42$
Reflections collected	288123
Independent reflections	$51564[\mathrm{R}(\mathrm{int})=0.0882]$
Data/restraints/parameters	51564/0/1446
Goodness-of-fit on F2	1.013
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R} 1=0.0552, \mathrm{wR} 2=0.1179$
Final R indexes [all data]	$\mathrm{R} 1=0.1235, \mathrm{wR} 2=0.1432$
Largest diff. peak/hole / e \AA - 3	1.30/-0.89

Identification code	$\left[\mathrm{Ni}\left({ }^{\text {TMF }}\right.\right.$ doen $\left.) \mathrm{Zn}\left(\mathrm{Me}_{3} \mathrm{TACN}\right)\right] \mathrm{BPh}_{4}$
Empirical formula	$\mathrm{C}_{51} \mathrm{H}_{69} \mathrm{BN}_{7} \mathrm{NiO}_{4} \mathrm{Zn}$
Formula weight	979.02
Temperature/K	100(2)
Crystal system	monoclinic
Space group	P21
a/Å	11.4468(10)
b/Å	10.8318(10)
c/Å	20.204(2)
$\alpha /{ }^{\circ}$	90.00
$\beta /{ }^{\circ}$	92.300(7)
$\gamma /{ }^{\circ}$	90.00
Volume/Å3	2503.0(4)
Z	2
pcalcmg/mm3	1.299
$\mathrm{m} / \mathrm{mm}-1$	0.906
F(000)	1038.0
Crystal size/mm3	$0.38 \times 0.29 \times 0.02$
2Θ range for data collection	3.56 to 70.62°
Index ranges	$-17 \leq \mathrm{h} \leq 17,-17 \leq \mathrm{k} \leq 17,-32 \leq 1 \leq 32$
Reflections collected	118113
Independent reflections	20278[R(int) $=0.2000$]
Data/restraints/parameters	20278/1/597
Goodness-of-fit on F2	1.106
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R} 1=0.1911, \mathrm{wR} 2=0.4169$
Final R indexes [all data]	$\mathrm{R} 1=0.2215, \mathrm{wR} 2=0.4336$
Largest diff. peak/hole / e \AA-3	2.34/-5.91

Identification code	$\left[\left(\mathrm{PPh}_{3}\right) \mathrm{Ni}\left({ }^{\text {TMF }}\right.\right.$ doen $\left.) \mathrm{Zn}\left(\mathrm{Me}_{3} \mathrm{TACN}\right)\right] \mathrm{BPh}_{4} \cdot 2 \mathrm{THF}$
Empirical formula	$\mathrm{C}_{77} \mathrm{H}_{100} \mathrm{BN}_{7} \mathrm{NiO}_{6} \mathrm{PZn}$
Formula weight	1385.55
Temperature/K	100(2)
Crystal system	monoclinic
Space group	P21/c
a/Å	21.7065(12)
b/Å	13.6234(7)
c/Å	24.0450(12)
$\alpha /{ }^{\circ}$	90.00
$\beta /{ }^{\circ}$	90.533(3)
$\gamma /{ }^{\circ}$	90.00
Volume/Å3	7110.2(6)
Z	4
¢calcmg/mm3	1.264
$\mathrm{m} / \mathrm{mm}-1$	0.679
F (000)	2884.0
Crystal size/mm3	$0.47 \times 0.40 \times 0.04$
2Θ range for data collection	3.44 to 75.16°
Index ranges	$-36 \leq \mathrm{h} \leq 34,-22 \leq \mathrm{k} \leq 21,-39 \leq 1 \leq 36$
Reflections collected	217603
Independent reflections	$34190[\mathrm{R}(\mathrm{int})=0.0986]$
Data/restraints/parameters	34190/0/858
Goodness-of-fit on F2	1.020
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R} 1=0.0568, \mathrm{wR} 2=0.1198$
Final R indexes [all data]	$\mathrm{R} 1=0.1249, \mathrm{wR} 2=0.1422$
Largest diff. peak/hole / e A - 3	1.92/-1.12

Identification code	Complex 13
Empirical formula	$\mathrm{C}_{55} \mathrm{H}_{47} \mathrm{BN}_{7} \mathrm{NiO}_{5} \mathrm{Zn}$
Formula weight	1048.10
Temperature/K	100(2)
Crystal system	monoclinic
Space group	P21/c
a/Å	17.2117(13)
b/Å	12.9449(10)
c/Å	24.7109(17)
$\alpha /{ }^{\circ}$	90.00
$\beta /{ }^{\circ}$	101.430(3)
$\gamma /{ }^{\circ}$	90.00
Volume/Å3	5396.5(7)
Z	4
¢calcmg/mm3	1.290
$\mathrm{m} / \mathrm{mm}-1$	0.846
$\mathrm{F}(000)$	2224.0
Crystal size/mm3	$0.48 \times 0.20 \times 0.05$
2Θ range for data collection	3.56 to 61.14°
Index ranges	$-24 \leq \mathrm{h} \leq 24,-17 \leq \mathrm{k} \leq 11,-34 \leq 1 \leq 33$
Reflections collected	72415
Independent reflections	$14374[\mathrm{R}(\mathrm{int})=0.0708]$
Data/restraints/parameters	14374/0/660
Goodness-of-fit on F2	1.026
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R} 1=0.0728, \mathrm{wR} 2=0.1625$
Final R indexes [all data]	$\mathrm{R} 1=0.1547, w R 2=0.1969$
Largest diff. peak/hole / e \AA-3	1.01/-0.72

XRD data for complex $\mathbf{1 3}$ are of relatively poor quality presumably due to the small size and polycrystalline leaf-like morphology of the crystals that were obtained despite several crystallization attempts. Nevertheless, the data was sufficient to establish the cyclopropane structure described, which is clearly distinguishable from the other methyl substituents on the macrocycle ligand by examination of the density map.

S8. Calculated Geometries

 B3LYP/6-31G(d)
 $\mathrm{Z}=+\mathbf{2}, \mathrm{M}=1$
 $E=-4699.68146159$

N	3.57028300	-1.27853900	-0.10777500
C	3.17199100	-2.51063900	-0.21880700
N	1.08545400	-1.48014200	-0.23576800
C	1.71121900	-2.63981300	-0.33418000
N	1.14031300	1.52935800	0.03145800
C	1.80420500	2.67248800	0.06127300
N	3.61404800	1.23965600	-0.11979600
C	3.25583500	2.48899800	-0.07194000
C	4.95338000	0.68888700	-0.36549800
H	5.73627400	1.25184600	0.15121100
H	5.15645200	0.73231000	-1.44283300
C	4.93227800	-0.77532400	0.11204700
H	5.15133600	-0.82568000	1.18597400
H	5.68617000	-1.36536000	-0.41698400
C	1.10611300	3.98583200	0.20531900
H	1.80117400	4.82482600	0.15255800
C	4.18639700	3.65800300	-0.16265300
H	3.93025100	4.27839600	-1.03004700
C	0.97066600	-3.92138600	-0.53972900
H	1.64533700	-4.77567500	-0.60862900
C	4.06419800	-3.71275100	-0.21875100
H	3.78805000	-4.38939600	0.59866600
O	-0.21324700	-1.47838700	-0.34316800
O	-0.15457300	1.57084000	0.13805100
Zn	-1.53824800	0.03842200	0.04268500
N	-3.25769200	-1.43798700	-0.15085400
N	-2.14212100	0.34471500	-2.03675000
N	-3.13037200	1.41756600	0.49941800
C	-3.30904900	-1.85387500	-1.58786800
H	-3.01335600	-2.90328700	-1.66504800
H	-4.34248800	-1.80708700	-1.94567900
C	-2.37091700	-1.04051200	-2.50765100
H	-2.76962600	-1.05188500	-3.53258100
H	-1.38808200	-1.51589600	-2.52850600
C	-3.46020900	2.07932600	-0.79441800
H	-2.73177800	2.88614300	-0.91261000
H	-4.45433600	2.54698900	-0.74890200
C	-3.38140400	1.16856400	-2.02943300
H	-3.42451300	1.80249000	-2.92403300
H	-4.24720800	0.51191900	-2.09224100
		3	

C	-4.21004300	0.56585400	1.06072200
H	-3.88356400	0.28880000	2.06701400
H	-5.14222400	1.13988200	1.16908800
C	-4.49782600	-0.70388200	0.25754700
H	-5.13283100	-1.35487500	0.87070900
H	-5.08928300	-0.46594700	-0.62593900
C	-1.09143800	0.98875600	-2.85352000
H	-0.16506200	0.41403600	-2.77390200
H	-1.38401900	1.04486500	-3.91103800
H	-0.90443200	1.99704600	-2.47913900
C	-3.06292600	-2.62066200	0.72310200
H	-3.04868400	-2.30183500	1.76735800
H	-3.86703000	-3.35689600	0.58891300
H	-2.10175600	-3.08203200	0.49154100
C	-2.80422200	2.47113200	1.49388200
H	-1.95457700	3.05259600	1.13640600
H	-3.66182600	3.13668300	1.66154500
H	-2.52995100	2.00373200	2.44098400
Ni	2.24877900	0.00434500	-0.09040000
H	0.57629000	4.03667700	1.16417500
H	5.22927300	3.35436000	-0.25706400
H	4.08814400	4.29395000	0.72482000
H	5.11628100	-3.45088900	-0.10434000
H	3.94554400	-4.27493600	-1.15252900
H	0.37417800	-3.87592000	-1.45829300
H	0.27052000	-4.09808400	0.28516900
H	0.35252600	4.10845900	-0.58097200
N	-1.22855300	-0.37409700	2.30728700
C	-0.94417300	-0.55273800	3.41649600
C	-0.60520200	-0.77699400	4.81757500
H	-1.51527400	-0.77880800	5.42596200
H	-0.10174400	-1.74180000	4.93328900
H	0.05729000	0.01702300	5.17588300

$\left[\mathrm{Ni}^{(\mathrm{Me}}\right.$ doen $\left.) \mathbf{Z n}\left(\mathrm{Me}_{3} \mathbf{T A C N}\right)\right]^{1+}$
UB3LYP/6-31G(d)

```
Z = +1,M = 2
E=-4567.16654270
```

N	3.40917500	1.39059400	0.00269600
C	2.97038200	2.63955800	-0.09339300
N	0.95116800	1.51524500	-0.09774100
C	1.53542900	2.71915800	-0.10095700
N	1.12224800	-1.46676400	-0.12437100
C	1.82902600	-2.60360000	-0.11265500

N	3.54003700	-1.08149300	0.08005200
C	3.23682300	-2.37235000	0.06367500
C	4.85298200	-0.50624400	0.35604800
H	5.65461500	-1.05046300	-0.15852500
H	5.06314500	-0.55203500	1.43399300
C	4.80028600	0.96160200	-0.10942400
H	5.13294900	1.03555800	-1.15450800
H	5.47082200	1.58709800	0.49338900
C	1.15755700	-3.92885100	-0.29670900
H	1.87121800	-4.75354900	-0.26190100
C	4.27753700	-3.44251800	0.22826800
H	3.83857800	-4.43955300	0.27863800
C	0.71678000	3.97201500	-0.09859200
H	1.33961100	4.86480300	-0.17067700
C	3.90745400	3.80802100	-0.20016600
H	3.37800300	4.75684500	-0.29129100
O	-0.39617600	1.52997800	-0.05918900
O	-0.19192900	-1.58294400	-0.32876100
Zn	-1.43566200	-0.06549300	-0.10466000
N	-3.41961400	1.49318400	0.14304700
N	-2.54071100	-0.83696100	1.52736100
N	-2.84855200	-0.91574400	-1.41012400
C	-3.81316500	1.35570100	1.56383700
H	-3.71357200	2.32005700	2.07275900
H	-4.87396000	1.09056300	1.64032600
C	-2.94958800	0.33931600	2.33585800
H		-3.48755700	0.02413500


```
\(\left[\left(\mathrm{PPh}_{3}\right) \mathbf{N i}\left({ }^{\mathrm{Me}} \mathbf{d o e n}\right) \mathbf{Z n}\left(\mathrm{Me}_{3} \mathbf{T A C N}\right)\right]^{1+}\)
UB3LYP/6-31G(d)
\(\mathrm{Z}=+1, \mathrm{M}=2\)
\(\mathrm{E}=\mathbf{- 5 6 0 3 . 4 7 8 4 5 6 6 8}\)
```

Zn	2.47102900	-0.19119000	0.02877000
Ni	-1.03165600	-1.21226500	0.08321700
P	-1.94749400	0.87803000	-0.06227800
C	-0.07366900	-2.16077400	-2.42584600
C	5.33086000	-0.14569400	-1.31720800
C	-0.18563600	-1.74304600	2.72183800
C	-1.39910500	-2.77285900	-2.25810000
C	-1.01287800	2.14637200	-1.04086900
C	3.97746900	0.89164300	2.12971800
C	-1.40475300	-2.52966300	2.55478000
C	5.08299900	-1.41693100	-0.49732700
C	-3.60712000	0.84720800	-0.88090400
C	-3.03356800	-3.26039700	0.89142200
C	4.30535200	2.31458700	0.13362400
C	-0.40211300	1.74762500	-2.24222800
C	-3.24008900	-2.96872200	-0.62076900
C	-2.30646300	1.76993600	1.51951800
C	-0.90096400	3.48944600	-0.64612900
C	4.12248700	2.01046400	-1.35389800
C	2.26408300	2.48819200	1.45850400
C	3.87122900	-2.45951100	1.33729300
C	3.67008100	0.32697000	-3.02667400
C	-4.68106800	0.26662900	-0.18125000
C	4.89823100	-0.26112800	1.69509000
C	-3.83068300	1.31683500	-2.18225800
C	0.27876300	2.67182400	-3.03804800
C	-0.20149800	4.40803100	-1.43257300
C	-3.39398800	2.64806400	1.66552200
C	-5.94412100	0.17097900	-0.76458500
C	-1.43019000	1.60020000	2.60326900
C	-2.72571200	3.14927000	3.93752000
C	-1.63819700	2.28583500	3.80173400
C	-3.60183000	3.32957100	2.86544100
C	-6.15412500	0.63945200	-2.06408900
C	-5.09454600	1.20953700	-2.76878800
C	0.38572600	4.00467600	-2.63350100
H	6.01435300	0.52243800	-0.78696700
H	5.85358600	-0.42841600	-2.24008700
H	4.55727700	1.60503000	2.73533100
H	3.16810700	0.49549200	2.74598300

H

[^0]: ${ }^{1}$ Uhlig, E.; Friedrich, M. Anorg. Allg. Chem. 1966, 343, 299-307.
 ${ }^{2}$ Niibayashi, S.; Hayakawa, H.; Jin, R.-H.; Nagashima, H. Chem. Commun., 2007, 1855-1857.
 ${ }^{3}$ Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

[^1]: ${ }^{4}$ Crystalline samples of 7 retain $\mathrm{Et}_{2} \mathrm{O}$ under vacuum. This solvent is observed in the ${ }^{1} \mathrm{H}$ NMR spectrum and can account for deviations in the combustion analysis.
 ${ }^{5}$ The ligand was prepared using the same procedure reported by Packard with 1,3-diaminoethane in the place of 1,3-diaminopropane: Kiani, S.; Staples, R. J.; Treves, S. T.; Packard, A. B. Polyhedron, 2009, 28, 775-781. 1.62 g of 4-(hydroxyimino)-2,2,5,5-tetramethyldihydrofuran-3(2H)-one ($9.44 \mathrm{mmol}, 2.0$ eq) and 284 mg of 1,2-diaminoethane ($4.72 \mathrm{mmol}, 1.0 \mathrm{eq}$) were stirred in 20 mL of EtOH for 4 days at room temperature. The precipitated material was

[^2]: isolated by filtration through a glass-fritted funnel and washed with two $5-\mathrm{mL}$ portions of EtOH and $\mathrm{Et}_{2} \mathrm{O} .1 .05 \mathrm{~g}$ of the ${ }^{\mathrm{TmF}}$ doenH2 ligand ($2.87 \mathrm{mmol}^{2}$,

